1
|
Li B, Zhang Y, Du Y, Li D, Zhou A, Shao X, Cao L, Yang J. Robust PbO 2 modified by co-deposition of ZrO 2 nanoparticles for efficient degradation of ceftriaxone sodium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5158-5172. [PMID: 38110683 DOI: 10.1007/s11356-023-31390-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/02/2023] [Indexed: 12/20/2023]
Abstract
In recent years, PbO2 electrodes have received widespread attention due to their high oxygen evolution reaction (OER) activity. However, due to the brittle nature of the plating layer, it is easy to cause the active layer to fall off. Pb2+ will leach out with the electrochemical process causing secondary pollution. The starting point of this study is established to improve the stability and adhesion of the electrode coating. Electrochemical oxidation technology has the characteristics of high treatment efficiency, wide range of applications, and non-polluting environment. In this study, conventional PbO2 electrodes were modified by using co-deposition of ZrO2 nanoparticles. In addition, α-PbO2 was added to increase the stability of the electrodes. At a high current density of 1 A/cm2, the accelerated life of the pure PbO2 electrode is 648 h, the accelerated life of the PbO2-ZrO2 electrode is 1.37 times that of the pure PbO2, and the electrode with an added α-PbO2 layer is 1.69 times that of the pure PbO2 electrode. The amount of dissolved Pb2+ was only 29% of that of pure PbO2. The electrochemical performance of the electrode is evaluated by studying the degradation effect of ceftriaxone sodium (CXM). The addition of ZrO2 nanoparticles alters the particle size and deposition content of PbO2, leading to a unique crystal structure distinct from pure PbO2. Compared to conventional PbO2 electrodes, the PbO2-ZrO2 can remove chemical oxygen demand (COD) and pollutants more efficiently, removing for 59% increased by 38.47%. Therefore, PbO2-ZrO2 is of great value in the field of electrochemical degradation of industrial pollutants.
Collapse
Affiliation(s)
- Binbin Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Yuting Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Yan Du
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Danni Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Anhui Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Xiang Shao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Limei Cao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Ji Yang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
2
|
Sharifidarabad H, Zakeri A, Adeli M. Parametric study on the electrochemical performance and stability of PbO2-coated titanium electrodes for electrowinning applications. J APPL ELECTROCHEM 2023. [DOI: 10.1007/s10800-023-01867-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
3
|
Wang X, Wang L, Wu D, Yuan D, Ge H, Wu X. PbO 2 materials for electrochemical environmental engineering: A review on synthesis and applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158880. [PMID: 36130629 DOI: 10.1016/j.scitotenv.2022.158880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/21/2022] [Accepted: 09/16/2022] [Indexed: 06/15/2023]
Abstract
Lead dioxide (PbO2) materials have been widely employed in various fields such as batteries, electrochemical engineering, and more recently environmental engineering as anode materials, due to their unique physicochemical properties. Key performances of PbO2 electrodes, such as energy efficiency and space-time yield, are influenced by morphological as well as compositional factors. Micro-nano structure regulation and decoration of metal/non-metal on PbO2 is an outstanding technique to revamp its electrocatalytic activities and enhance environmental engineering efficiency. The aim of this review is to comprehensively summarize the recent research progress in the morphology control, the structure constructions, and the element doping of PbO2 materials, further with many environmental application cases evaluated. Concerning electrochemical environmental engineering, the lead dioxide employed in chemical oxygen demand detection, ozone generators, and wastewater treatment has been comprehensively reviewed. In addition, the future research perspectives, challenges and the opportunities on PbO2 materials for environmental applications are proposed.
Collapse
Affiliation(s)
- Xi Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Luyang Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dandan Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Du Yuan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hang Ge
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xu Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
4
|
Long L, Che X, Yao P, Zhang X, Wang J, Li M, Li C. Interfacial Electrochemical Polymerization for Spinning Liquid Metals into Core-Shell Wires. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18690-18696. [PMID: 35420779 DOI: 10.1021/acsami.2c02247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metal wires are of great significance in applications such as three-dimensional (3D) printing, soft electronics, optics, and metamaterials. Ga-based liquid metals (e.g., EGaIn), though uniquely combining metallic conductivity, fluidity, and biocompatibility, remain challenging to be spun due to their low viscosity, high surface tension, and Rayleigh-Plateau instability. In this work, we showed that EGaIn as a working electrode could induce the oxidization of EGaIn and interfacial electrochemical polymerization of electroactive monomers (e.g., acrylic acid, dopamine, and pyrrole), thus spinning itself from an opening of a blunt needle. During the spinning process, the high surface tension of EGaIn was reduced by electrowetting and electrocapillarity and stabilized by polymer shells (tunable thickness of ∼0.6-30 μm on wires with a diameter of 90-300 μm), which were chelated with metal ions. The polymeric shells offered EGaIn wires with an enhanced endurance to mechanical force and acidity. By further encapsulating into elastomers through a facile impregnation process, the resultant elastic EGaIn wires showed a combination of high stretchability (up to 800%) and metallic conductivity (1.5 × 106 S m-1). When serving as wearable sensors, they were capable of sensing facial expressions, body movements, voice recognition, and spatial pressure distributions with high sensitivity, good repeatability, and satisfactory durability. Machine-learning algorithms further assisted to detect gestures with high accuracy.
Collapse
Affiliation(s)
- Lifen Long
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, P. R. China
- Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai 201209, P. R. China
| | - Xinpeng Che
- Group of Biomimetic Smart Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences & Shandong Energy Institute, Songling Road 189, Qingdao 266101, P. R. China
- Center of Material and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Peifan Yao
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, P. R. China
- Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai 201209, P. R. China
| | - Xihua Zhang
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, P. R. China
- Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai 201209, P. R. China
| | - Jingwei Wang
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, P. R. China
- Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai 201209, P. R. China
| | - Mingjie Li
- Group of Biomimetic Smart Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences & Shandong Energy Institute, Songling Road 189, Qingdao 266101, P. R. China
- Center of Material and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Chaoxu Li
- Group of Biomimetic Smart Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences & Shandong Energy Institute, Songling Road 189, Qingdao 266101, P. R. China
- Center of Material and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| |
Collapse
|
5
|
Zhou Q, Zhou X, Zheng R, Liu Z, Wang J. Application of lead oxide electrodes in wastewater treatment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150088. [PMID: 34563906 DOI: 10.1016/j.scitotenv.2021.150088] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/29/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Electrochemical oxidation (EO) based on hydroxyl radicals (·OH) generated on lead dioxide has become a typical advanced oxidation process (AOP). Titanium-based lead dioxide electrodes (PbO2/Ti) play an increasingly important role in EO. To further improve the efficiency, the structure and properties of the lead dioxide active surface layer can be modified by doping transition metals, rare earth metals, nonmetals, etc. Here, we compare the common preparation methods of lead dioxide. The EO performance of lead dioxide in wastewater containing dyes, pesticides, drugs, landfill leachate, coal, petrochemicals, etc., is discussed along with their suitable operating conditions. Finally, the factors influencing the contaminant removal kinetics on lead dioxide are systematically analysed.
Collapse
Affiliation(s)
- Qingqing Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xule Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Ruihao Zheng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zifeng Liu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jiade Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
6
|
Dong H, Hu X, Zhang Y, Jiang W, Zhang X. Co/La modified Ti/PbO 2 anodes for chloramphenicol degradation: Catalytic performance and reaction mechanism. CHEMOSPHERE 2021; 285:131568. [PMID: 34710968 DOI: 10.1016/j.chemosphere.2021.131568] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/19/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Chloramphenicol (CAP) is widely used in daily life, and its abuse hurts human health, so a suitable method is needed to solve the problem. In this study, the Ti/PbO2 electrodes prepared by the electroplating method were characterized. The CAP degradation effect and mechanism were investigated. It was shown that the electrode surface had a dense plating with a characteristic peak of β-PbO2 as the active component. The electrode had an oxygen precipitation potential of 1.695 V and a corrosion potential of 0.553 V, and a long service life (505.4 d). The degradation of CAP at Ti/PbO2 electrode followed a first-order kinetic reaction. The optimal degradation conditions (current density of 12.97 mA cm-2, electrolyte concentration of 50 mM, and solution pH of 6.38) were obtained by the response surface curve method. The degradation rate of CAP was 99.0% at 60 min. The results showed that the reactive groups leading to CAP degradation were mainly ·OH and SO42-, and only a tiny portion of CAP was directly oxidized on the electrode surface. The addition of Cl- favored the degradation of CAP, but reduced the mineralization rate. LC-MS analysis showed that ·OH mainly attacked the asymmetric centers (C1, C2) of weakly bound hydrogen atoms, resulting in underwent addition and substitution reactions. CAP was converted into two substances with m/z = 306 and m/z = 165. Finally, inorganic substances such as CO2 and H2O were generated. This study provided a new idea for preparing Ti/PbO2 electrode with high performance and the safe and efficient degradation of CAP.
Collapse
Affiliation(s)
- Hao Dong
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Xuyang Hu
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Yinghao Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Wenqiang Jiang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Xuan Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| |
Collapse
|
7
|
Li H, Lyu J, Chen Y, Jian L, Li R, Liu X, Dong X, Ma C, Ma H. Consecutive metal oxides with self-supported nanoarchitecture achieves highly stable and enhanced photoelectrocatalytic oxidation for water purification. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-020-04886-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Chen S, Zhou L, Yang T, He Q, Zhou P, He P, Dong F, Zhang H, Jia B. Thermal decomposition based fabrication of dimensionally stable Ti/SnO 2-RuO 2 anode for highly efficient electrocatalytic degradation of alizarin cyanin green. CHEMOSPHERE 2020; 261:128201. [PMID: 33113663 DOI: 10.1016/j.chemosphere.2020.128201] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
In this work, Ti/SnO2-RuO2 dimensionally stable anode has been successfully fabricated via thermal decomposition method and further used for highly efficient electrocatalytic degradation of alizarin cyanin green (ACG) dye wastewater. The morphology, crystal structure and composition of Ti/SnO2-RuO2 electrode are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray fluorescence spectroscopy (XRF), respectively. The result of accelerated life test suggests that as-prepared Ti/SnO2-RuO2 anode exhibits excellent electrochemical stability. Some parameters, such as reaction temperature, initial pH, electrode spacing and current density, have been investigated in detail to optimize the degradation condition of ACG. The results show that the decolorization efficiency and chemical oxygen demand removal efficiency of ACG reach up to 80.4% and 51.3% after only 40 min, respectively, under the optimal condition (reaction temperature 25 °C, pH 5, electrode spacing 1.0 cm and current density 3 mA cm-2). Furthermore, the kinetics analysis reveals that the process of electrocatalytic degradation of ACG follows the law of quasi-first-order kinetics. The excellent electrochemical activity demonstrates that the Ti/SnO2-RuO2 electrode presents a favorable application prospect in the electrochemical treatment of anthraquinone dye wastewater.
Collapse
Affiliation(s)
- Shouxian Chen
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Lianhong Zhou
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Tiantian Yang
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Qihang He
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Pengcheng Zhou
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Ping He
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China.
| | - Faqin Dong
- Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Hui Zhang
- International Science and Technology Cooperation Laboratory of Micro-nanoparticle Application Research, Mianyang, 621010, Sichuan, PR China; Department of Chemical and Biochemical Engineering, Western University, London, Ontario, N6A 5B9, Canada
| | - Bin Jia
- Key Laboratory of Shock and Vibration of Engineering Materials and Structures of Sichuan Province, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, PR China
| |
Collapse
|
9
|
A Novel Porous Ni, Ce-Doped PbO2 Electrode for Efficient Treatment of Chloride Ion in Wastewater. Processes (Basel) 2020. [DOI: 10.3390/pr8040466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The porous Ti/Sb-SnO2/Ni-Ce-PbO2 electrode was prepared by using a porous Ti plate as a substrate, an Sb-doped SnO2 as an intermediate, and a PbO2 doped with Ni and Ce as an active layer. The surface morphology and crystal structure of the electrode were characterized by scanning electron microscope(SEM), energy dispersive spectrometer(EDS), and X-Ray diffraction(XRD). The electrochemical performance of the electrodes was tested by linear sweep voltammetry (LSV), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and electrode life test. The results show that the novel porous Ni-Ce-PbO2 electrodes with larger active surface area have better electrochemical activity and longer electrode life than porous undoped PbO2 electrodes and flat Ni-Ce-PbO2 electrodes. In this work, the removal of Cl− in simulated wastewater on three electrodes was also studied. The results show that the removal effect of the porous Ni-Ce-PbO2 electrode is obviously better than the other two electrodes, and the removal rate is 87.4%, while the removal rates of the other two electrodes were 72.90% and 80.20%, respectively. In addition, the mechanism of electrochemical dechlorinating was also studied. With the progress of electrolysis, we find that the increase of OH- inhibits the degradation of Cl−, however, the porous Ni-Ce-PbO2 electrode can effectively improve the removal of Cl−.
Collapse
|
10
|
|
11
|
Preparation and characterization of Ti/SnO2-Sb2O3/α-PbO2/Ce-Nd-β-PbO2 composite electrode for methyl orange degradation. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-019-04468-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
12
|
Enhancement of the electrocatalytic oxidation of dyeing wastewater (reactive brilliant blue KN-R) over the Ce-modified Ti-PbO2 electrode with surface hydrophobicity. J Solid State Electrochem 2019. [DOI: 10.1007/s10008-018-04170-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|