1
|
Garnica S, Soto-Rauch G, Leffler EM, Núñez C, Gómez-Espinoza J, Romero E, Ahumada-Rudolph R, Cabrera-Pardo JR. High diversity of fungal ecological groups from ice-free pristine and disturbed areas in the Fildes Peninsula, King George Island, Antarctica. PLoS One 2025; 20:e0317571. [PMID: 39841713 PMCID: PMC11753637 DOI: 10.1371/journal.pone.0317571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/30/2024] [Indexed: 01/24/2025] Open
Abstract
Ice-free areas are habitats for most of Antarctica's terrestrial biodiversity. Although fungal communities are an important element of these habitats, knowledge of their assemblages and ecological functions is still limited. Herein, we investigated the diversity, composition, and ecological functionality of fungal communities inhabiting sediments from ice-free areas across pristine and anthropogenically impacted sites in the Fildes Peninsula on King George Island, Antarctica. Samples were collected from both pristine and disturbed areas. We used the internal transcribed spacer (ITS1) region via Illumina sequencing of 34 sediment samples for fungal identification. The Ascomycota (14.6%) and Chytridiomycota (11.8%) were the most dominant phyla, followed by Basidiomycota (8.1%), Rozellomycota (7.0%), Mucoromycota (4.0%), while 34.9% of the fungal diversity remained unidentified. From a total of 1073 OTUs, 532 OTUs corresponded to 114 fungal taxa at the genus level, and 541 OTUs remained unassigned taxonomically. The highest diversity, with 18 genera, was detected at site A-3. At the genus level, there was no preference for either pristine or disturbed sites. The most widely distributed genera were Betamyces (Chytridiomycota), occurring in 29 of the 34 sites, and Thelebolus (Ascomycota), detected in 8 pristine sites and 7 disturbed sites. The Glomeraceae gen. incertae sedis was more common in disturbed sites. A total of 23 different ecological guilds were recorded, with the most abundant guilds being undefined saprotrophs, plant pathogens, plant saprotrophs, pollen saprotrophs, and endophytes. The fungal communities did not show significant differences between pristine and disturbed sites, suggesting that the anthropogenic impact is either not too intense or prolonged, that the spatial distance between the sampled sites is small, and/or that the environmental factors are similar. Although our study revealed a high fungal diversity with various ecological specializations within these communities, nearly one-third of the diversity could not be assigned to any specific taxonomic category. These findings highlight the need for further taxonomic research on fungal species inhabiting ice-free areas. Without identifying the species present, it is difficult to assess potential biodiversity loss due to environmental changes and/or human activities.
Collapse
Affiliation(s)
- Sigisfredo Garnica
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Isla Teja, Valdivia, Chile
| | - Genaro Soto-Rauch
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Isla Teja, Valdivia, Chile
| | - Ellen M. Leffler
- Department of Human Genetics, The University of Utah School of Medicine, Salt Lake City, UT, United States of America
| | - Christian Núñez
- Departamento de Química, Laboratorio de Química Aplicada y Sustentable (LabQAS), Universidad del Bío-Bío, Concepción, Chile
| | | | - Enzo Romero
- Departamento de Química, Laboratorio de Química Aplicada y Sustentable (LabQAS), Universidad del Bío-Bío, Concepción, Chile
| | - Ramón Ahumada-Rudolph
- Departamento de Química, Laboratorio de Química Aplicada y Sustentable (LabQAS), Universidad del Bío-Bío, Concepción, Chile
| | - Jaime R. Cabrera-Pardo
- Departamento de Química, Laboratorio de Química Aplicada y Sustentable (LabQAS), Universidad del Bío-Bío, Concepción, Chile
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, United States of America
| |
Collapse
|
2
|
Fernández M, Barahona S, Gutierrez F, Alcaíno J, Cifuentes V, Baeza M. Bacterial Diversity, Metabolic Profiling, and Application Potential of Antarctic Soil Metagenomes. Curr Issues Mol Biol 2024; 46:13165-13178. [PMID: 39590379 PMCID: PMC11593224 DOI: 10.3390/cimb46110785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 11/28/2024] Open
Abstract
Antarctica has attracted increasing interest in understanding its microbial communities, metabolic potential, and as a source of microbial hydrolytic enzymes with industrial applications, for which advances in next-generation sequencing technologies have greatly facilitated the study of unculturable microorganisms. In this work, soils from seven sub-Antarctic islands and Union Glacier were studied using a whole-genome shotgun metagenomic approach. The main findings were that the microbial community at all sites was predominantly composed of the bacterial phyla Actinobacteria and Cyanobacteria, and the families Streptomycetaceae and Pseudonocardiaceae. Regarding the xenobiotic biodegradation and metabolism pathway, genes associated with benzoate, chloroalkane, chloroalkene, and styrene degradation were predominant. In addition, putative genes encoding industrial enzymes with predicted structural properties associated with improved activity at low temperatures were found, with catalases and malto-oligosyltrehalose trehalohydrolase being the most abundant. Overall, our results show similarities between soils from different Antarctic sites with respect to more abundant bacteria and metabolic pathways, especially at higher classification levels, regardless of their geographic location. Furthermore, our results strengthen the potential of Antarctic soils as a source of industrially relevant enzymes.
Collapse
Affiliation(s)
- Mario Fernández
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile (F.G.); (J.A.)
| | - Salvador Barahona
- Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile;
| | - Fernando Gutierrez
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile (F.G.); (J.A.)
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile (F.G.); (J.A.)
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile (F.G.); (J.A.)
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile (F.G.); (J.A.)
| |
Collapse
|
3
|
Silva JPD, Veloso TGR, Costa MD, Souza JJLLD, Soares EMB, Gomes LC, Schaefer CEGR. Microbial successional pattern along a glacier retreat gradient from Byers Peninsula, Maritime Antarctica. ENVIRONMENTAL RESEARCH 2024; 241:117548. [PMID: 37939803 DOI: 10.1016/j.envres.2023.117548] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
The retreat of glaciers in Antarctica has increased in the last decades due to global climate change, influencing vegetation expansion, and soil physico-chemical and biological attributes. However, little is known about soil microbiology diversity in these periglacial landscapes. This study characterized and compared bacterial and fungal diversity using metabarcoding of soil samples from the Byers Peninsula, Maritime Antarctica. We identified bacterial and fungal communities by amplification of bacterial 16 S rRNA region V3-V4 and fungal internal transcribed spacer 1 (ITS1). We also applied 14C dating on soil organic matter (SOM) from six profiles. Physico-chemical analyses and attributes associated with SOM were evaluated. A total of 14,048 bacterial ASVs were obtained, and almost all samples had 50% of their sequences assigned to Actinobacteriota and Proteobacteria. Regarding the fungal community, Mortierellomycota, Ascomycota and Basidiomycota were the main phyla from 1619 ASVs. We found that soil age was more relevant than the distance from the glacier, with the oldest soil profile (late Holocene soil profile) hosting the highest bacterial and fungal diversity. The microbial indices of the fungal community were correlated with nutrient availability, soil reactivity and SOM composition, whereas the bacterial community was not correlated with any soil attribute. The bacterial diversity, richness, and evenness varied according to presence of permafrost and moisture regime. The fungal community richness in the surface horizon was not related to altitude, permafrost, or moisture regime. The soil moisture regime was crucial for the structure, high diversity and richness of the microbial community, specially to the bacterial community. Further studies should examine the relationship between microbial communities and environmental factors to better predict changes in this terrestrial ecosystem.
Collapse
Affiliation(s)
- Jônatas Pedro da Silva
- Graduate Program in Soils and Plant Nutrition, Soil Science Department, Universidade Federal de Viçosa - UFV, Viçosa, MG, Brazil; Soil Science Department, Universidade Federal de Viçosa - UFV, Viçosa, MG, Brazil
| | | | - Maurício Dutra Costa
- Microbiology Department, Universidade Federal de Viçosa - UFV, Viçosa, MG, Brazil; Bolsista Pesquisador Do Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, Brasília, DF, Brazil
| | - José João Lelis Leal de Souza
- Soil Science Department, Universidade Federal de Viçosa - UFV, Viçosa, MG, Brazil; Bolsista Pesquisador Do Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, Brasília, DF, Brazil
| | | | | | - Carlos Ernesto G R Schaefer
- Soil Science Department, Universidade Federal de Viçosa - UFV, Viçosa, MG, Brazil; Bolsista Pesquisador Do Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, Brasília, DF, Brazil
| |
Collapse
|
4
|
Marchetta A, Papale M, Rappazzo AC, Rizzo C, Camacho A, Rochera C, Azzaro M, Urzì C, Lo Giudice A, De Leo F. A Deep Insight into the Diversity of Microfungal Communities in Arctic and Antarctic Lakes. J Fungi (Basel) 2023; 9:1095. [PMID: 37998900 PMCID: PMC10672340 DOI: 10.3390/jof9111095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
We assessed fungal diversity in water and sediment samples obtained from five Arctic lakes in Ny-Ålesund (Svalbard Islands, High Arctic) and five Antarctic lakes on Livingston and Deception Islands (South Shetland Islands), using DNA metabarcoding. A total of 1,639,074 fungal DNA reads were detected and assigned to 5980 ASVs amplicon sequence variants (ASVs), with only 102 (1.7%) that were shared between the two Polar regions. For Arctic lakes, unknown fungal taxa dominated the sequence assemblages, suggesting the dominance of possibly undescribed fungi. The phylum Chytridiomycota was the most represented in the majority of Arctic and Antarctic samples, followed by Rozellomycota, Ascomycota, Basidiomycota, and the less frequent Monoblepharomycota, Aphelidiomycota, Mortierellomycota, Mucoromycota, and Neocallimastigomycota. At the genus level, the most abundant genera included psychrotolerant and cosmopolitan cold-adapted fungi including Alternaria, Cladosporium, Cadophora, Ulvella (Ascomycota), Leucosporidium, Vishniacozyma (Basidiomycota), and Betamyces (Chytridiomycota). The assemblages displayed high diversity and richness. The assigned diversity was composed mainly of taxa recognized as saprophytic fungi, followed by pathogenic and symbiotic fungi.
Collapse
Affiliation(s)
- Alessia Marchetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres, 31, 98166 Messina, Italy
| | - Maria Papale
- Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122 Messina, Italy (A.L.G.)
| | - Alessandro Ciro Rappazzo
- Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122 Messina, Italy (A.L.G.)
| | - Carmen Rizzo
- Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122 Messina, Italy (A.L.G.)
- Stazione Zoologica Anton Dohrn, National Institute of Biology, Sicily Marine Centre, Department Ecosustainable Marine Biotechnology, Villa Pace, Contrada Porticatello 29, 98167 Messina, Italy
| | - Antonio Camacho
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, C/Catédratico José Beltrán, 2, E46980 Paterna, Spain
| | - Carlos Rochera
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, C/Catédratico José Beltrán, 2, E46980 Paterna, Spain
| | - Maurizio Azzaro
- Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122 Messina, Italy (A.L.G.)
| | - Clara Urzì
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres, 31, 98166 Messina, Italy
| | - Angelina Lo Giudice
- Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122 Messina, Italy (A.L.G.)
| | - Filomena De Leo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres, 31, 98166 Messina, Italy
| |
Collapse
|
5
|
Zhang T, Yan D, Ji Z, Chen X, Yu L. A comprehensive assessment of fungal communities in various habitats from an ice-free area of maritime Antarctica: diversity, distribution, and ecological trait. ENVIRONMENTAL MICROBIOME 2022; 17:54. [PMID: 36380397 PMCID: PMC9667611 DOI: 10.1186/s40793-022-00450-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/04/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND In the ice-free area of maritime Antarctica, fungi are the essential functioning group in terrestrial and marine ecosystems. Until now, no study has been conducted to comprehensively assess fungal communities in various habitats in Antarctica. We aimed to characterize fungal communities in the eleven habitats (i.e., soil, seawater, vascular plant, dung, moss, marine alga, lichen, green alga, freshwater, feather) in the Fildes Region (maritime Antarctica) using next-generation sequencing. RESULTS A total of 12 known phyla, 37 known classes, 85 known orders, 164 known families, 313 known genera, and 320 known species were detected. Habitat specificity rather than habitat overlap determined the composition of fungal communities, suggesting that, although fungal communities were connected by dispersal at the local scale, the environmental filter is a key factor driving fungal assemblages in the ice-free Antarctica. Furthermore, 20 fungal guilds and 6 growth forms were detected. Many significant differences in the functional guild (e.g., lichenized, algal parasite, litter saprotroph) and growth form (e.g., yeast, filamentous mycelium, thallus photosynthetic) existed among different habitat types. CONCLUSION The present study reveals the high diversity of fungal communities in the eleven ice-free Antarctic habitats and elucidates the ecological traits of fungal communities in this unique ice-free area of maritime Antarctica. The findings will help advance our understanding of fungal diversity and their ecological roles with respect to habitats on a neighbourhood scale in the ice-free area of maritime Antarctica.
Collapse
Affiliation(s)
- Tao Zhang
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.
| | - Dong Yan
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, People's Republic of China
| | - Zhongqiang Ji
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, People's Republic of China
| | - Xiufei Chen
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Liyan Yu
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.
| |
Collapse
|
6
|
Diversity and ecology of fungal assemblages present in lake sediments at Clearwater Mesa, James Ross Island, Antarctica, assessed using metabarcoding of environmental DNA. Fungal Biol 2022; 126:640-647. [DOI: 10.1016/j.funbio.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/23/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022]
|
7
|
Diversity, distribution and ecology of fungal communities present in Antarctic lake sediments uncovered by DNA metabarcoding. Sci Rep 2022; 12:8407. [PMID: 35589789 PMCID: PMC9120451 DOI: 10.1038/s41598-022-12290-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/29/2022] [Indexed: 01/04/2023] Open
Abstract
We assessed fungal diversity in sediments obtained from four lakes in the South Shetland Islands and James Ross Island, Antarctica, using DNA metabarcoding. We detected 218 amplicon sequence variants (ASVs) dominated by the phyla Ascomycota, Basidiomycota, Mortierellomycota, Mucoromycota and Chytridiomycota. In addition, the rare phyla Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Monoblepharomycota, Rozellomycota and Zoopagomycota as well as fungal-like Straminopila belonging to the phyla Bacillariophyta and Oomycota were detected. The fungal assemblages were dominated by unknown fungal taxa (Fungal sp. 1 and Fungal sp. 2), followed by Talaromyces rubicundus and Dactylonectria anthuriicola. In general, they displayed high diversity, richness and moderate dominance. Sequences representing saprophytic, pathogenic and symbiotic fungi were detected, including the phytopathogenic fungus D. anthuriicola that was abundant, in the relatively young Soto Lake on Deception Island. The lake sediments studied contained the DNA of rich, diverse and complex fungal communities, including both fungi commonly reported in Antarctica and other taxa considered to be rare. However, as the study was based on the use of environmental DNA, which does not unequivocally confirm the presence of active or viable organisms, further studies using other approaches such as shotgun sequencing are required to elucidate the ecology of fungi in these Antarctic lake sediments.
Collapse
|
8
|
Rosa LH, Ogaki MB, Lirio JM, Vieira R, Coria SH, Pinto OHB, Carvalho-Silva M, Convey P, Rosa CA, Câmara PEAS. Fungal diversity in a sediment core from climate change impacted Boeckella Lake, Hope Bay, north-eastern Antarctic Peninsula assessed using metabarcoding. Extremophiles 2022; 26:16. [PMID: 35499659 DOI: 10.1007/s00792-022-01264-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/05/2022] [Indexed: 01/04/2023]
Abstract
We studied the fungal DNA present in a lake sediment core obtained from Trinity Peninsula, Hope Bay, north-eastern Antarctic Peninsula, using metabarcoding through high-throughput sequencing (HTS). Sequences obtained were assigned to 146 amplicon sequence variants (ASVs) primarily representing unknown fungi, followed by the phyla Ascomycota, Rozellomycota, Basidiomycota, Chytridiomycota and Mortierellomycota. The most abundant taxa were assigned to Fungal sp., Pseudeurotium hygrophilum, Rozellomycota sp. 1, Pseudeurotiaceae sp. 1 and Chytridiomycota sp. 1. The majority of the DNA reads, representing 40 ASVs, could only be assigned at higher taxonomic levels and may represent taxa not currently included in the sequence databases consulted and/or be previously undescribed fungi. Different sections of the core were characterized by high sequence diversity, richness and moderate ecological dominance indices. The assigned diversity was dominated by cosmopolitan cold-adapted fungi, including known saprotrophic, plant and animal pathogenic and symbiotic taxa. Despite the overall dominance of Ascomycota and Basidiomycota and psychrophilic Mortierellomycota, members of the cryptic phyla Rozellomycota and Chytridiomycota were also detected in abundance. As Boeckella Lake may cease to exist in approaching decades due the effects of local climatic changes, it also an important location for the study of the impacts of these changes on Antarctic microbial diversity.
Collapse
Affiliation(s)
- Luiz Henrique Rosa
- Laboratório de Microbiologia Polar e Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, PO Box 486, Belo Horizonte, MG, 31270-901, Brazil.
| | - Mayara Baptistucci Ogaki
- Laboratório de Microbiologia Polar e Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, PO Box 486, Belo Horizonte, MG, 31270-901, Brazil
| | | | - Rosemary Vieira
- Instituto de Geociências, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | | | | | | | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.,Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, 2006, South Africa
| | - Carlos Augusto Rosa
- Laboratório de Microbiologia Polar e Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, PO Box 486, Belo Horizonte, MG, 31270-901, Brazil
| | | |
Collapse
|
9
|
Prokaryotic diversity and biogeochemical characteristics of benthic microbial ecosystems from James Ross Archipelago (West Antarctica). Polar Biol 2022. [DOI: 10.1007/s00300-021-02997-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Apangu GP, Frisk CA, Petch GM, Muggia L, Pallavicini A, Hanson M, Skjøth CA. Environmental DNA reveals diversity and abundance of Alternaria species in neighbouring heterogeneous landscapes in Worcester, UK. AEROBIOLOGIA 2022; 38:457-481. [PMID: 36471880 PMCID: PMC9715499 DOI: 10.1007/s10453-022-09760-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 09/28/2022] [Indexed: 05/05/2023]
Abstract
UNLABELLED Alternaria is a pathogenic and allergenic fungus affecting 400 plant species and 334 million people globally. This study aimed at assessing the diversity of Alternaria species in airborne samples collected from closely located (7 km apart) and heterogeneous sites (rural, urban and unmanaged grassland) in Worcester and Lakeside, the UK. A secondary objective was to examine how the ITS1 subregion varies from ITS2 in Alternaria species diversity and composition. Airborne spores were collected using Burkard 7-day and multi-vial Cyclone samplers for the period 5 July 2016-9 October 2019. Air samples from the Cyclone were amplified using the ITS1and ITS2 subregions and sequenced using Illumina MiSeq platform whereas those from the Burkard sampler were identified and quantified using optical microscopy. Optical microscopy and eDNA revealed a high abundance of Alternaria in the rural, urban and unmanaged sites. ITS1 and ITS2 detected five and seven different Alternaria species at the three sampling sites, respectively. A. dactylidicola, A. metachromatica and A. infectoria were the most abundant. The rural, urban and unmanaged grassland sites had similar diversity (PERMANOVA) of the species due to similarity in land use and proximity of the sites. Overall, the study showed that heterogeneous and neighbouring sites with similar land uses can have similar Alternaria species. It also demonstrated that an eDNA approach can complement the classical optical microscopy method in providing more precise information on fungal species diversity in an environment for targeted management. Similar studies can be replicated for other allergenic and pathogenic fungi. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10453-022-09760-9.
Collapse
Affiliation(s)
- Godfrey Philliam Apangu
- School of Science and the Environment, University of Worcester, Henwick Grove, WR2 6AJ Worcester UK
- Present Address: Protecting Crops and the Environment, Rothamsted Research, West Common, Harpenden, AL5 2JQ Hertfordshire UK
| | - Carl Alexander Frisk
- School of Science and the Environment, University of Worcester, Henwick Grove, WR2 6AJ Worcester UK
- Present Address: Department of Urban Greening and Vegetation Ecology, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Geoffrey M. Petch
- School of Science and the Environment, University of Worcester, Henwick Grove, WR2 6AJ Worcester UK
| | - Lucia Muggia
- Department of Life Sciences, University of Trieste, Via Giorgieri 10, 34127 Trieste, Italy
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via Giorgieri 10, 34127 Trieste, Italy
| | - Mary Hanson
- School of Science and the Environment, University of Worcester, Henwick Grove, WR2 6AJ Worcester UK
| | - Carsten Ambelas Skjøth
- School of Science and the Environment, University of Worcester, Henwick Grove, WR2 6AJ Worcester UK
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| |
Collapse
|
11
|
Fonseca BM, Câmara PEAS, Ogaki MB, Pinto OHB, Lirio JM, Coria SH, Vieira R, Carvalho-Silva M, Amorim ET, Convey P, Rosa LH. Green algae (Viridiplantae) in sediments from three lakes on Vega Island, Antarctica, assessed using DNA metabarcoding. Mol Biol Rep 2021; 49:179-188. [PMID: 34686990 DOI: 10.1007/s11033-021-06857-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/19/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Vega Island is located off the eastern tip of the Antarctic Peninsula (Maritime Antarctica), in the Weddell Sea. In this study, we used metabarcoding to investigate green algal DNA sequence diversity present in sediments from three lakes on Vega Island (Esmeralda, Copépodo, and Pan Negro Lakes). METHODS AND RESULTS Total DNA was extracted and the internal transcribed spacer 2 region of the nuclear ribosomal DNA was used as a DNA barcode for molecular identification. Green algae were represented by sequences representing 78 taxa belonging to Phylum Chlorophyta, of which 32% have not previously been recorded from Antarctica. Sediment from Pan Negro Lake generated the highest number of DNA reads (11,205), followed by Esmeralda (9085) and Copépodo (1595) Lakes. Esmeralda Lake was the richest in terms of number of taxa (59), with Copépodo and Pan Negro Lakes having 30 taxa each. Bray-Curtis dissimilarity among lakes was high (~ 0.80). The Order Chlamydomonadales (Chlorophyceae) gave the highest contribution in terms of numbers of taxa and DNA reads in all lakes. The most abundant taxon was Chlorococcum microstigmatum. CONCLUSIONS The study confirms the utility of DNA metabarcoding in assessing potential green algal diversity in Antarctic lakes, generating new Antarctic records.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rosemary Vieira
- Instituto de Geociências, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | | | | | - Peter Convey
- British Antarctic Survey, Cambridge, UK
- Department of Zoology, University of Johannesburg, Auckland Park, South Africa
| | - Luiz Henrique Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|