1
|
Sodré LI, Gall MEC, Elias MDB, de Oliveira LO, Lobo FATF, Carias RBV, Teodoro AJ. Osteogenic Effects of Bioactive Compounds Found in Fruits on Mesenchymal Stem Cells: A Review. Nutr Rev 2025; 83:675-691. [PMID: 39862385 DOI: 10.1093/nutrit/nuae209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025] Open
Abstract
Phytochemicals, which are bioactive compounds contained in fruits, vegetables, and teas, have a positive effect on human health by having anti-inflammatory, antioxidant, and anticarcinogenic effects. Several studies have highlighted the ability of bioactive compounds to activate key cellular enzymes associated with important signaling pathways related to cell division and proliferation, as well as their role in inflammatory and immunological responses. Some phytochemicals are associated with increased proliferation, differentiation, and expression of markers related to osteogenesis, bone formation, and mineralization by activating various signaling pathways. The objective of this study was to clarify which bioactive compounds present in fruits have osteogenic effects on mesenchymal stem cells and the possible associated mechanisms. A literature search was conducted in the LILACS, MEDLINE, and PubMed databases for pertinent articles published between 2014 and 2024. This review included 34 articles that report the osteogenic effects of various bioactive compounds found in different fruits. All the articles reported that phytochemicals play a role in enhancing the regenerative properties of mesenchymal cells, such as proliferation, osteogenic differentiation, secretion of angiogenic factors, and extracellular matrix formation. This review highlights the potential of these phytochemicals in the prevention and treatment of bone diseases. However, more studies are recommended to identify and quantify the therapeutic dose of phytochemicals, investigate their mechanisms in humans, and ensure their safety and effectiveness for health, particularly for bone health.
Collapse
Affiliation(s)
- Lia Igel Sodré
- Graduate Program in Science of Nutrition, Fluminense Federal University, Niterói, RJ 24020-140, Brazil
| | - Maria Eduarda Cordebello Gall
- Graduate Program in Biotechnology, National Institute of Metrology Standardization and Industrial Quality, Xerém, RJ 25250-020, Brazil
| | - Monique de Barros Elias
- Graduate Program in Food and Nutrition Security, Fluminense Federal University/Faculty of Nutrition, Niterói, RJ 24020-140, Brazil
| | - Luana Oeby de Oliveira
- Programa de Pós-Graduação em Ciências Aplicadas a Produtos para a Saúde (PPG-CAPS)/Fluminense Federal University, Faculty of Nutrition, Niteroi, RJ 24020-140, Brazil
| | | | - Rosana Bizon Vieira Carias
- Regenerative Medicine Laboratory, Centro Universitário Arthur Sá Earp Neto, Petrópolis Medical School, Petrópolis, RJ 25680-120, Brazil
| | - Anderson Junger Teodoro
- Universidade Federal Fluminense (Fluminense Federal University), Nutrition and Dietetics Department, Food and Nutrition Integrated Center, Niterói, RJ CEP 24020-140, Brazil
| |
Collapse
|
2
|
Hu X, Tan Q, Zhu G, Xi H. Investigating the Role of Shikonin in Enhancing Osteogenesis and Angiogenesis for the Treatment of Osteoporosis. ACS OMEGA 2025; 10:9718-9727. [PMID: 40092755 PMCID: PMC11904651 DOI: 10.1021/acsomega.4c11161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/19/2025]
Abstract
Osteoporosis, characterized by an increased risk of fractures, represents a significant global public health issue. Natural compounds have emerged as promising candidates for addressing this condition. Shikonin, derived from Lithospermum erythrorhizon as a purple-red naphthoquinone pigment, exhibits a diverse array of biological activities, including antibacterial, anti-inflammatory, and anticancer properties. Despite the well-documented bone-protective properties of shikonin, the precise molecular mechanisms underlying its role in the differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) into osteoblasts, along with its implications on angiogenesis, are not fully elucidated. Our study showcases shikonin's ability to stimulate the differentiation of BMSCs into osteoblasts, leading to an upregulation of osteoblast-specific marker genes such as OC, Runx2, BMP2, and ALP. Furthermore, shikonin intervention triggers the upregulation of phosphorylation of p38, ERK, and JNK in the MAPK signaling pathway. Furthermore, shikonin has been shown to enhance the migration and angiogenic capabilities of human umbilical vein endothelial cells (HUVECs). Notably, the augmentation of HUVEC migration by shikonin can be counteracted by the addition of a JNK inhibitor. Furthermore, our findings indicate that shikonin effectively improves osteoporosis in aged mice by promoting osteoblast differentiation. In summary, our study elucidates the molecular mechanisms through which shikonin exerts its beneficial effects in the treatment of osteoporosis, highlighting its potential as a novel therapeutic option for both the prevention and management of this condition.
Collapse
Affiliation(s)
- Xiongke Hu
- Department
of Pediatric Orthopedics, Children’s
Hospital Affiliated to Xiangya Medical College of Central South University
(Hunan Children’s Hospital), Changsha, 86 Ziyuan Road, Hunan 410000, P. R. China
| | - Qian Tan
- Department
of Pediatric Orthopedics, Children’s
Hospital Affiliated to Xiangya Medical College of Central South University
(Hunan Children’s Hospital), Changsha, 86 Ziyuan Road, Hunan 410000, P. R. China
| | - Guanghui Zhu
- Department
of Pediatric Orthopedics, Children’s
Hospital Affiliated to Xiangya Medical College of Central South University
(Hunan Children’s Hospital), Changsha, 86 Ziyuan Road, Hunan 410000, P. R. China
| | - Haipeng Xi
- The
First Affiliated Hospital, Department of Neurosurgery, Hengyang Medical
School, University of South China, Hengyang, 69 Chuanshan
Road, Hunan 421001, P. R. China
| |
Collapse
|
3
|
Mendes Soares IP, Anselmi C, Ribeiro RADO, Mota RLM, Pires MLBA, Fernandes LDO, de Souza Costa CA, Hebling J. Flavonoids modulate regenerative-related cellular events in LPS-challenged dental pulp cells. J Dent 2024; 151:105424. [PMID: 39427960 DOI: 10.1016/j.jdent.2024.105424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024] Open
Abstract
OBJECTIVE To investigate the effects of quercetin (QU), hesperetin (HT), and taxifolin (TX) on human dental pulp cells (hDPCs) chronically exposed to lipopolysaccharide (LPS). METHODS First, the cytotoxicity (alamarBlue) and bioactivity (biomineralization, Alizarin Red) of QU, HT, and TX concentrations were evaluated on healthy hDPCs. Then, the effects of non-cytotoxic and bioactive concentrations were investigated on hDPCs after previous stimulation with E. coli LPS (10 µg/mL) for 7 days. Cell culture media with and without LPS were used as positive and negative controls, respectively. Cell viability (alamarBlue), NF-κB activation (immunofluorescence), reactive oxygen species production (ROS, H2DCFDA probe), cell migration (Transwell), inflammation-related gene expression (RT-qPCR), and odontogenic differentiation (RT-qPCR and alizarin red) were evaluated (n = 8). Data were analyzed using confidence intervals and ANOVA (α = 5 %). RESULTS The concentrations of 20 µM QU, 20 µM HT, and 200 µM TX reduced cell viability by more than 30 %. The 5 µM QU, 10 µM HT, and 100 µM TX concentrations were cytocompatible and stimulated biomineralization by healthy hDPCs. These concentrations were tested under the LPS challenge, and cell viability and odontogenic differentiation were significantly increased, while ROS production and inflammatory response were significantly decreased. In addition, the flavonoids significantly stimulated cell migration, reduced NF-κB activation, and increased biomineralization by LPS-challenged hDPCs compared to cells exposed to LPS alone and without any other treatment. CONCLUSION Flavonoids can modulate the metabolism of hDPCs chronically exposed to LPS in vitro, stimulating cellular events compatible with stem cell-based regenerative processes. CLINICAL SIGNIFICANCE Flavonoids may be explored as adjuvant therapeutic agents during pulp capping to counteract chronic inflammatory conditions and stimulate regeneration of the dentin-pulp complex in caries-affected teeth, thereby preserving tooth vitality.
Collapse
Affiliation(s)
- Igor Paulino Mendes Soares
- Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), School of Dentistry, Araraquara, São Paulo, Brazil
| | - Caroline Anselmi
- Department of Morphology, Orthodontics and Pediatric Dentistry, São Paulo State University (UNESP), School of Dentistry, Araraquara, São Paulo, Brazil
| | - Rafael Antonio de Oliveira Ribeiro
- Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), School of Dentistry, Araraquara, São Paulo, Brazil
| | - Rafaella Lara Maia Mota
- Department of Morphology, Orthodontics and Pediatric Dentistry, São Paulo State University (UNESP), School of Dentistry, Araraquara, São Paulo, Brazil
| | - Maria Luiza Barucci Araujo Pires
- Department of Morphology, Orthodontics and Pediatric Dentistry, São Paulo State University (UNESP), School of Dentistry, Araraquara, São Paulo, Brazil
| | - Lídia de Oliveira Fernandes
- Department of Restorative Dentistry, São Paulo State University (UNESP), School of Dentistry, Araraquara, São Paulo, Brazil
| | - Carlos Alberto de Souza Costa
- Department of Physiology and Pathology, São Paulo State University (UNESP), School of Dentistry, Araraquara, São Paulo, Brazil
| | - Josimeri Hebling
- Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), School of Dentistry, Araraquara, São Paulo, Brazil.
| |
Collapse
|
4
|
Roseti L, Borciani G, Grassi F, Desando G, Gambari L, Grigolo B. Nutraceuticals in osteoporosis prevention. Front Nutr 2024; 11:1445955. [PMID: 39416651 PMCID: PMC11479890 DOI: 10.3389/fnut.2024.1445955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Nutraceuticals are gaining popularity as they can contribute to bone health by delaying the onset or slowing down the progression of pathological bone loss. Osteoporosis's bone loss is a concern for older adults and a crucial aspect of aging. Maintaining healthy bones is the key to living a full and active life. Our review explores the current knowledge on the role of nutraceuticals in preventing osteoporosis by focusing on three main aspects. First, we provide an overview of osteoporosis. Second, we discuss the latest findings on natural nutraceuticals and their efficacy in reducing bone loss, emphasizing clinical trials. Third, we conduct a structured analysis to evaluate nutraceuticals' pros and cons and identify translational gaps. In conclusion, we must address several challenges to consolidate our knowledge, better support clinicians in their prescriptions, and provide people with more reliable nutritional recommendations to help them lead healthier lives.
Collapse
Affiliation(s)
| | - Giorgia Borciani
- RAMSES Laboratory, Rizzoli RIT-Research, Innovation & Technology Department, Istituto di Ricerca Codivilla Putti, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | | | | | | |
Collapse
|
5
|
Zhang J, Cao J, Liu Y, Zhao H. Advances in the Pathogenesis of Steroid-Associated Osteonecrosis of the Femoral Head. Biomolecules 2024; 14:667. [PMID: 38927070 PMCID: PMC11202272 DOI: 10.3390/biom14060667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is a refractory orthopedic condition characterized by bone cell ischemia, necrosis, bone trabecular fracture, and clinical symptoms such as pain, femoral head collapse, and joint dysfunction that can lead to disability. The disability rate of ONFH is very high, which imposes a significant economic burden on both families and society. Steroid-associated osteonecrosis of the femoral head (SANFH) is the most common type of ONFH. However, the pathogenesis of SANFH remains unclear, and it is an urgent challenge for orthopedic surgeons to explore it. In this paper, the pathogenesis of SANFH and its related signaling pathways were briefly reviewed to enhance comprehension of the pathogenesis and prevention of SANFH.
Collapse
Affiliation(s)
- Jie Zhang
- The First Clinical College of Medicine, Lanzhou University, Lanzhou 730000, China; (J.Z.); (J.C.); (Y.L.)
| | - Jianze Cao
- The First Clinical College of Medicine, Lanzhou University, Lanzhou 730000, China; (J.Z.); (J.C.); (Y.L.)
| | - Yongfei Liu
- The First Clinical College of Medicine, Lanzhou University, Lanzhou 730000, China; (J.Z.); (J.C.); (Y.L.)
| | - Haiyan Zhao
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
6
|
Mancim-Imbriani MJ, Duarte JL, Di Filippo LD, Durão LPL, Chorilli M, Palomari Spolidorio DM, Maquera-Huacho PM. Formulation of a Novel Hesperetin-Loaded Nanoemulsion and Its Promising Effect on Osteogenesis. Pharmaceutics 2024; 16:698. [PMID: 38931821 PMCID: PMC11206411 DOI: 10.3390/pharmaceutics16060698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Alternative therapies associating natural products and nanobiotechnology show new perspectives on controlled drug release. In this context, nanoemulsions (NEs) present promising results for their structural design and properties. Hesperetin (HT), a flavonoid mainly found in citrus fruits, presents highlighted bone benefits. In this context, we developed a hesperetin-loaded nanoemulsion (HT-NE) by sonication method and characterized it by dynamic light scattering, analyzing its encapsulation efficiency, and cumulative release. The biocompatibility in human osteoblasts Saos-2-like was evaluated by the cytotoxicity assay and IC50. Then, the effects of the HT-NE on osteogenesis were evaluated by the cellular proliferation, calcium nodule formation, bone regulators gene expression, collagen quantification, and alkaline phosphatase activity. The results showed that the formulation presented ideal values of droplet size, polydispersity index, and zeta potential, and the encapsulation efficiency was 74.07 ± 5.33%, showing a gradual and controlled release. Finally, HT-NE was shown to be biocompatible and increased cellular proliferation, and calcium nodule formation, regulated the expression of Runx2, ALPL, and TGF-β genes, and increased the collagen formation and alkaline phosphatase activity. Therefore, the formulation of this NE encapsulated the HT appropriately, allowing the increasing of its effects on mechanisms to improve or accelerate the osteogenesis process.
Collapse
Affiliation(s)
- Maria Júlia Mancim-Imbriani
- Department of Diagnosis and Surgery, São Paulo State University (UNESP), School of Dentistry, Araraquara CEP 14801-385, São Paulo, Brazil; (M.J.M.-I.); (L.P.L.D.)
- Department of Physiology and Pathology, São Paulo State University (UNESP), School of Dentistry, Araraquara CEP 14801-385, São Paulo, Brazil;
| | - Jonatas Lobato Duarte
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara CEP 14800-903, São Paulo, Brazil; (J.L.D.); (L.D.D.F.); (M.C.)
| | - Leonardo Delello Di Filippo
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara CEP 14800-903, São Paulo, Brazil; (J.L.D.); (L.D.D.F.); (M.C.)
| | - Letícia Pereira Lima Durão
- Department of Diagnosis and Surgery, São Paulo State University (UNESP), School of Dentistry, Araraquara CEP 14801-385, São Paulo, Brazil; (M.J.M.-I.); (L.P.L.D.)
- Department of Physiology and Pathology, São Paulo State University (UNESP), School of Dentistry, Araraquara CEP 14801-385, São Paulo, Brazil;
| | - Marlus Chorilli
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara CEP 14800-903, São Paulo, Brazil; (J.L.D.); (L.D.D.F.); (M.C.)
| | - Denise Madalena Palomari Spolidorio
- Department of Physiology and Pathology, São Paulo State University (UNESP), School of Dentistry, Araraquara CEP 14801-385, São Paulo, Brazil;
| | - Patricia Milagros Maquera-Huacho
- Department of Diagnosis and Surgery, São Paulo State University (UNESP), School of Dentistry, Araraquara CEP 14801-385, São Paulo, Brazil; (M.J.M.-I.); (L.P.L.D.)
- Department of Physiology and Pathology, São Paulo State University (UNESP), School of Dentistry, Araraquara CEP 14801-385, São Paulo, Brazil;
| |
Collapse
|
7
|
Zheng Y, Wang J, Xu K, Chen X. Intake of dietary flavonoids in relation to bone loss among U.S. adults: a promising strategy for improving bone health. Food Funct 2024; 15:766-778. [PMID: 38126227 DOI: 10.1039/d3fo02065g] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Dietary flavonoids have been recommended for improving bone health due to their antioxidant, anti-inflammatory and osteogenic properties. However, the effectiveness of each flavonoid subclass in the prevention and treatment of osteoporosis remains controversial. The objective of the current study was to examine the association between the intake of flavonoid subclasses and bone loss in 10 480 U.S. adults in the National Health and Nutrition Examination Survey. We employed a multinomial logistic regression model to calculate the odds ratios (OR) and 95% confidence intervals (95% CI). The intake of flavones, isoflavones, and flavanones was beneficially associated with osteoporosis (ORQ5 vs. Q1 = 0.44; 95% CI: 0.30-0.64 for flavones; ORQ5 vs. Q1 = 0.53; 95% CI: 0.37-0.77 for isoflavones; ORQ5 vs. Q1 = 0.66; 95% CI: 0.45-0.97 for flavanones). A higher intake of flavones and flavanones was significantly associated with a lower risk of bone loss at the femoral neck rather than the lumbar spine. Notably, stratified analysis showed that genistein had a harmful association with osteopenia in the population with lower serum calcium levels, whereas it had a beneficial association with osteoporosis in the population with higher serum calcium levels. Multiple sensitivity analyses were performed to test the robustness of the results, including subgroup analysis, exclusion of individuals' use of anti-osteoporosis, corticosteroid, and estrogenic medications, adjusting more potential confounders and calculation of the E-value. Overall, incorporating this modifiable diet into an individual's lifestyle could provide potential possibilities to prevent and ameliorate osteoporosis.
Collapse
Affiliation(s)
- Yi Zheng
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| | - Jiacheng Wang
- Department of Epidemiology, School of Public Health, and the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Kelin Xu
- Department of Biostatistics, School of Public Health, and the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China.
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, China
| |
Collapse
|
8
|
Bone tissue engineering via application of a PCL/Gelatin/Nanoclay/Hesperetin 3D nanocomposite scaffold. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Cao L, Wang J, Zhang Y, Tian F, Wang C. Osteoprotective effects of flavonoids: Evidence from in vivo and in vitro studies (Review). Mol Med Rep 2022; 25:200. [PMID: 35475514 DOI: 10.3892/mmr.2022.12716] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/22/2022] [Indexed: 11/05/2022] Open
Abstract
Osteoporosis is a systemic bone disease characterized by decreased bone mass and quality and bone micro‑architecture degradation. Its primary cause is disorder of bone metabolism: Over‑formation of osteoclasts, resulting in increased bone resorption and insufficient osteogenesis. Traditional herbal flavonoids can be used as alternative drugs to prevent and treat osteoporosis due to their wide range of sources, structural diversity and less adverse effects. The present paper reviewed six flavonoids, including quercetin, icariin, hesperitin, naringin, chrysin and pueraria, that promote bone formation and have been widely studied in the literature over the past five years, with the aim of providing novel ideas for the development of drugs for bone‑associated disease.
Collapse
Affiliation(s)
- Lili Cao
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jiawei Wang
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yujuan Zhang
- Experimental Animal Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Feng Tian
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, P.R. China
| | - Chunfang Wang
- Experimental Animal Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
10
|
Zhang J, Liu Z, Luo Y, Li X, Huang G, Chen H, Li A, Qin S. The Role of Flavonoids in the Osteogenic Differentiation of Mesenchymal Stem Cells. Front Pharmacol 2022; 13:849513. [PMID: 35462886 PMCID: PMC9019748 DOI: 10.3389/fphar.2022.849513] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/16/2022] [Indexed: 01/02/2023] Open
Abstract
Mesenchymal stem cells (MSCs) play an important role in developing bone tissue engineered constructs due to their osteogenic and chondrogenic differentiation potential. MSC-based tissue engineered constructs are generally considered a safe procedure, however, the long-term results obtained up to now are far from satisfactory. The main causes of these therapeutic limitations are inefficient homing, engraftment, and directional differentiation. Flavonoids are a secondary metabolite, widely existed in nature and have many biological activities. For a long time, researchers have confirmed the anti-osteoporosis effect of flavonoids through in vitro cell experiments, animal studies. In recent years the regulatory effects of flavonoids on mesenchymal stem cells (MSCs) differentiation have been received increasingly attention. Recent studies revealed flavonoids possess the ability to modulate self-renewal and differentiation potential of MSCs. In order to facilitate further research on MSCs osteogenic differentiation of flavonoids, we surveyed the literature published on the use of flavonoids in osteogenic differentiation of MSCs, and summarized their pharmacological activities as well as the underlying mechanisms, aimed to explore their promising therapeutic application in bone disorders and bone tissue engineered constructs.
Collapse
Affiliation(s)
- Jinli Zhang
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Zhihe Liu
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Yang Luo
- School of Physical Education, Southwest University, Guangzhou, China
| | - Xiaojian Li
- Department of Burn and Plastic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Guowei Huang
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Huan Chen
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Aiguo Li
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Shengnan Qin
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| |
Collapse
|
11
|
Wang Y, Luan S, Yuan Z, Lin C, Fan S, Wang S, Ma C, Wu S. Therapeutic effect of platelet-rich plasma on glucocorticoid-induced rat bone marrow mesenchymal stem cells in vitro. BMC Musculoskelet Disord 2022; 23:151. [PMID: 35168574 PMCID: PMC8845312 DOI: 10.1186/s12891-022-05094-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glucocorticoid-induced osteonecrosis of the femoral head (GIONFH) is a progressive and disabling disease caused by long-term or high-dose glucocorticoid use. Decreased osteogenesis and proliferation of bone marrow mesenchymal stem cells (BMSCs) are the main pathogenesis of GIONFH. Platelet-rich plasma (PRP) has been shown to play a promising role in bone regeneration. However, the effects of PRP on glucocorticoid-induced BMSCs inhibition remains elusive. The objective of this study was to explore whether PRP could improve the in vitro biological activities of BMSCs inhibited by high-dose glucocorticoid in vitro. METHODS In this study, a dexamethasone (Dex)-induced in vitro cell model was established. The effects of PRP on proliferation, migration, cell cycle and apoptosis of rat BMSCs induced with high-dose Dex compared to BMSCCTRL, using CCK-8 assay, transwell, flow cytometry and TUNEL assay, respectively. We further performed the alkaline phosphatase (ALP) and alizarin red (ALR) staining to explore the influence of PRP on osteogenic differentiation. Western Blot was used to detect the expression of Bcl-2, Caspase-3, RUNX2 apoptosis, and osteogenic-related proteins. RESULTS We observed increased apoptosis rate and Caspase-3 expression, and the decreased migration and osteogenic differentiation, and down-regulation of RUNX-2 and Bcl-2 expression in Dex-induced BMSCs. PRP could reverse these inhibitory effects of Dex, and enhance the BMSCs proliferation, migration, and osteogenic ability in vitro. CONCLUSION Our vitro study showed that PRP significantly protected BMSCs from Dex-induced apoptosis, and further promoted BMSCs proliferation, migration, and osteogenic differentiation. This study provides a scientific basis for the prevention and treatment of GIONFH with PRP. Meanwhile, it also lays the foundation for the application of PRP in other musculoskeletal diseases.
Collapse
Affiliation(s)
- Yanxue Wang
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510030, Guangdong, China
| | - Shuo Luan
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510030, Guangdong, China
| | - Ze Yuan
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510030, Guangdong, China
| | - Caina Lin
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510030, Guangdong, China
| | - Shengnuo Fan
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510030, Guangdong, China
| | - Shaoling Wang
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510030, Guangdong, China
| | - Chao Ma
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510030, Guangdong, China.
| | - Shaoling Wu
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510030, Guangdong, China.
| |
Collapse
|