1
|
Chen J, Chen C, Zhang Z, Zeng F, Zhang S. Exploring the Key Amino Acid Residues Surrounding the Active Center of Lactate Dehydrogenase A for the Development of Ideal Inhibitors. Molecules 2024; 29:2029. [PMID: 38731521 PMCID: PMC11085338 DOI: 10.3390/molecules29092029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Lactate dehydrogenase A (LDHA) primarily catalyzes the conversion between lactic acid and pyruvate, serving as a key enzyme in the aerobic glycolysis pathway of sugar in tumor cells. LDHA plays a crucial role in the occurrence, development, progression, invasion, metastasis, angiogenesis, and immune escape of tumors. Consequently, LDHA not only serves as a biomarker for tumor diagnosis and prognosis but also represents an ideal target for tumor therapy. Although LDHA inhibitors show great therapeutic potential, their development has proven to be challenging. In the development of LDHA inhibitors, the key active sites of LDHA are emphasized. Nevertheless, there is a relative lack of research on the amino acid residues around the active center of LDHA. Therefore, in this study, we investigated the amino acid residues around the active center of LDHA. Through structure comparison analysis, five key amino acid residues (Ala30, Met41, Lys131, Gln233, and Ala259) were identified. Subsequently, the effects of these five residues on the enzymatic properties of LDHA were investigated using site-directed mutagenesis. The results revealed that the catalytic activities of the five mutants varied to different degrees in both the reaction from lactic acid to pyruvate and pyruvate to lactic acid. Notably, the catalytic activities of LDHAM41G and LDHAK131I were improved, particularly in the case of LDHAK131I. The results of the molecular dynamics analysis of LDHAK131I explained the reasons for this phenomenon. Additionally, the optimum temperature of LDHAM41G and LDHAQ233M increased from 35 °C to 40 °C, whereas in the reverse reaction, the optimum temperature of LDHAM41G and LDHAK131I decreased from 70 °C to 60 °C. These findings indicate that Ala30, Met41, Lys131, Gln233, and Ala259 exert diverse effects on the catalytic activity and optimum temperature of LHDA. Therefore, these amino acid residues, in addition to the key catalytic site of the active center, play a crucial role. Considering these residues in the design and screening of LDHA inhibitors may lead to the development of more effective inhibitors.
Collapse
Affiliation(s)
- Jie Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (J.C.); (C.C.); (Z.Z.)
| | - Chen Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (J.C.); (C.C.); (Z.Z.)
| | - Zhengfu Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (J.C.); (C.C.); (Z.Z.)
| | - Fancai Zeng
- Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Ministry of Education, Nanchong 637009, China
| | - Shujun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (J.C.); (C.C.); (Z.Z.)
| |
Collapse
|
2
|
Esa SS, El-Sayed AF, El-Khonezy MI, Zhang S. Recombinant production, purification, and biochemical characterization of a novel L-lactate dehydrogenase from Bacillus cereus NRC1 and inhibition study of mangiferin. Front Bioeng Biotechnol 2023; 11:1165465. [PMID: 37091329 PMCID: PMC10117910 DOI: 10.3389/fbioe.2023.1165465] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/16/2023] [Indexed: 04/08/2023] Open
Abstract
Lactate dehydrogenase (LDH, EC 1.1.1.27) is one of the vital glycolytic conditions, especially during anaerobic conditions. It is a significant diagnostic, prognostic, and monitoring biomarker parameter. A 950-bp DNA fragment containing the gene (LDH) encoding LDH was amplified from Bacillus cereus NRC1. The deduced amino acid sequence reveals that B. cereus LDH (Bc-LDH) is highly homologous to the LDHs of Bacillus organisms. All LDH enzymes have a significant degree of conservation in their active site and several additional domains with unidentified functions. The gene for LDH, which catalyzes lactate synthesis, was cloned, sequenced (accession number: LC706200.1), and expressed in Escherichia coli BL21 (DE3). In this investigation, Bc-LDH was purified to homogeneity with a specific activity of 22.7 units/mg protein and a molecular weight of 35 kDa. It works optimally at pH 8.0. The purified enzyme was inhibited by FeCl2, CuCl2, ZnCl2, and NiCl, whereas CoCl2 was found to boost the activity of Bc-LDH. The molecular docking of the 3D model of the Bc-LDH structure with a natural inhibitor, mangiferin, demonstrated excellent LDH inhibition, with a free binding energy of −10.2 kcal/mol. Moreover, mangiferin is a potent Bc-LDH inhibitor that inhibits Bc-LDH competitively and has one binding site with a Ki value of 0.075 mM. The LDH-mangiferin interaction exhibits a low RMSF value (>1.5 Å), indicating a stable contact at the residues. This study will pave the way for more studies to improve the understanding of mangiferin, which could be considered an intriguing candidate for creating novel and improved LDH inhibitors.
Collapse
Affiliation(s)
- Sayed S. Esa
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Giza, Egypt
| | - Ahmed F. El-Sayed
- Microbial Genetics Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Mohamed I. El-Khonezy
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Giza, Egypt
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
- *Correspondence: Shubing Zhang,
| |
Collapse
|
3
|
Ahmed SS, Rahman MO, Alqahtani AS, Sultana N, Almarfadi OM, Ali MA, Lee J. Anticancer potential of phytochemicals from Oroxylum indicum targeting Lactate Dehydrogenase A through bioinformatic approach. Toxicol Rep 2022; 10:56-75. [PMID: 36583135 PMCID: PMC9792705 DOI: 10.1016/j.toxrep.2022.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/04/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
In recent years, small molecule inhibition of LDHA (Lactate Dehydrogenase A) has evolved as an appealing option for anticancer therapy. LDHA catalyzes the interconversion of pyruvate and lactate in the glycolysis pathway to play a crucial role in aerobic glycolysis. Therefore, in the current investigation LDHA was targeted with bioactive phytochemicals of an ethnomedicinally important plant species Oroxylum indicum (L.) Kurz. A total of 52 phytochemicals were screened against LDHA protein through molecular docking, ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity) assay and molecular dynamics simulation to reveal three potential lead compounds such as Chrysin-7-O-glucuronide (-8.2 kcal/mol), Oroxindin (-8.1 kcal/mol) and Oroxin A (-8.0 kcal/mol). ADMET assay unveiled favorable pharmacokinetic, pharmacodynamic and toxicity properties for all the lead compounds. Molecular dynamics simulation exhibited significant conformational stability and compactness. MM/GBSA free binding energy calculations further corroborated the selection of top candidates where Oroxindin (-46.47 kcal/mol) was found to be better than Chrysin-7-O-glucuronide (-45.72 kcal/mol) and Oroxin A (-37.25 kcal/mol). Aldolase reductase and Xanthine dehydrogenase enzymes were found as potential drug targets and Esculin, the FDA approved drug was identified as structurally analogous to Oroxindin. These results could drive in establishing novel medications targeting LDHA to fight cancer.
Collapse
Affiliation(s)
| | - M. Oliur Rahman
- Department of Botany, University of Dhaka, Dhaka 1000, Bangladesh,Corresponding author.
| | - Ali S. Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nahid Sultana
- Department of Botany, Jagannath University, Dhaka 1100, Bangladesh
| | - Omer M. Almarfadi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - M. Ajmal Ali
- Deperment of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Joongku Lee
- Department of Environment and Forest Resources, Chungnam National University, Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| |
Collapse
|
4
|
Tang Y, Gu S, Zhu L, Wu Y, Zhang W, Zhao C. LDHA: The Obstacle to T cell responses against tumor. Front Oncol 2022; 12:1036477. [PMID: 36518315 PMCID: PMC9742379 DOI: 10.3389/fonc.2022.1036477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2023] Open
Abstract
Immunotherapy has become a successful therapeutic strategy in certain solid tumors and hematological malignancies. However, this efficacy of immunotherapy is impeded by limited success rates. Cellular metabolic reprogramming determines the functionality and viability in both cancer cells and immune cells. Extensive research has unraveled that the limited success of immunotherapy is related to immune evasive metabolic reprogramming in tumor cells and immune cells. As an enzyme that catalyzes the final step of glycolysis, lactate dehydrogenase A (LDHA) has become a major focus of research. Here, we have addressed the structure, localization, and biological features of LDHA. Furthermore, we have discussed the various aspects of epigenetic regulation of LDHA expression, such as histone modification, DNA methylation, N6-methyladenosine (m6A) RNA methylation, and transcriptional control by noncoding RNA. With a focus on the extrinsic (tumor cells) and intrinsic (T cells) functions of LDHA in T-cell responses against tumors, in this article, we have reviewed the current status of LDHA inhibitors and their combination with T cell-mediated immunotherapies and postulated different strategies for future therapeutic regimens.
Collapse
Affiliation(s)
- Yu Tang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shuangshuang Gu
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Liqun Zhu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yujiao Wu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chuanxiang Zhao
- Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai’an, Jiangsu, China
| |
Collapse
|
5
|
Small Molecule-Based Enzyme Inhibitors in the Treatment of Primary Hyperoxalurias. J Pers Med 2021; 11:jpm11020074. [PMID: 33513899 PMCID: PMC7912158 DOI: 10.3390/jpm11020074] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Primary hyperoxalurias (PHs) are a group of inherited alterations of the hepatic glyoxylate metabolism. PHs classification based on gene mutations parallel a variety of enzymatic defects, and all involve the harmful accumulation of calcium oxalate crystals that produce systemic damage. These geographically widespread rare diseases have a deep impact in the life quality of the patients. Until recently, treatments were limited to palliative measures and kidney/liver transplants in the most severe forms. Efforts made to develop pharmacological treatments succeeded with the biotechnological agent lumasiran, a siRNA product against glycolate oxidase, which has become the first effective therapy to treat PH1. However, small molecule drugs have classically been preferred since they benefit from experience and have better pharmacological properties. The development of small molecule inhibitors designed against key enzymes of glyoxylate metabolism is on the focus of research. Enzyme inhibitors are successful and widely used in several diseases and their pharmacokinetic advantages are well known. In PHs, effective enzymatic targets have been determined and characterized for drug design and interesting inhibitory activities have been achieved both in vitro and in vivo. This review describes the most recent advances towards the development of small molecule enzyme inhibitors in the treatment of PHs, introducing the multi-target approach as a more effective and safe therapeutic option.
Collapse
|
6
|
Lu JJ, Zhou FM, Hu XJ, Fang JJ, Liu CX, Zhu BQ, Ding ZS. Molecular docking simulation and in vitro studies on estrogenic activities of flavonoids from leaves of Carya cathayensis Sarg. Steroids 2020; 163:108726. [PMID: 32889051 DOI: 10.1016/j.steroids.2020.108726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/18/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022]
Abstract
The main purpose of this study was to evaluate the estrogenic properties of total flavonoids (TFs) and five flavonoid monomers (cardamonin (Car), pinostrobin chalcone (PC), wogonin (Wo), chrysin (Chr) and Pinocembrin (PI)) from leaves of Carya cathayensis Sarg (LCC). TFs from LCC were isolated and determined using HPLC. The 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry were performed to assess the effects of flavonoids on cell proliferation and cell cycle, respectively. The molecular docking technique was applied to investigate binding conformations of the monomers from LCC to the estrogen receptor ERα and ERβ. Gene and protein expression patterns were assessed using quantitative real-time PCR (qRT-PCR) and western blot, respectively. The results showed that TFs, Car, PC, Wo and Chr promoted proliferation of MCF-7 cells and cell transition from the G1 to S phase, and inhabitation of MCF-7 cell proliferation was observed after the treatment of PI. Molecular docking studies confirmed ERs as molecular targets for the monomers. TFs, Car, PC, Wo and Chr from LCC promoted gene expression of ERα, ERβ, progesterone receptor (PR) and pS2. Our collective results demonstrated that TFs and monomers from LCC may exert ER agonist activity through competitively bind to ER, inducing ER upregulation and active ER to estrogen response element (ERE)- independent gene regulation. As an abundant natural product, LCC may provide a novel medicinal source for treatment of diseases caused by estrogen deficiency.
Collapse
Affiliation(s)
- Jing-Jing Lu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Fang-Mei Zhou
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Xu-Jiao Hu
- Yinzhou People's Hospital, Ningbo, Zhejiang Province, China
| | - Jing-Jing Fang
- Yinzhou People's Hospital, Ningbo, Zhejiang Province, China
| | - Cai-Xia Liu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Bing-Qi Zhu
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Zhi-Shan Ding
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| |
Collapse
|
7
|
Liu J, Lian X, Liu F, Yan X, Cheng C, Cheng L, Sun X, Shi Z. Identification of Novel Key Targets and Candidate Drugs in Oral Squamous Cell Carcinoma. Curr Bioinform 2020. [DOI: 10.2174/1574893614666191127101836] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background:
Oral Squamous Cell Carcinoma (OSCC) is the most common malignant
epithelial neoplasm. It is located within the top 10 ranking incidence of cancers with a poor
prognosis and low survival rates. New breakthroughs of therapeutic strategies are therefore needed
to improve the survival rate of OSCC harboring patients.
Objective:
Since targeted therapy is considered as the most promising therapeutic strategies in
cancer, it is of great significance to identify novel targets and drugs for the treatment of OSCC.
Methods:
A series of bioinformatics approaches were launched to identify the hub proteins and
their potential agents. Microarray analysis and several online functional activity network analysis
were firstly utilized to recognize drug targets in OSCC. Subsequently, molecular docking was used
to screen their potential drugs from the specs chemistry database. At the same time, the assessment
of ligand-based virtual screening model was also evaluated.
Results:
In this study, two microarray data (GSE31056, GSE23558) were firstly selected and
analyzed to get consensus candidate genes including 681 candidate genes. Additionally, we
selected 33 candidate genes based on whether they belong to the kinases and transcription factors
and further clustered candidate hub targets based on functions and signaling pathways with
significant enrichment analysis by using DAVID and STRING online databases. Then, core PPI
network was then identified and we manually selected GRB2 and IGF1 as the key drug targets
according to the network analysis and previous references. Lastly, virtual screening was performed
to identify potential small molecules which could target these two targets, and such small
molecules can serve as the promising candidate agents for future drug development.
Conclusion:
In summary, our study might provide novel insights for understanding of the
underlying molecular events of OSCC, and our discovered candidate targets and candidate agents
could be used as the promising therapeutic strategies for the treatment of OSCC.
Collapse
Affiliation(s)
- Juan Liu
- School of Medicine & Sichuan Industrial Institute of Antibiotics & Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610015, China
| | - Xinjie Lian
- School of Medicine & Sichuan Industrial Institute of Antibiotics & Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610015, China
| | - Feng Liu
- School of Medicine & Sichuan Industrial Institute of Antibiotics & Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610015, China
| | - Xueling Yan
- School of Medicine & Sichuan Industrial Institute of Antibiotics & Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610015, China
| | - Chunyan Cheng
- School of Medicine & Sichuan Industrial Institute of Antibiotics & Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610015, China
| | - Lijia Cheng
- School of Medicine & Sichuan Industrial Institute of Antibiotics & Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610015, China
| | - Xiaolin Sun
- Department of Radiotherapy, the Central Hospital of Xuzhou, Xuzhou 221000, China
| | - Zheng Shi
- School of Medicine & Sichuan Industrial Institute of Antibiotics & Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610015, China
| |
Collapse
|
8
|
Friberg A, Rehwinkel H, Nguyen D, Pütter V, Quanz M, Weiske J, Eberspächer U, Heisler I, Langer G. Structural Evidence for Isoform-Selective Allosteric Inhibition of Lactate Dehydrogenase A. ACS OMEGA 2020; 5:13034-13041. [PMID: 32548488 PMCID: PMC7288559 DOI: 10.1021/acsomega.0c00715] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/13/2020] [Indexed: 05/11/2023]
Abstract
Lactate dehydrogenase A (LDHA) is frequently overexpressed in tumors, thereby sustaining high glycolysis rates, tumor growth, and chemoresistance. High-throughput screening resulted in the identification of phthalimide and dibenzofuran derivatives as novel lactate dehydrogenase inhibitors, selectively inhibiting the activity of the LDHA isoenzyme. Cocrystallization experiments confirmed target engagement in addition to demonstrating binding to a novel allosteric binding site present in all four LDHA subunits of the LDH5 homotetramer.
Collapse
Affiliation(s)
- Anders Friberg
- Bayer AG,
Pharmaceuticals, R&D, Müllerstrasse 178, 13342 Berlin, Germany
- E-mail:
| | - Hartmut Rehwinkel
- Bayer AG,
Pharmaceuticals, R&D, Müllerstrasse 178, 13342 Berlin, Germany
| | - Duy Nguyen
- Bayer AG,
Pharmaceuticals, R&D, Müllerstrasse 178, 13342 Berlin, Germany
| | - Vera Pütter
- Bayer AG,
Pharmaceuticals, R&D, Müllerstrasse 178, 13342 Berlin, Germany
| | - Maria Quanz
- Bayer AG,
Pharmaceuticals, R&D, Müllerstrasse 178, 13342 Berlin, Germany
| | - Jörg Weiske
- Bayer AG,
Pharmaceuticals, R&D, Müllerstrasse 178, 13342 Berlin, Germany
| | - Uwe Eberspächer
- Bayer AG,
Pharmaceuticals, R&D, Müllerstrasse 178, 13342 Berlin, Germany
| | - Iring Heisler
- Bayer
AG, Pharmaceuticals, R&D, Aprather Weg 18A, 42113 Wuppertal, Germany
| | - Gernot Langer
- Bayer AG,
Pharmaceuticals, R&D, Müllerstrasse 178, 13342 Berlin, Germany
- E-mail:
| |
Collapse
|
9
|
Yu T, Cheng L, Yan X, Xiong H, Chen J, He G, Zhou H, Dong H, Xu G, Tang Y, Shi Z. Systems biology approaches based discovery of a small molecule inhibitor targeting both c-Met/PARP-1 and inducing cell death in breast cancer. J Cancer 2020; 11:2656-2666. [PMID: 32201536 PMCID: PMC7065998 DOI: 10.7150/jca.40758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/28/2020] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the second most common types of cancer worldwide. Molecular strategies have developed rapidly; however, novel treatments strategies with high efficacy and lower toxicity are still urgently demanded. Notably, biological networks estimated from microarray data and functional activity network analysis could be utilized to identify and validate potential targets. In this study, two microarray data (GSE13477, GSE31192) were firstly selected, and analyzed by multi-functional activity network analysis to generate the core protein-protein-interaction (PPI) network. Several potential targets were subsequently identified and c-Met and poly (ADP-ribose) polymerase-1 (PARP-1) were manually chosen as the key targets in breast cancer. Furthermore, virtual screening and molecular dynamics (MD) simulations were utilized to recognize novel c-Met/PARP-1 inhibitors in Specs products database. Three small molecules, namely, ZINC19909930, ZINC20032678 and ZINC13562414 were selected. Additionally, these compounds were synthesized, and two breast cancer cell lines, MDA-MB-231 and MCF-7 cells were used to validate our bioinformatic findings in vitro. MTT assay and Hoechst staining showed that ZINC20032678 significantly induced breast cancer cell death, which was mediated through apoptosis by flow cytometry. Furthermore, ZINC20032678 was shown to target the active sites of the both targets and recruitment of downstream apoptotic signaling pathways, eventually inducing breast cancer cell apoptosis. Collectively, our findings not only offer systems biology approaches based drug target identification, but also provide the new clues for developing novel inhibitors for future breast cancer research.
Collapse
Affiliation(s)
- Tian Yu
- School of Medicine & Sichuan Industrial Institute of Antibiotics & Department of Respiratory and Critical Care Medicine, Affiliated Hospital/ Clinical College of Chengdu University, Chengdu University, Chengdu 610015, China
| | - Lijia Cheng
- School of Medicine & Sichuan Industrial Institute of Antibiotics & Department of Respiratory and Critical Care Medicine, Affiliated Hospital/ Clinical College of Chengdu University, Chengdu University, Chengdu 610015, China
| | - Xueling Yan
- School of Medicine & Sichuan Industrial Institute of Antibiotics & Department of Respiratory and Critical Care Medicine, Affiliated Hospital/ Clinical College of Chengdu University, Chengdu University, Chengdu 610015, China
| | - Hang Xiong
- School of Medicine & Sichuan Industrial Institute of Antibiotics & Department of Respiratory and Critical Care Medicine, Affiliated Hospital/ Clinical College of Chengdu University, Chengdu University, Chengdu 610015, China
| | - Jie Chen
- Central Laboratory of Clinical Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, 610000, China
| | - Gang He
- School of Medicine & Sichuan Industrial Institute of Antibiotics & Department of Respiratory and Critical Care Medicine, Affiliated Hospital/ Clinical College of Chengdu University, Chengdu University, Chengdu 610015, China
| | - Hui Zhou
- School of Medicine & Sichuan Industrial Institute of Antibiotics & Department of Respiratory and Critical Care Medicine, Affiliated Hospital/ Clinical College of Chengdu University, Chengdu University, Chengdu 610015, China
| | - Hongbo Dong
- School of Medicine & Sichuan Industrial Institute of Antibiotics & Department of Respiratory and Critical Care Medicine, Affiliated Hospital/ Clinical College of Chengdu University, Chengdu University, Chengdu 610015, China
| | - Guangya Xu
- School of Medicine & Sichuan Industrial Institute of Antibiotics & Department of Respiratory and Critical Care Medicine, Affiliated Hospital/ Clinical College of Chengdu University, Chengdu University, Chengdu 610015, China
| | - Yong Tang
- School of Medicine & Sichuan Industrial Institute of Antibiotics & Department of Respiratory and Critical Care Medicine, Affiliated Hospital/ Clinical College of Chengdu University, Chengdu University, Chengdu 610015, China.,School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Zheng Shi
- School of Medicine & Sichuan Industrial Institute of Antibiotics & Department of Respiratory and Critical Care Medicine, Affiliated Hospital/ Clinical College of Chengdu University, Chengdu University, Chengdu 610015, China
| |
Collapse
|
10
|
Lactate Dehydrogenases as Metabolic Links between Tumor and Stroma in the Tumor Microenvironment. Cancers (Basel) 2019; 11:cancers11060750. [PMID: 31146503 PMCID: PMC6627402 DOI: 10.3390/cancers11060750] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer is a metabolic disease in which abnormally proliferating cancer cells rewire metabolic pathways in the tumor microenvironment (TME). Molecular reprogramming in the TME helps cancer cells to fulfill elevated metabolic demands for bioenergetics and cellular biosynthesis. One of the ways through which cancer cell achieve this is by regulating the expression of metabolic enzymes. Lactate dehydrogenase (LDH) is the primary metabolic enzyme that converts pyruvate to lactate and vice versa. LDH also plays a significant role in regulating nutrient exchange between tumor and stroma. Thus, targeting human lactate dehydrogenase for treating advanced carcinomas may be of benefit. LDHA and LDHB, two isoenzymes of LDH, participate in tumor stroma metabolic interaction and exchange of metabolic fuel and thus could serve as potential anticancer drug targets. This article reviews recent research discussing the roles of lactate dehydrogenase in cancer metabolism. As molecular regulation of LDHA and LDHB in different cancer remains obscure, we also review signaling pathways regulating LDHA and LDHB expression. We highlight on the role of small molecule inhibitors in targeting LDH activity and we emphasize the development of safer and more effective LDH inhibitors. We trust that this review will also generate interest in designing combination therapies based on LDH inhibition, with LDHA being targeted in tumors and LDHB in stromal cells for better treatment outcome.
Collapse
|
11
|
Rahmatabadi SS, Sadeghian I, Ghasemi Y, Sakhteman A, Hemmati S. Identification and characterization of a sterically robust phenylalanine ammonia-lyase among 481 natural isoforms through association of in silico and in vitro studies. Enzyme Microb Technol 2018; 122:36-54. [PMID: 30638507 DOI: 10.1016/j.enzmictec.2018.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 11/14/2018] [Accepted: 12/09/2018] [Indexed: 10/27/2022]
Abstract
The enzyme phenylalanine ammonia lyase (PAL) is of special importance for the treatment of phenylketonuria patients. The aim of this study was to find a stable recombinant PAL with suitable kinetic properties among all natural PAL producing species using in silico and experimental approaches. To find such a stable PAL among 481 natural isoforms, 48,000 of 3-D models were predicted using the Modeller 9.10 program and evaluated by Ramachandran plot. Correlation analysis between Ramachandran plot and the energy of different thermodynamic components indicated that this plot could be an appropriate tool to predict protein stability. Hence, PAL6 from Lotus japonicus (LjPAL6) was selected as a stable isoform. Molecular dynamic (MD) simulation for 50 ns and docking has been conducted for LjPAL6-phenylalanine complex. The best PAL-phenylalanine frame was selected by re-docking with l-phenylalanine (L-Phe) and root-mean-square deviation (RMSD) value. MD simulation showed that the complex has a good stability, depicted by the low RMSD value, binding free energy and hydrogen bindings. Docking results showed that LjPAL6 has a high affinity toward l-Phe according to the low level of binding free energy. By overexpressing Ljpal6 in E. coli BL21, a total of 33.5 mg/l of protein was obtained, which has been increased to 83.7 mg/l via the optimization of LjPAL6 production using response surface methodology. The optimal pH and temperature were 8.5 and 50 °C, respectively. LjPAL6 showed a specific activity of 42 nkat/mg protein, with Km, Kcat and Kcat/Km values of 0.483 mM, 7 S-1 and 14.5 S-1 mM-1 for l-phe, respectively. In conclusion, finding models with the most reasonable stereo-chemical quality and lowest numbers of steric clashes would result in easier folding. Hence, in silico analyses of bulk data from natural origin will lead one to find an optimal model for in vitro studies and drug design.
Collapse
Affiliation(s)
- Seyyed Soheil Rahmatabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Issa Sadeghian
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Sakhteman
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
12
|
Zhang SL, He Y, Tam KY. Targeting cancer metabolism to develop human lactate dehydrogenase ( h LDH)5 inhibitors. Drug Discov Today 2018; 23:1407-1415. [DOI: 10.1016/j.drudis.2018.05.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/14/2018] [Accepted: 05/02/2018] [Indexed: 12/15/2022]
|
13
|
Zhou H, Wang C, Ye J, Chen H, Tao R. Design, virtual screening, molecular docking and molecular dynamics studies of novel urushiol derivatives as potential HDAC2 selective inhibitors. Gene 2017; 637:63-71. [PMID: 28939339 DOI: 10.1016/j.gene.2017.09.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/18/2017] [Accepted: 09/19/2017] [Indexed: 12/26/2022]
Abstract
Three series of novel urushiol derivatives were designed by introducing a hydroxamic acid moiety into the tail of an alkyl side chain and substituents with differing electronic properties or steric bulk onto the benzene ring and alkyl side chain. The binding affinity toward HDAC2 of the compounds was screened by Glide docking. The best scoring compounds were processed further with molecular docking, MD simulations and binding free energy studies to analyze the binding modes and mechanisms. Six compounds, 21, 23, 10, 19, 9 and 30, gave Glide scores of -7.9 to -8.5, which revealed that introducing F, Cl, triazole, benzamido, formamido, hydroxyl or nitro substituents onto the benzene ring could increase binding affinity significantly. Molecular docking studies revealed that zinc ion coordination, hydrogen bonding and hydrophobic interactions contributed to the high calculated binding affinities of these compounds toward HDAC2 and that His145, His146, Gly154, Glu103, His183, Asp104, Tyr308 and Phe155 contributed favorably to the binding. MD simulations and binding free energy studies showed that all complexes possessed good stability as characterized by low RMSDs; low RMSFs of residues, moderate hydrogen bonding and zinc ion coordination; and low values of binding free energies. van der Waals and electrostatic interactions provided major contributions to the stability of these complexes. These results show the promising potential of urushiol derivatives as potent HDAC2 binding lead compounds.
Collapse
Affiliation(s)
- Hao Zhou
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu 210042, China; Key Lab of Biomass Energy and Material, Nanjing 210042, Jiangsu, China.
| | - Chengzhang Wang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu 210042, China; Key Lab of Biomass Energy and Material, Nanjing 210042, Jiangsu, China.
| | - Jianzhong Ye
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu 210042, China
| | - Hongxia Chen
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu 210042, China
| | - Ran Tao
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu 210042, China
| |
Collapse
|
14
|
Zhou H, Wang C, Deng T, Tao R, Li W. Novel urushiol derivatives as HDAC8 inhibitors: rational design, virtual screening, molecular docking and molecular dynamics studies. J Biomol Struct Dyn 2017. [DOI: 10.1080/07391102.2017.1344568] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hao Zhou
- Key Lab of Biomass Energy and Material, Nanjing, Jiangsu 210042, China
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu 210042, China
| | - Chengzhang Wang
- Key Lab of Biomass Energy and Material, Nanjing, Jiangsu 210042, China
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu 210042, China
| | - Tao Deng
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu 210042, China
| | - Ran Tao
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu 210042, China
| | - Wenjun Li
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu 210042, China
| |
Collapse
|
15
|
Chai T, Cui F, Mu X, Yang Y, Wang C, Qiu J. Exploration of Stereoselectivity in Embryo-Larvae (Danio rerio) Induced by Chiral PCB149 at the Bioconcentration and Gene Expression Levels. PLoS One 2016; 11:e0155263. [PMID: 27158819 PMCID: PMC4861327 DOI: 10.1371/journal.pone.0155263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/26/2016] [Indexed: 11/19/2022] Open
Abstract
This paper was designed to study stereoselective enrichment and changes in gene expression when zebrafish (Danio rerio) embryo-larvae were exposed to racemic, (-)- or (+)- PCB149 (2,2’,3,4’,5’,6- hexachlorobiphenyl). Based on bioconcentration analysis, non-racemic enrichment was significantly observed after racemic exposure. No isomerization between the two isomers was found after (-)/(+)-PCB149 exposure. Furthermore, based on gene expression-data mining, CYPs genes (cyp2k6, cyp19a1b, and cyp2aa4) were differential genes after (+)-PCB149 exposure. No obvious differences of dysregulation of gene expression caused by racemic and (-)-PCB149, were observed in embryo-larvae. The above results suggested that (-)-PCB149 could be considered as the main factor causing the dysregulation of gene expression in embryo-larvae after racemic exposure; and (+)-PCB149 should be pursued apart from the racemate, when considering the toxicity of chiral PCB149. Thus, the information in our study could provide new insights to assess the environmental risk of chiral PCBs in aquatic systems.
Collapse
Affiliation(s)
- Tingting Chai
- College of Science, China Agricultural University, Beijing, China
- Institute of Quality Standards & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing, China
| | - Feng Cui
- College of Science, China Agricultural University, Beijing, China
| | - Xiyan Mu
- College of Science, China Agricultural University, Beijing, China
- Center of Fishery Resources and Ecology Environment Research, Chinese Academy of Fishery Sciences, Beijing, China
| | - Yang Yang
- College of Science, China Agricultural University, Beijing, China
| | - Chengju Wang
- College of Science, China Agricultural University, Beijing, China
- * E-mail: (CW); (JQ)
| | - Jing Qiu
- Institute of Quality Standards & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing, China
- * E-mail: (CW); (JQ)
| |
Collapse
|
16
|
Lactate dehydrogenase inhibition: exploring possible applications beyond cancer treatment. Future Med Chem 2016; 8:713-25. [PMID: 27054686 DOI: 10.4155/fmc.16.10] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Lactate dehydrogenase (LDH) inhibition is considered a worthwhile attempt in the development of innovative anticancer strategies. Unfortunately, in spite of the involvement of several research institutions and pharma-companies, the discovery of LDH inhibitors with drug-like properties seems a hardly resolvable challenge. While awaiting new advancements, in the present review we will examine other pathologic conditions characterized by increased glycolysis and LDH activity, which could potentially benefit from LDH inhibition. The rationale for targeting LDH activity in these contexts is the same justifying the LDH-based approach in anticancer therapy: because of the enzyme position at the end of glycolytic pathway, LDH inhibitors are not expected to hinder glucose metabolism of normal cells. Moreover, we will summarize the latest contributions in the discovery of enzyme inhibitors and try to glance over the reasons underlying the complexity of this research.
Collapse
|
17
|
Abstract
It is now plausible to dock libraries of 10 million molecules against targets over several days or weeks. When the molecules screened are commercially available, they may be rapidly tested to find new leads. Although docking retains important liabilities (it cannot calculate affinities accurately nor even reliably rank order high-scoring molecules), it can often can distinguish likely from unlikely ligands, often with hit rates above 10%. Here we summarize the improvements in libraries, target quality, and methods that have supported these advances, and the open access resources that make docking accessible. Recent docking screens for new ligands are sketched, as are the binding, crystallographic, and in vivo assays that support them. Like any technique, controls are crucial, and key experimental ones are reviewed. With such controls, docking campaigns can find ligands with new chemotypes, often revealing the new biology that may be docking's greatest impact over the next few years.
Collapse
Affiliation(s)
- John J Irwin
- Department of Pharmaceutical Chemistry and QB3 Institute, University of California-San Francisco , San Francisco, California 94158, United States
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry and QB3 Institute, University of California-San Francisco , San Francisco, California 94158, United States
| |
Collapse
|
18
|
Chai T, Cui F, Mu P, Yang Y, Xu N, Yin Z, Jia Q, Yang S, Qiu J, Wang C. Enantio-alteration of gene transcription associated with bioconcentration in adult zebrafish (Danio rerio) exposed to chiral PCB149. Sci Rep 2016; 6:19478. [PMID: 26786282 PMCID: PMC4726444 DOI: 10.1038/srep19478] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/14/2015] [Indexed: 02/07/2023] Open
Abstract
Enantioselective enrichment of chiral PCB149 (2,2’,3,4’,5’,6-hexachlorobiphenyl) was analysed in adult zebrafish (Danio rerio) exposed to the racemate, (−)-PCB149, and (+)-PCB149. Greater enrichment of (−)-PCB149 compared to (+) PCB149 was observed following 0.5 ng/L exposure; however, as the exposure time and concentration increased, racemic enrichment was observed in adult fish exposed to the racemate. No biotransformation between the two isomers was observed in fish exposed to single enantiomers. When zebrafish were exposed to different forms of chiral PCB149, enantioselective expression of genes associated with polychlorinated biphenyls (PCBs) was observed in brain and liver tissues and enantioselective correlations between bioconcentration and target gene expression levels were observed in brain and liver tissues. The strong positive correlations between expression levels of target genes (alox5a and alox12) and PCB149 bioconcentration suggest that prolonged exposure to the racemate of chiral PCB149 may result in inflammation-associated diseases. Prolonged exposure to (−)-PCB149 may also affect metabolic pathways such as dehydrogenation and methylation in the brain tissues of adult zebrafish. Hepatic expression levels of genes related to the antioxidant system were significantly negatively correlated with bioconcentration following exposure to (+)-PCB149.
Collapse
Affiliation(s)
- Tingting Chai
- Institute of Quality Standards &Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China.,College of Science, China Agricultural University, Beijing 100193, China
| | - Feng Cui
- College of Science, China Agricultural University, Beijing 100193, China
| | - Pengqian Mu
- Institute of Quality Standards &Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Yang Yang
- College of Science, China Agricultural University, Beijing 100193, China
| | - Nana Xu
- Institute of Quality Standards &Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Zhiqiang Yin
- Institute of Quality Standards &Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Qi Jia
- Institute of Quality Standards &Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Shuming Yang
- Institute of Quality Standards &Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Jing Qiu
- Institute of Quality Standards &Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Chengju Wang
- College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|