1
|
Arivazhagan M, Elancheziyan M, Won K, Jakmunee J. Surface engineered gold nanodendrites decorated flexible carbon fiber-based electrochemical sensor platform for sensitive detection of L-Cysteine in serum and urine samples. Talanta 2025; 287:127688. [PMID: 39914049 DOI: 10.1016/j.talanta.2025.127688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 01/27/2025] [Accepted: 02/01/2025] [Indexed: 03/05/2025]
Abstract
In this work, highly dispersed gold nanodendrites (Au NDs) decorated flexible carbon fiber electrode (Au NDs@FCF electrode) were fabricated by facile, green, and one-step electrochemical deposition protocol and utilized for the direct electrochemical determination of L-Cysteine (L-Cys). The prepared Au NDs@FCF electrodes were characterized by SEM, HR-TEM, XRD, XPS, CV, and EIS towards the dimensions, surface morphological traits, crystalline nature, chemical composition, and electrochemical catalytic oxidation towards L-Cys and electrochemical active surface area (ECASA) of the Au NDs. The developed Au NDs@FCF electrode demonstrates an enzyme mimics electrocatalytic efficiency towards the oxidation of L-Cys at the operating potential of 0.82 V (vs Ag/AgCl) with a lower experimental detection limit of 0.16 nM, higher sensitivity of ∼50.2 μA μM-1 cm-2, and a wide concentration ranges from 100 to 3000 nM with a correlation coefficient of R2 = 0.996. In addition, the developed Au NDs@FCF electrode has exhibited excellent selectivity with various anti-interferences such as glucose, dopamine, uric acid, Na+, Mg2+, Ca2+, high reproducibility, and repeatability with RSD of 2.3 %. The Au NDs@FCF electrode demonstrates outstanding electrocatalytic oxidation and a rapid sensing response time of ∼3 s. The current Au NDs@FCF electrode achieving the successful detection of L-Cys in practical human serum and urine samples highlights its potential application in biomedical diagnostics. This advancement indicates that the sensor can effectively operate in real-world conditions, offering a valuable tool for medical professionals to monitor L-Cys levels in patients accurately.
Collapse
Affiliation(s)
- Mani Arivazhagan
- Research Laboratory for Analytical Instrument and Electrochemistry Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Mari Elancheziyan
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Keehoon Won
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Jaroon Jakmunee
- Research Laboratory for Analytical Instrument and Electrochemistry Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Research Laboratory on Advanced Materials for Sensor and Biosensor Innovation, Materials Science Research Center, and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
2
|
Smułka A, Cieślik M, Olejnik A, Zieliński A, Ryl J, Ossowski T. Unlocking the electrochemical performance of glassy carbon electrodes by surface engineered, sustainable chitosan membranes. Bioelectrochemistry 2025; 161:108804. [PMID: 39244916 DOI: 10.1016/j.bioelechem.2024.108804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/24/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024]
Abstract
Chitosan coatings, derived from crustacean shell waste, possess inherent biocompatibility and biodegradability, rendering them suitable for various biomedical and environmental applications, including electrochemical biosensing. Its amine and hydroxyl functional groups offer abundant sites for chemical modifications to boost the charge transfer kinetics and provide excellent adhesion, enabling the construction of robust electrode-coating interfaces for electroanalysis. This study explores the role of electrostatically-driven chemical interactions and crosslinking density originating from different chitosan (Cs) and glutaraldehyde (Ga) concentrations in this aspect. Studying anionic ([Fe(CN)6]3-/4-), neutral (FcDM0/+), and cationic ([Ru(NH3)6]2+/3+) redox probes highlights the influence of Coulombic interactions with chitosan chains containing positively-charged pathways, calculated by DFT analysis. Our study reveals how a proper Ch-to-Ga ratio has a superior influence on the cross-linking efficacy and resultant charge transfer kinetics, which is primarily boosted by up to 20× analyte preconcentration increase, due to electrostatically-driven migration of negatively charged ferrocyanide ions toward positively charged chitosan hydrogel. Notably the surface engineering approach allows for a two-orders of magnitude enhancement in [Fe(CN)6]4- limit of detection, from 0.1 µM for bare GCE down to even 0.2 nM upon an adequate hydrogel modification.
Collapse
Affiliation(s)
- Agata Smułka
- Department of Analytical Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Mateusz Cieślik
- Department of Analytical Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; Division of Electrochemistry and Surface Physical Chemistry, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233, Poland
| | - Adrian Olejnik
- Department of Metrology and Optoelectronics, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Artur Zieliński
- Department of Electrochemistry, Corrosion and Materials Engineering, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Jacek Ryl
- Division of Electrochemistry and Surface Physical Chemistry, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233, Poland.
| | - Tadeusz Ossowski
- Department of Analytical Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
3
|
Hartati YW, Devi MJ, Irkham, Zulqaidah S, Noviyanti AR, Rochani S, Topkaya SN, Einaga Y. Electrochemical investigation of hydroxyapatite-lanthanum strontium cobalt ferrite composites (HA-LSCF) for SARS-CoV-2 aptasensors. RSC Adv 2023; 13:20209-20216. [PMID: 37416913 PMCID: PMC10321058 DOI: 10.1039/d3ra01531a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
The hydroxyapatite-lanthanum strontium cobalt ferrite (HA-LSCF) composite showed a good response on a screen-printed carbon electrode (SPCE) electrochemical aptasensor to detect SARS-CoV-2. SPCE/HA-LSCF with a thiolated aptamer has a strong affinity for the SARS-CoV-2 spike RBD protein. This occurs due to the binding of -SH to the HA-positive region. In the presence of LSCF, which is conductive, an increase in electron transfer from the redox system [Fe(CN)6]3-/4- occurs. The interaction of the aptamer with the RBD protein can be observed based on the decrease in the electron transfer process. As a result, the developed biosensor is highly sensitive to the SARS-CoV-2 spike RBD protein with a linear range of 0.125 to 2.0 ng mL-1, a detection limit of 0.012 ng mL-1, and a quantification limit of 0.040 ng mL-1. The analytical application of the aptasensor demonstrates its feasibility in the analysis of saliva or swab samples.
Collapse
Affiliation(s)
- Yeni Wahyuni Hartati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran Indonesia
| | - Melania Janisha Devi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran Indonesia
| | - Irkham
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran Indonesia
| | - Salsha Zulqaidah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran Indonesia
| | - Atiek Rostika Noviyanti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran Indonesia
| | - Siti Rochani
- Mining Technology Research Center, National Research and Innovation Agency Indonesia
| | | | - Yasuaki Einaga
- Department of Chemistry, Keio University 3-14-1 Hiyoshi Yokohama 223-8522 Japan
| |
Collapse
|
4
|
Cancelliere R, Rea G, Micheli L, Mantegazza P, Bauer EM, El Khouri A, Tempesta E, Altomare A, Capelli D, Capitelli F. Electrochemical and Structural Characterization of Lanthanum-Doped Hydroxyapatite: A Promising Material for Sensing Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4522. [PMID: 37444835 DOI: 10.3390/ma16134522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
In the quest to find powerful modifiers of screen-printed electrodes for sensing applications, a set of rare earth-doped Ca10-xREx(PO4)6(OH)2 (RE = La, Nd, Sm, Eu, Dy, and Tm and x = 0.01, 0.02, 0.10, and 0.20) hydroxyapatite (HAp) samples were subjected to an in-depth electrochemical characterization using electrochemical impedance spectroscopy and cyclic and square wave voltammetry. Among all of these, the inorganic phosphates doped with lanthanum proved to be the most reliable, revealing robust analytical performances in terms of sensitivity, repeatability, reproducibility, and reusability, hence paving the way for their exploitation in sensing applications. Structural data on La-doped HAp samples were also provided by using different techniques, including optical microscopy, X-ray diffraction, Rietveld refinement from X-ray data, Fourier transform infrared, and Raman vibrational spectroscopies, to complement the electrochemical characterization.
Collapse
Affiliation(s)
- Rocco Cancelliere
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Giuseppina Rea
- Institute of Crystallography (IC), National Research Council (CNR), Via Salaria Km 29.300, 00016 Rome, Italy
| | - Laura Micheli
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Pietro Mantegazza
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Elvira Maria Bauer
- Institute of Structure of Matter (ISM), National Research Council (CNR), Via Salaria Km 29.300, 00016 Rome, Italy
| | - Asmaa El Khouri
- Faculté des Sciences Semlalia, BP 2390, Université Cadi Ayyad, Marrakech 40000, Morocco
| | - Emanuela Tempesta
- Institute of Environmental Geology and Geoengineering (IGAG), National Research Council (CNR), Via Salaria Km 29.300, 00016 Rome, Italy
| | - Angela Altomare
- Institute of Crystallography (IC), National Research Council (CNR), Via Amendola 122/o, 70100 Bari, Italy
| | - Davide Capelli
- Institute of Crystallography (IC), National Research Council (CNR), Via Salaria Km 29.300, 00016 Rome, Italy
| | - Francesco Capitelli
- Institute of Crystallography (IC), National Research Council (CNR), Via Salaria Km 29.300, 00016 Rome, Italy
| |
Collapse
|
5
|
Surface Modified β-Ti-18Mo-6Nb-5Ta (wt%) Alloy for Bone Implant Applications: Composite Characterization and Cytocompatibility Assessment. J Funct Biomater 2023; 14:jfb14020094. [PMID: 36826893 PMCID: PMC9960669 DOI: 10.3390/jfb14020094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Commercially available titanium alloys such as Ti-6Al-4V are established in clinical use as load-bearing bone implant materials. However, concerns about the toxic effects of vanadium and aluminum have prompted the development of Al- and V-free β-Ti alloys. Herein, a new alloy composed of non-toxic elements, namely Ti-18Mo-6Nb-5Ta (wt%), has been fabricated by arc melting. The resulting single β-phase alloy shows improved mechanical properties (Young's modulus and hardness) and similar corrosion behavior in simulated body fluid when compared with commercial Ti-6Al-4V. To increase the cell proliferation capability of the new biomaterial, the surface of Ti-18Mo-6Nb-5Ta was modified by electrodepositing calcium phosphate (CaP) ceramic layers. Coatings with a Ca/P ratio of 1.47 were obtained at pulse current densities, -jc, of 1.8-8.2 mA/cm2, followed by 48 h of NaOH post-treatment. The thickness of the coatings has been measured by scanning electron microscopy from an ion beam cut, resulting in an average thickness of about 5 μm. Finally, cytocompatibility and cell adhesion have been evaluated using the osteosarcoma cell line Saos-2, demonstrating good biocompatibility and enhanced cell proliferation on the CaP-modified Ti-18Mo-6Nb-5Ta material compared with the bare alloy, even outperforming their CaP-modified Ti-6-Al-4V counterparts.
Collapse
|
6
|
Hartati YW, Irkham I, Zulqaidah S, Syafira RS, Kurnia I, Noviyanti AR, Topkaya SN. Recent advances in hydroxyapatite-based electrochemical biosensors: Applications and future perspectives. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
7
|
An effective method for cysteine determination based on fluorescence resonance energy system between co-doped graphene quantum dots and silver nanoparticles. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-021-0956-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Highly selective and sensitive electrochemical determination of cysteine based on complexation with gold nanoparticle–modified copper-based metal organic frameworks. Anal Bioanal Chem 2022; 414:2343-2353. [DOI: 10.1007/s00216-021-03852-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/14/2021] [Accepted: 12/14/2021] [Indexed: 02/06/2023]
|
9
|
Moulaee K, Neri G. Electrochemical Amino Acid Sensing: A Review on Challenges and Achievements. BIOSENSORS 2021; 11:502. [PMID: 34940259 PMCID: PMC8699811 DOI: 10.3390/bios11120502] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 05/05/2023]
Abstract
The rapid growth of research in electrochemistry in the last decade has resulted in a significant advancement in exploiting electrochemical strategies for assessing biological substances. Among these, amino acids are of utmost interest due to their key role in human health. Indeed, an unbalanced amino acid level is the origin of several metabolic and genetic diseases, which has led to a great need for effective and reliable evaluation methods. This review is an effort to summarize and present both challenges and achievements in electrochemical amino acid sensing from the last decade (from 2010 onwards) to show where limitations and advantages stem from. In this review, we place special emphasis on five well-known electroactive amino acids, namely cysteine, tyrosine, tryptophan, methionine and histidine. The recent research and achievements in this area and significant performance metrics of the proposed electrochemical sensors, including the limit of detection, sensitivity, stability, linear dynamic range(s) and applicability in real sample analysis, are summarized and presented in separate sections. More than 400 recent scientific studies were included in this review to portray a rich set of ideas and exemplify the capabilities of the electrochemical strategies to detect these essential biomolecules at trace and even ultra-trace levels. Finally, we discuss, in the last section, the remaining issues and the opportunities to push the boundaries of our knowledge in amino acid electrochemistry even further.
Collapse
Affiliation(s)
- Kaveh Moulaee
- Department of Engineering, University of Messina, C.Da Di Dio, I-98166 Messina, Italy;
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran 16846-13114, Iran
| | - Giovanni Neri
- Department of Engineering, University of Messina, C.Da Di Dio, I-98166 Messina, Italy;
| |
Collapse
|
10
|
Majer D, Mastnak T, Finšgar M. An Advanced Statistical Approach Using Weighted Linear Regression in Electroanalytical Method Development for Epinephrine, Uric Acid and Ascorbic Acid Determination. SENSORS (BASEL, SWITZERLAND) 2020; 20:s20247056. [PMID: 33317157 PMCID: PMC7763546 DOI: 10.3390/s20247056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 05/22/2023]
Abstract
In this study, the use of weighted linear regression in the development of electrochemical methods for the determination of epinephrine (EP), ascorbic acid (AA), and uric acid (UA) is presented. The measurements were performed using a glassy carbon electrode and square-wave voltammetry (SWV). All electroanalytical methods were validated by determination of the limit of detection, limit of quantification, linear concentration range, accuracy, and precision. The normal distribution of all data sets was checked using the quantile-quantile plot and Kolmogorov-Smirnov statistical tests. The heteroscedasticity of the data was tested using Hartley's test, Bartlett's test, Cochran's C test, and the analysis of residuals. The heteroscedastic behavior was observed with all analytes, justifying the use of weighted linear regression. Six different weighting factors were tested, and the best weighted model was determined using relative percentage error. Such statistical approach improved the regression models by giving greater weight on the values with the smallest error and vice versa. Consequently, accuracy of the analytical results (especially in the lower concentration range) was improved. All methods were successfully used for the determination of these analytes in real samples: EP in an epinephrine auto-injector, AA in a dietary supplement, and UA in human urine. The accuracy and precision of real sample analysis using best weighted model gave satisfactory results with recoveries between 95.21-113.23% and relative standard deviations between 0.85-7.98%. The SWV measurement takes about 40 s, which makes the presented methods for the determination of EP, AA, and UA a promising alternative to chromatographic techniques in terms of speed, analysis, and equipment costs, as the analysis is performed without organic solvents.
Collapse
|