1
|
Dong Z, Zhu X, Tang J, Liao Y, Cheng X, Tang L, Fang L. An integrated smartphone-based electrochemical detection system for highly sensitive and on-site detection of chemical oxygen demand by copper-cobalt bimetallic oxide-modified electrode. Mikrochim Acta 2024; 191:343. [PMID: 38801537 DOI: 10.1007/s00604-024-06399-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024]
Abstract
A portable and integrated electrochemical detection system has been constructed for on-site and real-time detection of chemical oxygen demand (COD). The system mainly consists of four parts: (i) sensing electrode with a copper-cobalt bimetallic oxide (CuCoOx)-modified screen-printed electrode; (ii) an integrated electrochemical detector for the conversion, amplification, and transmission of weak signals; (iii) a smartphone installed with a self-developed Android application (APP) for issuing commands, receiving, and displaying detection results; and (iv) a 3D-printed microfluidic cell for the continuous input of water samples. Benefiting from the superior catalytic capability of CuCoOx, the developed system shows a high detection sensitivity with 0.335 μA/(mg/L) and a low detection limit of 5.957 mg/L for COD determination and possessing high anti-interference ability to chloride ions. Moreover, this system presents good consistency with the traditional dichromate method in COD detection of actual water samples. Due to the advantages of cost effectiveness, portability, and point-of-care testing, the system shows great potential for water quality monitoring, especially in resource-limited remote areas.
Collapse
Affiliation(s)
- Zhengrong Dong
- College of Electrical and Information Engineering, Hunan University, Changsha, 410012, China
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, China
| | - Xu Zhu
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Jing Tang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, China
| | - Yibo Liao
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, China
| | - Xingyang Cheng
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, China
| | - Lin Tang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, China.
| | - Leyuan Fang
- College of Electrical and Information Engineering, Hunan University, Changsha, 410012, China.
| |
Collapse
|
2
|
Wang X, Wang L, Wu D, Yuan D, Ge H, Wu X. PbO 2 materials for electrochemical environmental engineering: A review on synthesis and applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158880. [PMID: 36130629 DOI: 10.1016/j.scitotenv.2022.158880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/21/2022] [Accepted: 09/16/2022] [Indexed: 06/15/2023]
Abstract
Lead dioxide (PbO2) materials have been widely employed in various fields such as batteries, electrochemical engineering, and more recently environmental engineering as anode materials, due to their unique physicochemical properties. Key performances of PbO2 electrodes, such as energy efficiency and space-time yield, are influenced by morphological as well as compositional factors. Micro-nano structure regulation and decoration of metal/non-metal on PbO2 is an outstanding technique to revamp its electrocatalytic activities and enhance environmental engineering efficiency. The aim of this review is to comprehensively summarize the recent research progress in the morphology control, the structure constructions, and the element doping of PbO2 materials, further with many environmental application cases evaluated. Concerning electrochemical environmental engineering, the lead dioxide employed in chemical oxygen demand detection, ozone generators, and wastewater treatment has been comprehensively reviewed. In addition, the future research perspectives, challenges and the opportunities on PbO2 materials for environmental applications are proposed.
Collapse
Affiliation(s)
- Xi Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Luyang Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dandan Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Du Yuan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hang Ge
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xu Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
3
|
Jiang W, Wang J, Wang X, Liao J, Wei J, Xu R, Yang L. Two-step facile synthesis of Co 3O 4@C reinforced PbO 2 coated electrode to promote efficient oxygen evolution reaction for zinc electrowinning. RSC Adv 2022; 12:10634-10645. [PMID: 35425018 PMCID: PMC8984834 DOI: 10.1039/d1ra09100j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/17/2022] [Indexed: 11/21/2022] Open
Abstract
The conventional Pb-Ag alloy possesses a high oxygen evolution reaction overpotential, poor stability, and short service life in acidic solutions, making it an unsuitable sort of anode material for the zinc electrowinning process. Therefore, a layered carbon-covered cobalt tetroxide (Co3O4@C)-reinforced PbO2-coated electrode is fabricated via a facile two-step pyrolysis-oxidation and subsequent electrodeposition process. As a result, the reinforced PbO2-coated electrode exhibits a low OER overpotential of 517 mV at 500 A m-2 and a Tafel slope of 0.152 V per decade in a zinc electrowinning simulation solution (0.3 M ZnSO4 and 1.53 M H2SO4). The reduced overpotential of 431 mV at 500 A m-2 compared to traditional Pb-0.76%Ag alloy leads to improved energy savings, which is attributable to the presence of Co3O4@C to refine the grain size and thus increase the effective contact area. Moreover, the reinforced PbO2-coated electrode has a prolonged service life of 93 h at 20 000 A m-2 in 1.53 M H2SO4. Therefore, an accessible and efficient strategy for preparing a coated electrode to improve OER performance for zinc electrowinning is presented in this research.
Collapse
Affiliation(s)
- Wenhao Jiang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology Kunming 650093 China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology Kunming 650093 China
| | - Junli Wang
- Researcher Center for Analysis and Measurement, Kunming University of Science and Technology Kunming 650093 China
| | - Xuanbing Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology Kunming 650093 China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology Kunming 650093 China
| | - Jiang Liao
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology Kunming 650093 China
| | - Jinlong Wei
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology Kunming 650093 China
| | - Ruidong Xu
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology Kunming 650093 China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology Kunming 650093 China
| | - Linjing Yang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology Kunming 650093 China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology Kunming 650093 China
| |
Collapse
|
4
|
Xia Y, Feng J, Fan S, Zhou W, Dai Q. Fabrication of a multi-layer CNT-PbO 2 anode for the degradation of isoniazid: Kinetics and mechanism. CHEMOSPHERE 2021; 263:128069. [PMID: 33297073 DOI: 10.1016/j.chemosphere.2020.128069] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 06/12/2023]
Abstract
In this study, the CNTs were successfully compounded in PbO2 electrode through composite electrodeposition technology to obtain multi-layer CNT-PbO2 electrode. Scanning electron microscope, X-ray diffraction and X-ray Photoelectron Spectroscopy were comprehensively used to characterize the lead dioxide electrode and the electrochemical performance were also tested by cyclic voltammetry, and electrochemical impedance spectroscopy. Results showed that CNT-PbO2 significantly improved the electrochemical performance, which was attributed to that the compound of CNTs in PbO2 improved the active sites on the surface, with higher oxidation peaks, smaller particle size, larger specific surface area, and lower charge transfer resistance. In the degradation experiment, the chemical oxygen demand removal efficiency of isoniazid by CNT-PbO2 electrode were 1.37 times of that by pure PbO2 electrode. The main influence factors on the degradation of ISN, such as initial ISN concentration, Na2SO4 concentration, current density and initial pH value was analyzed in detail. Considered comprehensively the effects of ISN removal efficiency, COD and average current efficiency, the degradation of ISN and COD reached 99.4% and 86.8%, respectively, after the electrode was degraded by electrochemical oxidation for 120 min under the best conditions. In addition, the degradation mechanism of ISN in electrochemical oxidation was studied. According to the intermediate products detected by GC-MS, the possible degradation pathway of ISN in electrochemical oxidation system were proposed.
Collapse
Affiliation(s)
- Yi Xia
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jieqi Feng
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Siqi Fan
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Wan Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Qizhou Dai
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
5
|
A Self-Supported CuO/Cu Nanowire Electrode as Highly Efficient Sensor for COD Measurement. Molecules 2019; 24:molecules24173132. [PMID: 31466335 PMCID: PMC6749378 DOI: 10.3390/molecules24173132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 11/20/2022] Open
Abstract
A self-supported CuO/Cu nanowire electrode (CuO/CuNWE), which was prepared by annealing Cu nanowires to form a porous Cu nanowire electrode (CuNWE) and then anodizing the as-prepared CuNWE in alkaline medium to generate Cu(OH)2 nanowires followed by calcination, was employed for chemical oxygen demand (COD) determination using cyclic voltammetry (CV). The structure and electrochemical behavior of the CuO/CuNWE were investigated by scanning electron microscopy, X-ray diffraction, and CV. The results indicated that the as-synthesized CuO/CuNWE, in which CuO nanowires with a length of several micrometers and a diameter of 100 to 300 nm could be found, was stable in alkaline medium and more electrocatalytically active for oxidizing a wide range of organic compounds in comparison with the CuNWE. Under optimized alkaline concentration and scan rate, the CuO/CuNWE exhibited a good performance for COD measurement, with a linear range of 5 to 1153 mg L−1, a sensitivity of 2.46× 10−2 mA /(mg L−1), and a detection limit of about 2.3 mg L−1. In addition, an excellent correlation was observed in COD values obtained by our method and the classic dichromate method (r = 0.9995, p < 0.01, n = 11). Finally, our method was successfully used to measure the COD values in real water samples, showing great potential for practical application in water pollution control.
Collapse
|
6
|
Sui X, Duan X, Xu F, Chang L. Fabrication of three-dimensional networked PbO2 anode for electrochemical oxidation of organic pollutants in aqueous solution. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
7
|
Direct determination of chemical oxygen demand by anodic oxidative degradation of organics at a composite 3-D electrode. J Solid State Electrochem 2019. [DOI: 10.1007/s10008-019-04250-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Fabrication of Ga2O3–PbO2 electrode and its performance in electrochemical advanced oxidation processes. J Solid State Electrochem 2018. [DOI: 10.1007/s10008-018-4082-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Li J, Luo G, He L, Xu J, Lyu J. Analytical Approaches for Determining Chemical Oxygen Demand in Water Bodies: A Review. Crit Rev Anal Chem 2017; 48:47-65. [DOI: 10.1080/10408347.2017.1370670] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ji Li
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, China
| | - Guobing Luo
- Wuxi City Water Supply and Drainage Monitoring Station, Wuxi, China
| | - LingJun He
- Department of Housing and Urban Rural Development of Jiangsu Province, Nanjing, China
| | - Jing Xu
- Wuxi City Water Supply and Drainage Monitoring Station, Wuxi, China
| | - Jinze Lyu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, China
| |
Collapse
|