1
|
Trkova K, Sumerauer D, Bubenikova A, Krskova L, Vicha A, Koblizek M, Zamecnik J, Jurasek B, Kyncl M, Malinova B, Ondrova B, Jones DTW, Sill M, Strnadova M, Stolova L, Misove A, Benes V, Zapotocky M. Clinical and molecular study of radiation-induced gliomas. Sci Rep 2024; 14:3118. [PMID: 38326438 PMCID: PMC10850080 DOI: 10.1038/s41598-024-53434-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/31/2024] [Indexed: 02/09/2024] Open
Abstract
In this study, we provide a comprehensive clinical and molecular biological characterization of radiation-induced gliomas (RIG), including a risk assessment for developing gliomas. A cohort of 12 patients who developed RIG 9.5 years (3-31 years) after previous cranial radiotherapy for brain tumors or T-cell acute lymphoblastic leukemia was established. The derived risk of RIG development based on our consecutive cohort of 371 irradiated patients was 1.6% at 10 years and 3.02% at 15 years. Patients with RIG glioma had a dismal prognosis with a median survival of 7.3 months. We described radiology features that might indicate the suspicion of RIG rather than the primary tumor recurrence. Typical molecular features identified by molecular biology examination included the absence of Histon3 mutation, methylation profile of pedHGG-RTK1 and the presence of recurrent PDGFRA amplification and CDKN2A/B deletion. Of the two long-term surviving patients, one had gliomatosis cerebri, and the other had pleomorphic xanthoastrocytoma with BRAF V600E mutation. In summary, our experience highlights the need for tissue diagnostics to allow detailed molecular biological characterization of the tumor, differentiation of the secondary tumor from the recurrence of the primary disease and potentially finding a therapeutic target.
Collapse
Affiliation(s)
- Katerina Trkova
- Prague Brain Tumor Research Group, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
- Center for Pediatric Neuro-Oncology, University Hospital Motol, V Uvalu 84 , 15006, Prague 5, Czech Republic
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University Prague and University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
| | - David Sumerauer
- Prague Brain Tumor Research Group, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
- Center for Pediatric Neuro-Oncology, University Hospital Motol, V Uvalu 84 , 15006, Prague 5, Czech Republic
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University Prague and University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
| | - Adela Bubenikova
- Department of Neurosurgery, Second Faculty of Medicine, Charles University Prague and University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
| | - Lenka Krskova
- Prague Brain Tumor Research Group, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
- Center for Pediatric Neuro-Oncology, University Hospital Motol, V Uvalu 84 , 15006, Prague 5, Czech Republic
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University Prague and University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
| | - Ales Vicha
- Prague Brain Tumor Research Group, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
- Center for Pediatric Neuro-Oncology, University Hospital Motol, V Uvalu 84 , 15006, Prague 5, Czech Republic
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University Prague and University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
| | - Miroslav Koblizek
- Prague Brain Tumor Research Group, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
- Center for Pediatric Neuro-Oncology, University Hospital Motol, V Uvalu 84 , 15006, Prague 5, Czech Republic
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University Prague and University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
| | - Josef Zamecnik
- Prague Brain Tumor Research Group, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
- Center for Pediatric Neuro-Oncology, University Hospital Motol, V Uvalu 84 , 15006, Prague 5, Czech Republic
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University Prague and University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
| | - Bruno Jurasek
- Department of Radiology, Second Faculty of Medicine, Charles University Prague and University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
| | - Martin Kyncl
- Center for Pediatric Neuro-Oncology, University Hospital Motol, V Uvalu 84 , 15006, Prague 5, Czech Republic
- Department of Radiology, Second Faculty of Medicine, Charles University Prague and University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
| | - Bela Malinova
- Department of Oncology, Second Faculty of Medicine, Charles University Prague and University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
| | - Barbora Ondrova
- Proton Therapy Center Czech, Budínova 1a, 180 00, Prague, Czech Republic
| | - David T W Jones
- Division of Pediatric Glioma Research, Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Sill
- Division of Pediatric Glioma Research, Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martina Strnadova
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University Prague and University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
| | - Lucie Stolova
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University Prague and University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
| | - Adela Misove
- Prague Brain Tumor Research Group, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
- Center for Pediatric Neuro-Oncology, University Hospital Motol, V Uvalu 84 , 15006, Prague 5, Czech Republic
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University Prague and University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
| | - Vladimir Benes
- Center for Pediatric Neuro-Oncology, University Hospital Motol, V Uvalu 84 , 15006, Prague 5, Czech Republic
- Department of Neurosurgery, Second Faculty of Medicine, Charles University Prague and University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
| | - Michal Zapotocky
- Prague Brain Tumor Research Group, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic.
- Center for Pediatric Neuro-Oncology, University Hospital Motol, V Uvalu 84 , 15006, Prague 5, Czech Republic.
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University Prague and University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic.
| |
Collapse
|
2
|
Masui K, Nitta M, Muragaki Y, Kawamata T, Satomi K, Matsushita Y, Yoshida A, Ichimura K, Tsuda M, Tanaka S, Komori T. A case of "genetically defined" radiation-induced glioma: 29 years after surgery and radiation for pilocytic astrocytoma. Neuropathology 2023; 43:425-428. [PMID: 36949717 DOI: 10.1111/neup.12903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/10/2023] [Accepted: 03/06/2023] [Indexed: 03/24/2023]
Affiliation(s)
- Kenta Masui
- Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Masayuki Nitta
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoshihiro Muragaki
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Kaishi Satomi
- Division of Brain Tumor Translational Research, National Cancer Center Institute, Tokyo, Japan
- Department of Diagnostic Pathology, National Cancer Center Institute, Tokyo, Japan
| | - Yuko Matsushita
- Division of Brain Tumor Translational Research, National Cancer Center Institute, Tokyo, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Institute, Tokyo, Japan
| | - Koichi Ichimura
- Division of Brain Tumor Translational Research, National Cancer Center Institute, Tokyo, Japan
| | - Masumi Tsuda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Takashi Komori
- Department of Laboratory Medicine and Pathology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| |
Collapse
|
3
|
Ohno M, Miyakita Y, Takahashi M, Yanagisawa S, Tamura Y, Kawauchi D, Kikuchi M, Igaki H, Yoshida A, Satomi K, Matsushita Y, Ichimura K, Narita Y. Assessment of therapeutic outcome and role of reirradiation in patients with radiation-induced glioma. Radiat Oncol 2022; 17:85. [PMID: 35505351 PMCID: PMC9066974 DOI: 10.1186/s13014-022-02054-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 04/15/2022] [Indexed: 11/26/2022] Open
Abstract
Background We sought to clarify the optimal follow-up, therapeutic strategy, especially the role of reirradiation, and the diagnostic impact of isocitrate dehydrogenase (IDH) 1 and 2 mutation status in patients with radiation-induced glioma (RIG). Methods We retrospectively reviewed the clinical characteristics and treatment outcomes of 11 patients with high-grade glioma who satisfied Cahan’s criteria for RIG in our database during 2001–2021. IDH 1/2 mutations were analyzed by Sanger sequencing and/or pyrosequencing. Results The RIGs included glioblastoma with IDH 1/2 wild-type (n = 7), glioblastoma not otherwise specified (n = 2), anaplastic astrocytoma with IDH1/2 wild-type (n = 1), and anaplastic astrocytoma not otherwise specified (n = 1). The median period from primary disease and RIG diagnosis was 17 years (range: 9–30 years). All patients underwent tumor removal or biopsy, 5 patients postoperatively received reirradiation combined with chemotherapy, and 6 patients were treated with chemotherapy alone. The median progression-free and survival times were 11.3 and 28.3 months. The median progression-free survival time of patients treated with reirradiation and chemotherapy (n = 5) tended to be longer than that of patients that received chemotherapy alone (n = 6) (17.0 vs 8.1 months). However, the median survival time was similar (29.6 vs 27.4 months). Local recurrence was observed in 5 patients treated with chemotherapy alone, whereas in 2 patients among 4 patients treated with reirradiation and chemotherapy. None of the patients developed radiation necrosis. In one case, the primary tumor was diffuse astrocytoma with IDH2 mutant, and the secondary tumor was glioblastoma with IDH 1/2 wild-type. Based on the difference of IDH2 mutation status, the secondary tumor with IDH 1/2 wild-type was diagnosed as a de novo tumor that was related to the previous radiation therapy. Conclusions RIG can occur beyond 20 years after successfully treating the primary disease using radiotherapy; thus, cancer survivors should be informed of the long-term risk of developing RIG and the need for timely neuroimaging evaluation. Reirradiation combined with chemotherapy appears to be feasible and has favorable outcomes. Determining the IDH1/2 mutational status is useful to establish RIG diagnosis when the primary tumor is glioma.
Collapse
Affiliation(s)
- Makoto Ohno
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Yasuji Miyakita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Masamichi Takahashi
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shunsuke Yanagisawa
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yukie Tamura
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Daisuke Kawauchi
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Miyu Kikuchi
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hiroshi Igaki
- Department of Radiation Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kaishi Satomi
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yuko Matsushita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Koichi Ichimura
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Department of Brain Disease Translational Research, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
4
|
Shahsavari N, Ahmad M, Sekar V, Meola A, Hancock SL, Chang SD, Chiang VL. Synchronous glioblastoma and brain metastases: illustrative case. JOURNAL OF NEUROSURGERY: CASE LESSONS 2022; 3:CASE21714. [PMID: 36273867 PMCID: PMC9379681 DOI: 10.3171/case21714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/02/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Radiosurgical treatment of brain metastases is usually performed without brain tissue confirmation. While it is extremely rare for glioblastoma to develop concurrently in patients with brain metastases, they can look radiographically similar, and recognition is important because it alters management and prognosis. The synchronous presence of brain metastases and glioblastoma has not been published to date in the literature, making this a rare illustrative case. OBSERVATIONS A 70-year-old female had lung biopsy-proven metastatic lung adenocarcinoma and multiple brain metastases. Her treatment course included initial carboplatin, pemetrexed, and bevacizumab followed by maintenance nivolumab, and she underwent stereotactic radiosurgery to the multiple brain metastases. During interval radiological surveillance, one lesion in the right temporal lobe was noted to slowly progress associated with development of significant perilesional edema causing midline shift despite repeated stereotactic radiosurgical treatments. Biopsy of this lesion revealed glioblastoma, IDH wildtype. LESSONS Glioblastomas and brain metastases have similar radiological features, so the possibility of incorrect diagnosis needs to be considered for all lesions with interval growth poststereotactic radiosurgery. Biopsy and/or resection/laser ablation should be considered prior to reirradiation.
Collapse
Affiliation(s)
| | | | | | | | - Steven L. Hancock
- Radiation Oncology, Stanford University School of Medicine, Palo Alto, California; and
| | | | - Veronica L. Chiang
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
5
|
Whitehouse JP, Howlett M, Federico A, Kool M, Endersby R, Gottardo NG. Defining the molecular features of radiation-induced glioma: A systematic review and meta-analysis. Neurooncol Adv 2021; 3:vdab109. [PMID: 34859225 PMCID: PMC8633655 DOI: 10.1093/noajnl/vdab109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Cranial radiation therapy is essential in treating many pediatric cancers, especially brain tumors; however, its use comes with the risk of developing second malignancies. Cranial radiation-induced gliomas (RIGs) are aggressive high-grade tumors with a dismal prognosis, for which no standard therapy exists. A definitive molecular signature for RIGs has not yet been established. We sought to address this gap by performing a systematic review and meta-analysis of the molecular features of cranial RIGs. Methods A systematic review of the literature was performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Articles and case reports that described molecular analyses of cranial radiation-induced high-grade gliomas were identified and evaluated, and data extracted for collation. Results Of 1727 records identified, 31 were eligible, containing 102 unique RIGs with molecular data. The most frequent genetic alterations in RIGs included PDGFRA or TP53 mutations, PDGFRA or CDK4 amplifications, and CDKN2A deletion, along with 1q gain, 1p loss and 13q loss. Of note, mutations in ACVR1, EGFR, H3F3A, HIST1H3B, HIST1H3C, IDH2, SMARCB1 or the TERT promoter were not observed. A comparative analysis revealed that RIGs are molecularly distinct from most other astrocytomas and gliomas and instead align most closely with the pedGBM_RTK1 subgroup of pediatric glioblastoma. Conclusions This comprehensive analysis highlights the major molecular features of RIGs, demonstrates their molecular distinction from many other astrocytomas and gliomas, and reveals potential genetic drivers and therapeutic targets for this currently fatal disease.
Collapse
Affiliation(s)
- Jacqueline P Whitehouse
- Brain Tumour Research Program, Telethon Kids Institute, Nedlands, Western Australia, Australia.,Centre for Child Health Research, University of Western Australia, Nedlands, Western Australia, Australia
| | - Meegan Howlett
- Brain Tumour Research Program, Telethon Kids Institute, Nedlands, Western Australia, Australia.,Centre for Child Health Research, University of Western Australia, Nedlands, Western Australia, Australia
| | - Aniello Federico
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Pediatric Neuro-oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Pediatric Neuro-oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Raelene Endersby
- Brain Tumour Research Program, Telethon Kids Institute, Nedlands, Western Australia, Australia.,Centre for Child Health Research, University of Western Australia, Nedlands, Western Australia, Australia
| | - Nicholas G Gottardo
- Brain Tumour Research Program, Telethon Kids Institute, Nedlands, Western Australia, Australia.,Centre for Child Health Research, University of Western Australia, Nedlands, Western Australia, Australia.,Department of Paediatric and Adolescent Oncology/Haematology, Perth Children's Hospital, Nedlands, Western Australia, Australia
| |
Collapse
|
6
|
Deng MY, Sturm D, Pfaff E, Sill M, Stichel D, Balasubramanian GP, Tippelt S, Kramm C, Donson AM, Green AL, Jones C, Schittenhelm J, Ebinger M, Schuhmann MU, Jones BC, van Tilburg CM, Wittmann A, Golanov A, Ryzhova M, Ecker J, Milde T, Witt O, Sahm F, Reuss D, Sumerauer D, Zamecnik J, Korshunov A, von Deimling A, Pfister SM, Jones DTW. Radiation-induced gliomas represent H3-/IDH-wild type pediatric gliomas with recurrent PDGFRA amplification and loss of CDKN2A/B. Nat Commun 2021; 12:5530. [PMID: 34545083 PMCID: PMC8452680 DOI: 10.1038/s41467-021-25708-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/12/2021] [Indexed: 01/21/2023] Open
Abstract
Long-term complications such as radiation-induced second malignancies occur in a subset of patients following radiation-therapy, particularly relevant in pediatric patients due to the long follow-up period in case of survival. Radiation-induced gliomas (RIGs) have been reported in patients after treatment with cranial irradiation for various primary malignancies such as acute lymphoblastic leukemia (ALL) and medulloblastoma (MB). We perform comprehensive (epi-) genetic and expression profiling of RIGs arising after cranial irradiation for MB (n = 23) and ALL (n = 9). Our study reveals a unifying molecular signature for the majority of RIGs, with recurrent PDGFRA amplification and loss of CDKN2A/B and an absence of somatic hotspot mutations in genes encoding histone 3 variants or IDH1/2, uncovering diagnostic markers and potentially actionable targets.
Collapse
Affiliation(s)
- Maximilian Y Deng
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg University Hospital and German Cancer Resarch Center (DKFZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominik Sturm
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg University Hospital and German Cancer Resarch Center (DKFZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Elke Pfaff
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg University Hospital and German Cancer Resarch Center (DKFZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Sill
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg University Hospital and German Cancer Resarch Center (DKFZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Damian Stichel
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Gnana Prakash Balasubramanian
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg University Hospital and German Cancer Resarch Center (DKFZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Stephan Tippelt
- Department of Pediatric Oncology and Hematology, Essen University Hospital, Essen, Germany
| | - Christof Kramm
- Division of Pediatric Hematology and Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Andrew M Donson
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Adam L Green
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Chris Jones
- Division of Molecular Pathology and Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Jens Schittenhelm
- Department of Neuropathology, Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tübingen-Stuttgart, Tübingen University Hospital, Tübingen, Germany
| | - Martin Ebinger
- Department of Pediatric Hematology/Oncology, Children's University Hospital, Tübingen, Germany
| | - Martin U Schuhmann
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Tübingen University Hospital, Tübingen, Germany
| | - Barbara C Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg University Hospital and German Cancer Resarch Center (DKFZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Cornelis M van Tilburg
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg University Hospital and German Cancer Resarch Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Andrea Wittmann
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg University Hospital and German Cancer Resarch Center (DKFZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrey Golanov
- Department of Neuropathology, NN Burdenko Neurosurgical Institute, Moscow, Russia
| | - Marina Ryzhova
- Department of Neuropathology, NN Burdenko Neurosurgical Institute, Moscow, Russia
| | - Jonas Ecker
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg University Hospital and German Cancer Resarch Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Till Milde
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg University Hospital and German Cancer Resarch Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Olaf Witt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg University Hospital and German Cancer Resarch Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Felix Sahm
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg University Hospital and German Cancer Resarch Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - David Reuss
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - David Sumerauer
- Department of Pediatric Hematology and Oncology, Motol University Hospital, Charles University, Prague, Czech Republic
| | - Josef Zamecnik
- Department of Pathology, Motol University Hospital, Charles University, Prague, Czech Republic
| | - Andrey Korshunov
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg University Hospital and German Cancer Resarch Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg University Hospital and German Cancer Resarch Center (DKFZ), Heidelberg, Germany.
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
7
|
Eschbacher KL, Ida CM, Johnson DR, Alvi MA, Jenkins SM, Ruff MW, Kerezoudis P, Neth BJ, Pasion RM, Daniels DJ, Kizilbash SH, Raghunathan A. Diffuse Gliomas of the Brainstem and Cerebellum in Adults Show Molecular Heterogeneity. Am J Surg Pathol 2021; 45:1082-1090. [PMID: 33606385 DOI: 10.1097/pas.0000000000001690] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Posterior fossa (PF) diffuse gliomas in pediatric patients frequently harbor the H3 K27M mutation. Among adults, PF diffuse gliomas are rare, with limited data regarding molecular features and clinical outcomes. We identified 28 adult PF diffuse glioma patients (17 males; median: 50 y, range: 19 to 78 y), with surgery performed at our institution (13 brainstem; 15 cerebellum). Histologic subtypes included anaplastic astrocytoma (n=21), glioblastoma (n=6), and diffuse astrocytoma (n=1). Immunohistochemistry was performed for H3 K27M (n=26), IDH1-R132H (n=28), and ATRX (n=28). A 150-gene neuro-oncology-targeted next-generation sequencing panel was attempted in 24/28, with sufficient informative material in 15 (51.7%). Tumors comprised 4 distinct groups: driver mutations in H3F3A (brainstem=4; cerebellum=2), IDH1 (brainstem=4; cerebellum=4), TERT promotor mutation (brainstem=0; cerebellum=3), and none of these (n=5), with the latter harboring mutations of TP53, PDGFRA, ATRX, NF1, and RB1. All TERT promoter-mutant cases were IDH-wild-type and arose within the cerebellum. To date, 20 patients have died of disease, with a median survival of 16.3 months, 1-year survival of 67.5%. Median survival within the subgroups included: H3F3A=16.4 months, IDH mutant=113.4 months, and TERT promoter mutant=12.9 months. These findings suggest that PF diffuse gliomas affecting adults show molecular heterogeneity, which may be associated with patient outcomes and possible response to therapy, and supports the utility of molecular testing in these tumors.
Collapse
Affiliation(s)
| | | | | | | | - Sarah M Jenkins
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Ruf VC, Schöler A, Capper D, Arzberger T, Herms J, Schüller U. An 8-Year-Old Girl with Posterior Fossa Mass. Brain Pathol 2021; 30:713-714. [PMID: 32385963 DOI: 10.1111/bpa.12833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
- Viktoria C Ruf
- Center for Neuropathology and Prion Research, Ludwig Maximilians-University Munich, Germany
| | - Anne Schöler
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Neuropathology, Berlin Institute of Health, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Berlin, Heidelberg, Germany
| | - David Capper
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Neuropathology, Berlin Institute of Health, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Berlin, Heidelberg, Germany
| | - Thomas Arzberger
- Center for Neuropathology and Prion Research, Ludwig Maximilians-University Munich, Germany.,Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Germany
| | - Jochen Herms
- Center for Neuropathology and Prion Research, Ludwig Maximilians-University Munich, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg Eppendorf, Germany.,Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Germany.,Research Institute, Children's Cancer Center Hamburg, Germany
| |
Collapse
|
9
|
Whitehouse JP, Howlett M, Hii H, Mayoh C, Wong M, Barahona P, Ajuyah P, White CL, Buntine MK, Dyke JM, Lee S, Valvi S, Stanley J, Andradas C, Carline B, Kuchibhotla M, Ekert PG, Cowley MJ, Gottardo NG, Endersby R. A Novel Orthotopic Patient-Derived Xenograft Model of Radiation-Induced Glioma Following Medulloblastoma. Cancers (Basel) 2020; 12:cancers12102937. [PMID: 33053751 PMCID: PMC7600047 DOI: 10.3390/cancers12102937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Radiation-induced glioma (RIG) is a highly aggressive brain cancer arising as a consequence of radiation therapy. We report a case of RIG that arose in the brain stem following treatment for paediatric medulloblastoma, and the development and characterisation of a matched orthotopic patient-derived xenograft (PDX) model (TK-RIG915). Patient and PDX tumours were analysed using DNA methylation profiling, whole genome sequencing (WGS) and RNA sequencing. While initially thought to be a diffuse intrinsic pontine glioma (DIPG) based on disease location, results from methylation profiling and WGS were not consistent with this diagnosis. Furthermore, clustering analyses based on RNA expression suggested the tumours were distinct from primary DIPG. Additional gene expression analysis demonstrated concordance with a published RIG expression profile. Multiple genetic alterations that enhance PI3K/AKT and Ras/Raf/MEK/ERK signalling were discovered in TK-RIG915 including an activating mutation in PIK3CA, upregulation of PDGFRA and AKT2, inactivating mutations in NF1, and a gain-of-function mutation in PTPN11. Additionally, deletion of CDKN2A/B, increased IDH1 expression, and decreased ARID1A expression were observed. Detection of phosphorylated S6, 4EBP1 and ERK via immunohistochemistry confirmed PI3K pathway and ERK activation. Here, we report one of the first PDX models for RIG, which recapitulates the patient disease and is molecularly distinct from primary brain stem glioma. Genetic interrogation of this model has enabled the identification of potential therapeutic vulnerabilities in this currently incurable disease.
Collapse
Affiliation(s)
- Jacqueline P. Whitehouse
- Brain Tumour Research Program, Telethon Kids Institute, Nedlands 6009, Australia; (J.P.W.); (M.H.); (H.H.); (S.V.); (J.S.); (C.A.); (B.C.); (M.K.); (N.G.G.)
- Centre for Child Health Research, University of Western Australia, Nedlands 6009, Australia
| | - Meegan Howlett
- Brain Tumour Research Program, Telethon Kids Institute, Nedlands 6009, Australia; (J.P.W.); (M.H.); (H.H.); (S.V.); (J.S.); (C.A.); (B.C.); (M.K.); (N.G.G.)
- Centre for Child Health Research, University of Western Australia, Nedlands 6009, Australia
| | - Hilary Hii
- Brain Tumour Research Program, Telethon Kids Institute, Nedlands 6009, Australia; (J.P.W.); (M.H.); (H.H.); (S.V.); (J.S.); (C.A.); (B.C.); (M.K.); (N.G.G.)
| | - Chelsea Mayoh
- Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington 2033, Australia; (C.M.); (M.W.); (P.B.); (P.A.); (P.G.E.); (M.J.C.)
- School of Women’s and Children’s Health, UNSW Sydney, Kensington 2033, Australia
| | - Marie Wong
- Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington 2033, Australia; (C.M.); (M.W.); (P.B.); (P.A.); (P.G.E.); (M.J.C.)
- School of Women’s and Children’s Health, UNSW Sydney, Kensington 2033, Australia
| | - Paulette Barahona
- Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington 2033, Australia; (C.M.); (M.W.); (P.B.); (P.A.); (P.G.E.); (M.J.C.)
| | - Pamela Ajuyah
- Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington 2033, Australia; (C.M.); (M.W.); (P.B.); (P.A.); (P.G.E.); (M.J.C.)
| | - Christine L. White
- Genetics and Molecular Pathology Laboratory, Hudson Institute of Medical Research, Clayton 3168, Victoria, Australia; (C.L.W.); (M.K.B.)
- Department of Molecular and Translational Science, Monash University, Melbourne 3168, Victoria, Australia
| | - Molly K. Buntine
- Genetics and Molecular Pathology Laboratory, Hudson Institute of Medical Research, Clayton 3168, Victoria, Australia; (C.L.W.); (M.K.B.)
- Department of Molecular and Translational Science, Monash University, Melbourne 3168, Victoria, Australia
| | - Jason M. Dyke
- Department of Neuropathology, PathWest Laboratory Medicine, Royal Perth Hospital, Perth 6000, Australia;
- Pathology and Laboratory Medicine, University of Western Australia, Nedlands 6009, Australia
| | - Sharon Lee
- Department of Neurosurgery, Perth Children’s Hospital, Nedlands 6009, Australia;
| | - Santosh Valvi
- Brain Tumour Research Program, Telethon Kids Institute, Nedlands 6009, Australia; (J.P.W.); (M.H.); (H.H.); (S.V.); (J.S.); (C.A.); (B.C.); (M.K.); (N.G.G.)
- Department of Paediatric and Adolescent Oncology/Haematology, Perth Children’s Hospital, Nedlands 6009, Australia
- Division of Paediatrics, University of Western Australia Medical School, Nedlands 6009, Australia
| | - Jason Stanley
- Brain Tumour Research Program, Telethon Kids Institute, Nedlands 6009, Australia; (J.P.W.); (M.H.); (H.H.); (S.V.); (J.S.); (C.A.); (B.C.); (M.K.); (N.G.G.)
- Centre for Child Health Research, University of Western Australia, Nedlands 6009, Australia
| | - Clara Andradas
- Brain Tumour Research Program, Telethon Kids Institute, Nedlands 6009, Australia; (J.P.W.); (M.H.); (H.H.); (S.V.); (J.S.); (C.A.); (B.C.); (M.K.); (N.G.G.)
- Centre for Child Health Research, University of Western Australia, Nedlands 6009, Australia
| | - Brooke Carline
- Brain Tumour Research Program, Telethon Kids Institute, Nedlands 6009, Australia; (J.P.W.); (M.H.); (H.H.); (S.V.); (J.S.); (C.A.); (B.C.); (M.K.); (N.G.G.)
| | - Mani Kuchibhotla
- Brain Tumour Research Program, Telethon Kids Institute, Nedlands 6009, Australia; (J.P.W.); (M.H.); (H.H.); (S.V.); (J.S.); (C.A.); (B.C.); (M.K.); (N.G.G.)
| | - Paul G. Ekert
- Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington 2033, Australia; (C.M.); (M.W.); (P.B.); (P.A.); (P.G.E.); (M.J.C.)
- School of Women’s and Children’s Health, UNSW Sydney, Kensington 2033, Australia
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville 3052, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne 3000, Victoria, Australia
| | - Mark J. Cowley
- Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington 2033, Australia; (C.M.); (M.W.); (P.B.); (P.A.); (P.G.E.); (M.J.C.)
- School of Women’s and Children’s Health, UNSW Sydney, Kensington 2033, Australia
| | - Nicholas G. Gottardo
- Brain Tumour Research Program, Telethon Kids Institute, Nedlands 6009, Australia; (J.P.W.); (M.H.); (H.H.); (S.V.); (J.S.); (C.A.); (B.C.); (M.K.); (N.G.G.)
- Centre for Child Health Research, University of Western Australia, Nedlands 6009, Australia
- Department of Paediatric and Adolescent Oncology/Haematology, Perth Children’s Hospital, Nedlands 6009, Australia
| | - Raelene Endersby
- Brain Tumour Research Program, Telethon Kids Institute, Nedlands 6009, Australia; (J.P.W.); (M.H.); (H.H.); (S.V.); (J.S.); (C.A.); (B.C.); (M.K.); (N.G.G.)
- Centre for Child Health Research, University of Western Australia, Nedlands 6009, Australia
- Correspondence:
| |
Collapse
|
10
|
Fujii M, Ichikawa M, Iwatate K, Bakhit M, Yamada M, Kuromi Y, Sato T, Sakuma J, Sato H, Kikuta A, Suzuki Y, Saito K. Secondary brain tumors after cranial radiation therapy: A single-institution study. Rep Pract Oncol Radiother 2020; 25:245-249. [PMID: 32071561 DOI: 10.1016/j.rpor.2020.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/08/2019] [Accepted: 01/27/2020] [Indexed: 12/29/2022] Open
Abstract
Aim To study the probability of developing secondary brain tumors after cranial radiotherapy.Background Patients treated with cranial radiotherapy are at risk for developing secondary brain tumors. Patients and methods We planned an institutional survey for secondary brain tumors in survivors after cranial irradiation and reviewed the 30-year duration data. Event analysis and cumulative proportion curves were performed to generally estimate the cumulative proportion of developing secondary brain tumors, cavernoma and meningioma at different periods of time. Results Secondary brain tumors occurred in 21% of cases: 10% were cavernomas, 6% were meningiomas, 3% were skull osteomas, and 1% were anaplastic astrocytoma. The cumulative proportion of developing secondary brain tumor was 6% at 10 years and 20% at 20 years, while the cumulative proportion for developing cavernomas and meningiomas was 16% and 7% at 20 years, respectively. Conclusion Our study shows that patients who received cranial irradiation were at risk of secondary brain tumors such as cavernomas and meningiomas. Thus, a meticulous follow-up of cancer survivors with history of cranial irradiation by an annual MRI scan is justifiable. This will help clinicians to detect secondary brain tumors early and make its management much easier.
Collapse
Affiliation(s)
- Masazumi Fujii
- Department of Neurosurgery, Fukushima Medical University, Fukushima prefecture, Fukushima City, Japan
| | - Masahiro Ichikawa
- Department of Neurosurgery, Fukushima Medical University, Fukushima prefecture, Fukushima City, Japan
| | - Kensho Iwatate
- Department of Neurosurgery, Fukushima Medical University, Fukushima prefecture, Fukushima City, Japan
| | - Mudathir Bakhit
- Department of Neurosurgery, Fukushima Medical University, Fukushima prefecture, Fukushima City, Japan
| | - Masayuki Yamada
- Department of Neurosurgery, Fukushima Medical University, Fukushima prefecture, Fukushima City, Japan
| | - Yosuke Kuromi
- Department of Neurosurgery, Fukushima Medical University, Fukushima prefecture, Fukushima City, Japan
| | - Taku Sato
- Department of Neurosurgery, Fukushima Medical University, Fukushima prefecture, Fukushima City, Japan
| | - Jun Sakuma
- Department of Neurosurgery, Fukushima Medical University, Fukushima prefecture, Fukushima City, Japan
| | - Hisashi Sato
- Department of Radiation Oncology, Fukushima Medical University, Fukushima prefecture, Fukushima City, Japan
| | - Atsushi Kikuta
- Department of Pediatric Oncology, Fukushima Medical University, Fukushima prefecture, Fukushima City, Japan
| | - Yoshiyuki Suzuki
- Department of Radiation Oncology, Fukushima Medical University, Fukushima prefecture, Fukushima City, Japan
| | - Kiyoshi Saito
- Department of Neurosurgery, Fukushima Medical University, Fukushima prefecture, Fukushima City, Japan
| |
Collapse
|
11
|
López GY, Van Ziffle J, Onodera C, Grenert JP, Yeh I, Bastian BC, Clarke J, Oberheim Bush NA, Taylor J, Chang S, Butowski N, Banerjee A, Mueller S, Kline C, Torkildson J, Samuel D, Siongco A, Raffel C, Gupta N, Kunwar S, Mummaneni P, Aghi M, Theodosopoulos P, Berger M, Phillips JJ, Pekmezci M, Tihan T, Bollen AW, Perry A, Solomon DA. The genetic landscape of gliomas arising after therapeutic radiation. Acta Neuropathol 2019; 137:139-150. [PMID: 30196423 DOI: 10.1007/s00401-018-1906-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/31/2018] [Accepted: 09/01/2018] [Indexed: 11/26/2022]
Abstract
Radiotherapy improves survival for common childhood cancers such as medulloblastoma, leukemia, and germ cell tumors. Unfortunately, long-term survivors suffer sequelae that can include secondary neoplasia. Gliomas are common secondary neoplasms after cranial or craniospinal radiation, most often manifesting as high-grade astrocytomas with poor clinical outcomes. Here, we performed genetic profiling on a cohort of 12 gliomas arising after therapeutic radiation to determine their molecular pathogenesis and assess for differences in genomic signature compared to their spontaneous counterparts. We identified a high frequency of TP53 mutations, CDK4 amplification or CDKN2A homozygous deletion, and amplifications or rearrangements involving receptor tyrosine kinase and Ras-Raf-MAP kinase pathway genes including PDGFRA, MET, BRAF, and RRAS2. Notably, all tumors lacked alterations in IDH1, IDH2, H3F3A, HIST1H3B, HIST1H3C, TERT (including promoter region), and PTEN, which genetically define the major subtypes of diffuse gliomas in children and adults. All gliomas in this cohort had very low somatic mutation burden (less than three somatic single nucleotide variants or small indels per Mb). The ten high-grade gliomas demonstrated markedly aneuploid genomes, with significantly increased quantity of intrachromosomal copy number breakpoints and focal amplifications/homozygous deletions compared to spontaneous high-grade gliomas, likely as a result of DNA double-strand breaks induced by gamma radiation. Together, these findings demonstrate a distinct molecular pathogenesis of secondary gliomas arising after radiation therapy and identify a genomic signature that may aid in differentiating these tumors from their spontaneous counterparts.
Collapse
Affiliation(s)
- Giselle Y López
- Department of Pathology, University of California, San Francisco, CA, USA
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Jessica Van Ziffle
- Department of Pathology, University of California, San Francisco, CA, USA
- Clinical Cancer Genomics Laboratory, University of California, San Francisco, CA, USA
| | - Courtney Onodera
- Department of Pathology, University of California, San Francisco, CA, USA
- Clinical Cancer Genomics Laboratory, University of California, San Francisco, CA, USA
| | - James P Grenert
- Department of Pathology, University of California, San Francisco, CA, USA
- Clinical Cancer Genomics Laboratory, University of California, San Francisco, CA, USA
| | - Iwei Yeh
- Department of Pathology, University of California, San Francisco, CA, USA
- Clinical Cancer Genomics Laboratory, University of California, San Francisco, CA, USA
- Department of Dermatology, University of California, San Francisco, CA, USA
| | - Boris C Bastian
- Department of Pathology, University of California, San Francisco, CA, USA
- Clinical Cancer Genomics Laboratory, University of California, San Francisco, CA, USA
- Department of Dermatology, University of California, San Francisco, CA, USA
| | - Jennifer Clarke
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Nancy Ann Oberheim Bush
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Jennie Taylor
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Susan Chang
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Nicholas Butowski
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Anuradha Banerjee
- Division of Hematology/Oncology, Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Sabine Mueller
- Department of Neurology, University of California, San Francisco, CA, USA
- Division of Hematology/Oncology, Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Cassie Kline
- Department of Neurology, University of California, San Francisco, CA, USA
- Division of Hematology/Oncology, Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Joseph Torkildson
- Department of Hematology/Oncology, UCSF Benioff Children's Hospital Oakland, Oakland, CA, USA
| | - David Samuel
- Department of Hematology/Oncology, Valley Children's Hospital, Madera, CA, USA
| | - Aleli Siongco
- Department of Pathology, Valley Children's Hospital, Madera, CA, USA
| | - Corey Raffel
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Nalin Gupta
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Sandeep Kunwar
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Praveen Mummaneni
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Manish Aghi
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Philip Theodosopoulos
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Mitchel Berger
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Joanna J Phillips
- Department of Pathology, University of California, San Francisco, CA, USA
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Melike Pekmezci
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Tarik Tihan
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Andrew W Bollen
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Arie Perry
- Department of Pathology, University of California, San Francisco, CA, USA
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - David A Solomon
- Department of Pathology, University of California, San Francisco, CA, USA.
- Clinical Cancer Genomics Laboratory, University of California, San Francisco, CA, USA.
| |
Collapse
|
12
|
Kajitani T, Kanamori M, Saito R, Watanabe Y, Suzuki H, Watanabe M, Kure S, Tominaga T. Three case reports of radiation-induced glioblastoma after complete remission of acute lymphoblastic leukemia. Brain Tumor Pathol 2018; 35:114-122. [PMID: 29666969 DOI: 10.1007/s10014-018-0316-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/10/2018] [Indexed: 11/28/2022]
Abstract
Radiation therapy is sometimes performed to control intracranial acute lymphoblastic leukemia (ALL), but may lead to radiation-induced malignant glioma. The clinical, radiological, histological, and molecular findings are described of three cases of radiation-induced glioblastoma after the treatment for ALL. They received radiation therapy at age 6-8 years. The latency from radiation therapy to the onset of radiation-induced glioblastoma was 5-10 years. Magnetic resonance imaging demonstrated diffuse lesions with multiple small enhanced lesions in all cases. Histological examination showed that the tumors consisted of mainly small round astrocytic atypical cells in one case, and astrocytic atypical cells with elongated cytoplasm and nuclear pleomorphism with small cell component in two cases. Microvascular proliferation was present in all cases. Immunohistochemical analysis for B-Raf V600E, and mutational analysis for the isocitrate dehydrogenase (IDH) 1, IDH2, and H3F3A gene revealed the wild-type alleles in all three cases. The integrated diagnoses were IDH wild-type glioblastoma, and local irradiation and concomitant temozolomide were performed. After the initial treatment, significant shrinkage of the diffuse lesion and enhanced lesion was found in all cases. Radiation-induced glioblastoma occurring after the treatment for ALL had unique clinical, radiological, histological, and molecular characteristics in our three cases.
Collapse
Affiliation(s)
- Takumi Kajitani
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-cho, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Masayuki Kanamori
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-cho, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.
| | - Ryuta Saito
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-cho, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Yuko Watanabe
- Department of Pediatrics, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Hiroyoshi Suzuki
- Department of Pathology and Laboratory Medicine, National Hospital Organization Sendai Medical Center, Sendai, Japan
| | - Mika Watanabe
- Department of Pathology, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Shigeo Kure
- Department of Pediatrics, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-cho, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| |
Collapse
|