1
|
Shirakura T, Sakamoto N, Arai Y, Hama N, Kino H, Okuno H, Yamazaki A, Matsumura N, Yokoo H, Shibata T, Nobusawa S, Ishikawa E. Astroblastoma With MN1::BEND2 Fusion Showing an Atypical Signal Pattern in MN1 Break-Apart FISH: A Potential Diagnostic Pitfall. Neuropathology 2025. [PMID: 40371768 DOI: 10.1111/neup.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2025] [Revised: 05/01/2025] [Accepted: 05/09/2025] [Indexed: 05/16/2025]
Affiliation(s)
- Takahiro Shirakura
- Department of Diagnostic Pathology, Gunma University Hospital, Maebashi, Japan
| | - Noriaki Sakamoto
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Diagnostic Pathology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yasuhito Arai
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Natsuko Hama
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroyoshi Kino
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Haruna Okuno
- Department of Pediatrics, Gunma University Hospital, Maebashi, Japan
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ayako Yamazaki
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Nozomi Matsumura
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hideaki Yokoo
- Department of Diagnostic Pathology, Gunma University Hospital, Maebashi, Japan
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Sumihito Nobusawa
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Eiichi Ishikawa
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
2
|
Shi Y, Sun Q, Jia F, Xie X, Zhou X, Guo R, Zeng Y, Chen S, Guo Z, Sun W, Guo T, Xia Y, Li W, Zhang L, Shi W, Yu Y. Oncogenic fusions converge on shared mechanisms in initiating astroblastoma. Nature 2025:10.1038/s41586-025-08981-5. [PMID: 40369078 DOI: 10.1038/s41586-025-08981-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/04/2025] [Indexed: 05/16/2025]
Abstract
Chromosomal rearrangements and gene fusions are the initial events in the development of many cancers. Astroblastoma (ABM), a brain cancer of unknown cellular origin and challenging to treat, is associated with diverse in-frame gene fusions, including MN1-BEND2 and MN1-CXXC5 (refs. 1,2). However, it remains unclear whether these gene fusions contribute to tumorigenesis. Here we show in mice that these two ABM-associated fusions converge on similar molecular activities and initiate malignancy specifically in ventral telencephalon neural progenitors. BEND2 and CXXC5 recognize similar DNA motifs, which indicates a convergence on downstream gene regulation. Expression of MN1-BEND2 in ventral telencephalon neural progenitors results in aberrant cell proliferation, impaired differentiation, a perivascular occupancy pattern of cells reminiscent of ABM and acquisition of an ABM-associated transcriptional signature. By contrast, MN1-BEND2 expression in dorsal telencephalon neural progenitors leads to extensive cell death. This cell-type-specific malignancy depends on OLIG2 expression. Mechanistically, both ABM-associated fusion proteins (MN1-BEND2 and MN1-CXXC5) induce overlapping transcriptional responses, including the activation of a therapeutically targetable PDGFRα pathway. Collectively, our data suggest that distinct ABM-associated fusions upregulate shared transcriptional networks to disrupt the normal development of ventral telencephalon neural progenitors, which leads to oncogenic transformation. These findings uncover new avenues for targeted ABM treatment.
Collapse
Affiliation(s)
- Yixing Shi
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Qianqian Sun
- Department of Molecular Biology and Biochemistry, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Fuchuan Jia
- Department of Molecular Biology and Biochemistry, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xiangyu Xie
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Xiangyu Zhou
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Rong Guo
- Department of Molecular Biology and Biochemistry, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yangfan Zeng
- Department of Molecular Biology and Biochemistry, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Shanshan Chen
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Zhenzhen Guo
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Wenli Sun
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Tong Guo
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Yu Xia
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenlong Li
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Li Zhang
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Wei Shi
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
| | - Yang Yu
- Department of Molecular Biology and Biochemistry, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Wu X, Peng W, Zhang X, Tang T, Deng L, Xu Y, Liu X, Wang F, Peng W, Huang J, Zhong X. Clinicopathological and molecular characterization of astrocytoma. Front Mol Neurosci 2025; 18:1483833. [PMID: 39963393 PMCID: PMC11830656 DOI: 10.3389/fnmol.2025.1483833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
Introduction Astrocytoma is a rare tumour of the central nervous system that often manifests with non-specific clinical symptoms and lacks distinct histological features. There is a pressing need for further understanding of the clinicopathological and molecular characteristics of astrocytoma. Identifying mutant genes can aid in reliable and early diagnosis, as well as provide insights for the development of targeted therapies. Methods This study aims to investigate the clinicopathologic and molecular characteristics of astroblastoma. A total of four patients diagnosed with astroblastoma were included in the analysis. Clinical features, histological findings, and immunohistochemistry results were reviewed and analyzed. Genetic alterations were identified using fluorescence in situ hybridization (FISH) and next-generation sequencing (NGS), followed by patient follow-up. Results The study included four female patients, ranging in age from 8 to 44 years. One patient had a tumour in the right parietal lobe, while the other three had tumours in the spinal cord. Histology is usually characterized by pseudorosettes of astroblasts and hyalinization of blood vessels. These tumors showed a growth pattern similar to traditional intracranial astroblastoma, and the histological manifestations of the four patients were all high-grade, showing features of high-density areas of tumor cells or necrosis. Immunohistochemical staining revealed that all four patients expressed OLIG2, EMA, and vimentin, while three patients also expressed GFAP and S-100. The Ki-67 positivity index was approximately 15% in three cases and 10% in one case. Fluorescence in situ hybridization (FISH) using break-apart probes showed EWRS1 breaks in three patients and MN1 breaks in one. Further DNA or RNA-targeted biallelic sequencing identified an EWSR1(Exon1-7)-BEND2(Exon2-14) fusion in case 1, and an EWSR1(Exon1-7)-BEND2(Intergenic) fusion in case 2. In case 3, an EWSR1(Exon1-7)-NUDT10(Intergenic) fusion was present, and in case 4, an MN1(Exon1)-BEND2(Exon2) fusion was identified. The EWSR1-NUDT10 gene fusion is a new fusion type in astroblastoma. The patients were followed up for 76.5, 17.6, 33.7, and 61.3 months, respectively. Three cases experienced tumour recurrences at the spinal cord site, with multiple recurrences in case 4. Discussion Our study unveiled the distinctive clinicopathological and molecular mutational characteristics of astrocytoma, while also identifying rare mutated genes. Additionally, the detection of MN1 or EWSR1 gene fusion through FISH or next-generation sequencing can provide valuable insights into the molecular mechanisms and aid in the differential diagnosis of astrocytoma.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Department of Molecular Diagnostics, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenfeng Peng
- Department of Pathology, Shenzhen Second People’s Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen University School of Medicine, Shenzhen, China
| | - Xu Zhang
- Department of Molecular Diagnostics, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Tao Tang
- Department of Molecular Diagnostics, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ling Deng
- Department of Molecular Diagnostics, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuxia Xu
- Department of Molecular Diagnostics, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaoyun Liu
- Department of Molecular Diagnostics, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fang Wang
- Department of Molecular Diagnostics, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wujian Peng
- Department of Nephrology, The Third People’s Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Jianrong Huang
- Department of Nephrology, The Third People’s Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Xiaoni Zhong
- Department of Pathology, Shenzhen People’s Hospital, The Second Affiliated Hospital of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
4
|
Atiq MA, Balan J, Blackburn PR, Gross JM, Voss JS, Jin L, Fadra N, Davila JI, Pitel BA, Siqueira Parrilha Terra SB, Minn KT, Jackson RA, Hofich CD, Willkomm KS, Peterson BJ, Clausen SN, Rumilla KM, Gupta S, Lo YC, Ida CM, Molligan JF, Thangaiah JJ, Petersen MJ, Sukov WR, Guo R, Giannini C, Schoolmeester JK, Fritchie K, Inwards CY, Folpe AL, Oliveira AM, Torres-Mora J, Kipp BR, Halling KC. SARCP, a Clinical Next-Generation Sequencing Assay for the Detection of Gene Fusions in Sarcomas: A Description of the First 652 Cases. J Mol Diagn 2025; 27:74-95. [PMID: 39521244 DOI: 10.1016/j.jmoldx.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 10/11/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
An amplicon-based targeted next-generation sequencing (NGS) assay for the detection of gene fusions in sarcomas was developed, validated, and implemented. This assay can detect fusions in targeted regions of 138 genes and BCOR internal tandem duplications. This study reviews our experience with testing on the first 652 patients analyzed. Gene fusions were detected in 238 (36.5%) of 652 cases, including 83 distinct fusions in the 238 fusion-positive cases, 10 of which had not been previously described. Among the 238 fusion-positive cases, the results assisted in establishing a diagnosis for 137 (58%) cases, confirmed a suspected diagnosis in 66 (28%) cases, changed a suspected diagnosis in 25 (10%) cases, and were novel fusions with unknown clinical significance in 10 (4%) cases. Twenty-six cases had gene fusions (ALK, ROS1, NTRK1, NTRK3, and COL1A1::PDGFB) for which there are targetable therapies. BCOR internal tandem duplications were identified in 6 (1.2%) of 485 patients. Among the 138 genes in the panel, 66 were involved in one or more fusions, and 72 were not involved in any fusions. There was little overlap between the genes involved as 5'-partners (31 different genes) and 3'-partners (37 different genes). This study shows the clinical utility of a next-generation sequencing gene fusion detection assay for the diagnosis and treatment of sarcomas.
Collapse
Affiliation(s)
- Mazen A Atiq
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Jagadheshwar Balan
- Department of Quantitative Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Patrick R Blackburn
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - John M Gross
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Jesse S Voss
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Long Jin
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Numrah Fadra
- Department of Quantitative Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Jaime I Davila
- Department of Quantitative Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Beth A Pitel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | - Kay T Minn
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Rory A Jackson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Christopher D Hofich
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Kurt S Willkomm
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Brenda J Peterson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Sydney N Clausen
- University of Minnesota Medical School, Duluth, Duluth, Minnesota
| | - Kandelaria M Rumilla
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Sounak Gupta
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Ying-Chun Lo
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Cris M Ida
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Jeremy F Molligan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | - Matthew J Petersen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - William R Sukov
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Ruifeng Guo
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Caterina Giannini
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | - Karen Fritchie
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Carrie Y Inwards
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Andrew L Folpe
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Andre M Oliveira
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Jorge Torres-Mora
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Benjamin R Kipp
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota.
| | - Kevin C Halling
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
5
|
Daniel R, Tauziède-Espariat A, Métais A, Berthaud C, Pucelle N, Lacombe J, Collard A, Chrétien F, Varlet P. MN1 immunohistochemistry is a sensitive diagnostic biomarker for primitive CNS tumors with MN1 fusion. Acta Neuropathol 2024; 148:77. [PMID: 39621149 PMCID: PMC11611985 DOI: 10.1007/s00401-024-02827-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 12/06/2024]
Affiliation(s)
| | - Arnault Tauziède-Espariat
- Department of Neuropathology, GHU Paris, Psychiatry and Neurosciences, Sainte-Anne Hospital, 1, Rue Cabanis, 75014, Paris, France.
| | - Alice Métais
- Department of Neuropathology, GHU Paris, Psychiatry and Neurosciences, Sainte-Anne Hospital, 1, Rue Cabanis, 75014, Paris, France
- Institute of Psychiatry and Neurosciences de Paris (IPNP), UMR S1266, INSERM, IMABRAIN, Paris, France
| | - Charlotte Berthaud
- Department of Neuropathology, GHU Paris, Psychiatry and Neurosciences, Sainte-Anne Hospital, 1, Rue Cabanis, 75014, Paris, France
| | - Noémie Pucelle
- Department of Neuropathology, GHU Paris, Psychiatry and Neurosciences, Sainte-Anne Hospital, 1, Rue Cabanis, 75014, Paris, France
| | | | | | - Fabrice Chrétien
- Université Paris Cité, Paris, France
- Department of Neuropathology, GHU Paris, Psychiatry and Neurosciences, Sainte-Anne Hospital, 1, Rue Cabanis, 75014, Paris, France
| | - Pascale Varlet
- Department of Neuropathology, GHU Paris, Psychiatry and Neurosciences, Sainte-Anne Hospital, 1, Rue Cabanis, 75014, Paris, France
- Institute of Psychiatry and Neurosciences de Paris (IPNP), UMR S1266, INSERM, IMABRAIN, Paris, France
| |
Collapse
|
6
|
Zhang YD, Sun JJ, Xi SY, Jiang ZM, Xie DR, Yang Q, Zhang XC. Malignant Salivary Gland Neoplasm of the Tongue Base with EWSR1::BEND2 Fusion: An Unusual Case with Literature Review. Head Neck Pathol 2024; 18:118. [PMID: 39495374 PMCID: PMC11535138 DOI: 10.1007/s12105-024-01726-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
PURPOSE Salivary gland malignancies may have overlapping architectural patterns, tumor morphology, and immunohistochemical phenotypes, presenting challenges in precise classification. Molecular phenotyping has become quite useful for providing an additional diagnostic modality, and potential drug targets. Here we reported a young female patient with salivary gland tumor of the tongue base harboring genetic alterations by next generation sequencing (NGS). METHODS The morphological, immunohistochemical and molecular features of this case were described, and related literature was reviewed. RESULTS The tumor showed an epithelial myoepithelial architecture arranged in cords and tubules interwoven with a chondromyxoid stroma, along with perineural invasion and adjacent striated muscle infiltration. Myoepithelial cells were positive for CK5/6, partially positive for P63 and CK7, and sporadically positive for S100. Immunoprofiling revealed a low density of infiltrating lymphocytes and macrophages and the absence of programmed death ligand 1 (PD-L1). Notably, RNA-based NGS showed EWSR1::BEND2 gene fusion in this tumor, and EWSR1 break-apart was confirmed by fluorescence in situ hybridization. This led to a final diagnosis of a minor salivary gland malignancy with EWSR1::BEND2 fusion. Only two other cases of salivary gland tumors with EWSR1::BEND2 fusion had been previously reported, which were also detected via RNA-based NGS. CONCLUSION This study emphasized that EWSR1::BEND2 fusion may drive the carcinogenesis in salivary glands neoplasia. In clinic RNA-based NGS could be essential for precise genotyping of EWSR1 fusion in this rare disease.
Collapse
Affiliation(s)
- Yuan-Dong Zhang
- Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Jiang-Jie Sun
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, 518035, China
| | - Shao-Yan Xi
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Zhi-Min Jiang
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - De-Rong Xie
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Qiong Yang
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xu-Chao Zhang
- Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan 2nd Road, Guangzhou, 510080, China.
| |
Collapse
|
7
|
Dashti NK, Matcuk G, Agaimy A, Saoud C, Antonescu CR. Malignant Bone-Forming Neoplasm With NIPBL::BEND2 Fusion. Genes Chromosomes Cancer 2024; 63:e70015. [PMID: 39604143 PMCID: PMC11977784 DOI: 10.1002/gcc.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/02/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
Conventional high-grade osteosarcomas are characterized by aggressive radiologic features, cytologic pleomorphism, and complex genomics. However, rare examples of osteosarcomas remain challenging due to unusual histology, such as sclerosing or osteoblastoma-like features, which may require molecular confirmation of their complex genetic alterations. We have encountered such a case in a 17-year-old man, who presented with a third metatarsal sclerotic bone lesion, found incidentally in the work-up of a foot trauma. The initial imaging revealed a lesion with sclerotic/blastic features proximally and lucent/lytic portion distally, findings interpreted consistent with osteoblastoma. The lesion was managed intra-lesionally with curettings and cryoablation; however, the microscopic findings were non-specific, showing a bland osteoblastic proliferation embedded in a densely sclerotic matrix. Subsequently, the patient developed two rapid recurrences; the first recurrence was treated similarly despite its associated soft tissue extension radiographically, and the histologic findings remained non-specific. The 2nd recurrence showed a large mass, with bone destruction and soft tissue extension and an open biopsy revealed features of osteosarcoma with lace-like osteoid deposition, albeit with uniform cytomorphology. The subsequent below knee amputation showed features compatible with high-grade osteosarcoma, including solid growth of uniform epithelioid cells, with vesicular nuclei and scant cytoplasm, set in a lace-like meshwork of osteoid matrix. There was significant mitotic activity and tumor necrosis. Tumor cells were positive for SATB2. Further molecular work-up was performed showing an unexpected NIPBL::BEND2 fusion, which has been previously reported in two cases of phosphaturic mesenchymal tumor (PMT). FGF23 (ISH) was performed and was negative. By DNA methylation profiling, unsupervised clustering and UMAP dimensionality reduction revealed grouping with high-grade osteosarcomas and not with the PMT group. The patient received chemotherapy post-amputation and is alive without evidence of disease, with 10-month follow-up. We report an aggressive, overtly malignant acral bone-forming tumor, harboring a NIPBL::BEND2 fusion. Further studies are needed to evaluate the recurrent potential of this fusion in osteosarcomas and its relationship with PMT.
Collapse
Affiliation(s)
- Nooshin K. Dashti
- Department of Pathology and Laboratory Medicine, Dartmouth Health Medical Center, Lebanon, NH
- Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - George Matcuk
- Department of Musculoskeletal Radiology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Abbas Agaimy
- Institute of Pathology, University Hospital of Erlangen, Erlangen, Germany
| | - Carla Saoud
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | | |
Collapse
|
8
|
Fu L, Lao IW, Huang L, Ou L, Yuan L, Li Z, Li S, Hu W, Xi S. Spinal Cord Astroblastoma With EWSR1-BEND2 Fusion in Female Patients : A Report of Four Cases From China and a Comprehensive Literature Review. Am J Surg Pathol 2024; 48:1372-1380. [PMID: 39104157 PMCID: PMC11472895 DOI: 10.1097/pas.0000000000002298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Astroblastoma is an extremely rare central nervous system tumor characterized by astroblastic pseudorosettes and vascular hyalinization. Despite these histologic hallmarks, its morphology can vary, occasionally resembling other central nervous system tumors such as ependymoma. A novel tumor entity, astroblastoma, meningioma 1 ( MN1 )-altered, has been identified, featuring MN1 gene rearrangements typically involving BEN-domain containing 2 ( BEND2 ) as a fusion partner. Most astroblastomas arise in the cerebral hemisphere. Here, we report 4 cases of spinal cord astroblastoma in female patients, all showing Ewing sarcoma RNA-binding protein 1 fusion with BEND2 , rather than MN1 . These tumors displayed growth patterns akin to traditional intracranial astroblastomas, with three cases demonstrating high-grade histology, including elevated mitotic activity and necrosis. Interestingly, some cases exhibited positive staining for pan-cytokeratin and hormone receptors. DNA methylation profiling clustered three of the four cases with the reference "AB_EWSR," whereas one case exhibited an independent methylation signature near the reference methylation group "AB_EWSR" and "pleomorphic xanthoastrocytoma." Together with the existing literature, we summarized a total of eleven cases, which predominantly affected children and young adults with female predilection. Eight of 10 patients experienced recurrence, underscoring the aggressive nature of this disease. We suggest recognizing a new molecular subgroup of spinal astroblastoma and recommend testing newly diagnosed infratentorial astroblastomas for Ewing sarcoma RNA-binding protein 1-BEND2 fusion.
Collapse
Affiliation(s)
- Lingyi Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou
| | - I. Weng Lao
- Department of Pathology, Fudan University Shanghai Cancer Center
- Department of Oncology, Shanghai Medical College
- Institute of Pathology, Fudan University, Shanghai
| | - Liyun Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou
| | - Liqiong Ou
- Department of Pathology, Jiangmen Central Hospital, Jiangmen, China
| | - Lei Yuan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou
| | - Ziteng Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou
| | - Shuo Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou
| | - Wanming Hu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou
| | - Shaoyan Xi
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou
| |
Collapse
|
9
|
Fu L, Lao IW, Huang L, Ou L, Yuan L, Li Z, Li S, Hu W, Xi S. Spinal Cord Astroblastoma With EWSR1-BEND2 Fusion in Female Patients. Am J Surg Pathol 2024; 48:1372-1380. [DOI: 39104157 10.1097/pas.0000000000002298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Astroblastoma is an extremely rare central nervous system tumor characterized by astroblastic pseudorosettes and vascular hyalinization. Despite these histologic hallmarks, its morphology can vary, occasionally resembling other central nervous system tumors such as ependymoma. A novel tumor entity, astroblastoma, meningioma 1 (MN1)-altered, has been identified, featuring MN1 gene rearrangements typically involving BEN-domain containing 2 (BEND2) as a fusion partner. Most astroblastomas arise in the cerebral hemisphere. Here, we report 4 cases of spinal cord astroblastoma in female patients, all showing Ewing sarcoma RNA-binding protein 1 fusion with BEND2, rather than MN1. These tumors displayed growth patterns akin to traditional intracranial astroblastomas, with three cases demonstrating high-grade histology, including elevated mitotic activity and necrosis. Interestingly, some cases exhibited positive staining for pan-cytokeratin and hormone receptors. DNA methylation profiling clustered three of the four cases with the reference “AB_EWSR,” whereas one case exhibited an independent methylation signature near the reference methylation group “AB_EWSR” and “pleomorphic xanthoastrocytoma.” Together with the existing literature, we summarized a total of eleven cases, which predominantly affected children and young adults with female predilection. Eight of 10 patients experienced recurrence, underscoring the aggressive nature of this disease. We suggest recognizing a new molecular subgroup of spinal astroblastoma and recommend testing newly diagnosed infratentorial astroblastomas for Ewing sarcoma RNA-binding protein 1-BEND2 fusion.
Collapse
Affiliation(s)
- Lingyi Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou
| | - I. Weng Lao
- Department of Pathology, Fudan University Shanghai Cancer Center
- Department of Oncology, Shanghai Medical College
- Institute of Pathology, Fudan University, Shanghai
| | - Liyun Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou
| | - Liqiong Ou
- Department of Pathology, Jiangmen Central Hospital, Jiangmen, China
| | - Lei Yuan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou
| | - Ziteng Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou
| | - Shuo Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou
| | - Wanming Hu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou
| | - Shaoyan Xi
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou
| |
Collapse
|
10
|
Fernandes Arroteia I, Licci M, Hench J, Bartoli A, Ansari M, Plavsky P, Terrier A, von Bueren AO, Frank S, Soleman J, Guzman R. Long-Term Follow-Up of a Child with EWSR1-BEND2 Fused Spinal Astroblastoma. Pediatr Neurosurg 2024; 59:202-209. [PMID: 39427644 PMCID: PMC11825131 DOI: 10.1159/000542050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION Spinal astroblastoma is a rare highly malignant tumor that mainly affects children. We review the few cases described in the literature and highlight the challenges of managing this neoplasm by illustrating a case recently treated at our institutions. To our knowledge, this is the first published case of EWSR1-BEND2 fused spinal astroblastoma with long-term follow-up. CASE PRESENTATION An 8-year-old girl was transferred from her home country to Switzerland for treatment of a recurrent intramedullary tumor of the cervical spine extending from C2-C7. The tumor was primarily diagnosed as an ependymoma of the spinal cord. Prior to her transfer to our department, the patient had undergone subtotal resection of the lesion, radiation therapy, multiple chemotherapy regimens, and biopsy of the recurrent tumor. Clinically, the patient presented with tetraparesis and had recently experienced worsening upper extremity weakness with complete loss of hand function. We performed a near total resection of the recurrent tumor. Ultra-fast Nanopore seq® based DNA methylome profiling allowed confirmation of the molecular diagnosis of a high-grade neuroepithelial tumor (HGNET-MN1) consistent with astroblastoma in less than 2 h, with subsequent molecular workup revealing a EWSR1-BEND2 fusion. After surgery, the patient gradually regained function in her hands. She was sent to a specialized pediatric rehabilitation center, and while the tumor was being followed radiologically with no adjuvant treatment planned, the patient presented with a relapse of the tumor in only 3 months. Given the acute worsening of radiating pain and sudden respiratory failure, a cervical decompression was performed. MRI of the cervical spine showed infiltration of the lower aspects of the brainstem. The patient was offered palliative comfort care. CONCLUSION Spinal astroblastoma is a rare and highly aggressive tumor affecting children and young adults with a high recurrence rate and thus far not well-defined prognosis. The molecular signature of astroblastoma needs to be further characterized to establish a treatment-relevant classification and to allow a better prognostication. Currently, gross-total resection combined with radiotherapy remains the mainstay of treatment for spinal astroblastoma. INTRODUCTION Spinal astroblastoma is a rare highly malignant tumor that mainly affects children. We review the few cases described in the literature and highlight the challenges of managing this neoplasm by illustrating a case recently treated at our institutions. To our knowledge, this is the first published case of EWSR1-BEND2 fused spinal astroblastoma with long-term follow-up. CASE PRESENTATION An 8-year-old girl was transferred from her home country to Switzerland for treatment of a recurrent intramedullary tumor of the cervical spine extending from C2-C7. The tumor was primarily diagnosed as an ependymoma of the spinal cord. Prior to her transfer to our department, the patient had undergone subtotal resection of the lesion, radiation therapy, multiple chemotherapy regimens, and biopsy of the recurrent tumor. Clinically, the patient presented with tetraparesis and had recently experienced worsening upper extremity weakness with complete loss of hand function. We performed a near total resection of the recurrent tumor. Ultra-fast Nanopore seq® based DNA methylome profiling allowed confirmation of the molecular diagnosis of a high-grade neuroepithelial tumor (HGNET-MN1) consistent with astroblastoma in less than 2 h, with subsequent molecular workup revealing a EWSR1-BEND2 fusion. After surgery, the patient gradually regained function in her hands. She was sent to a specialized pediatric rehabilitation center, and while the tumor was being followed radiologically with no adjuvant treatment planned, the patient presented with a relapse of the tumor in only 3 months. Given the acute worsening of radiating pain and sudden respiratory failure, a cervical decompression was performed. MRI of the cervical spine showed infiltration of the lower aspects of the brainstem. The patient was offered palliative comfort care. CONCLUSION Spinal astroblastoma is a rare and highly aggressive tumor affecting children and young adults with a high recurrence rate and thus far not well-defined prognosis. The molecular signature of astroblastoma needs to be further characterized to establish a treatment-relevant classification and to allow a better prognostication. Currently, gross-total resection combined with radiotherapy remains the mainstay of treatment for spinal astroblastoma.
Collapse
Affiliation(s)
- Isabel Fernandes Arroteia
- Department of Neurosurgery, University Hospital Basel, Basel, Switzerland
- Department of Pediatric Neurosurgery, University Children’s Hospital Basel, Basel, Switzerland
| | - Maria Licci
- Department of Neurosurgery, University Hospital Basel, Basel, Switzerland
- Department of Pediatric Neurosurgery, University Children’s Hospital Basel, Basel, Switzerland
| | - Jürgen Hench
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Andrea Bartoli
- Department of Neurosurgery, University Hospital Geneva, Geneva, Switzerland
| | - Marc Ansari
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Geneva, Switzerland
- Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Geneva Hospitals, Geneva, Switzerland
| | - Pavlo Plavsky
- Department of Pediatric Neurosurgery, OHMATDYT National Specialized Children’s Hospital of MOH Ukraine, Kyiv, Ukraine
| | - Axel Terrier
- Department of Neurosurgery, University Hospital Basel, Basel, Switzerland
| | - Andre Oscar von Bueren
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Geneva, Switzerland
| | - Stephan Frank
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Jehuda Soleman
- Department of Neurosurgery, University Hospital Basel, Basel, Switzerland
- Department of Pediatric Neurosurgery, University Children’s Hospital Basel, Basel, Switzerland
- Faculty of Medicine University of Basel, Basel, Switzerland
| | - Raphael Guzman
- Department of Neurosurgery, University Hospital Basel, Basel, Switzerland
- Department of Pediatric Neurosurgery, University Children’s Hospital Basel, Basel, Switzerland
- Faculty of Medicine University of Basel, Basel, Switzerland
| |
Collapse
|
11
|
Tsukamoto H, Saito R, Shirakura T, Nakashima T, Yamamoto R, Kazama H, Hanihara M, Suzuki H, Nobusawa S, Kinouchi H. Astroblastoma with MN1::BEND2 in an elderly patient: A case report and review of the literature. Brain Tumor Pathol 2024; 41:151-154. [PMID: 39251520 DOI: 10.1007/s10014-024-00491-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Affiliation(s)
| | - Ryu Saito
- Department of Neurosurgery, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Takahiro Shirakura
- Department of Human Pathology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Takuma Nakashima
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Ryo Yamamoto
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Hirofumi Kazama
- Department of Neurosurgery, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Mitsuto Hanihara
- Department of Neurosurgery, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan.
| | - Hiromichi Suzuki
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Sumihito Nobusawa
- Department of Human Pathology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Hiroyuki Kinouchi
- Department of Neurosurgery, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| |
Collapse
|
12
|
Salguero-Aranda C, Di Blasi E, Galán L, Zaldumbide L, Civantos G, Marcilla D, de Álava E, Díaz-Martín J. Identification of Novel/Rare EWSR1 Fusion Partners in Undifferentiated Mesenchymal Neoplasms. Int J Mol Sci 2024; 25:1735. [PMID: 38339014 PMCID: PMC10855420 DOI: 10.3390/ijms25031735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Recurrent gene fusions (GFs) in translocated sarcomas are recognized as major oncogenic drivers of the disease, as well as diagnostic markers whose identification is necessary for differential diagnosis. EWSR1 is a 'promiscuous' gene that can fuse with many different partner genes, defining different entities among a broad range of mesenchymal neoplasms. Molecular testing of EWSR1 translocation traditionally relies on FISH assays with break-apart probes, which are unable to identify the fusion partner. Therefore, other ancillary molecular diagnostic modalities are being increasingly adopted for accurate classification of these neoplasms. Herein, we report three cases with rare GFs involving EWSR1 in undifferentiated mesenchymal neoplasms with uncertain differential diagnoses, using targeted RNA-seq and confirming with RT-PCR and Sanger sequencing. Two GFs involved hormone nuclear receptors as 3' partners, NR4A2 and RORB, which have not been previously reported. NR4A2 may functionally replace NR4A3, the usual 3' partner in extraskeletal myxoid chondrosarcoma. The third GF, EWSR1::BEND2, has previously been reported in a subtype of astroblastoma and other rare entities, including a single case of a soft-tissue tumor that we discuss in this work. In conclusion, our findings indicate that the catalogue of mesenchymal neoplasm-bearing EWSR1 fusions continues to grow, underscoring the value of using molecular ancillary techniques with higher diagnostic abilities in the routine clinical setting.
Collapse
Affiliation(s)
- Carmen Salguero-Aranda
- Instituto de Biomedicina de Sevilla, Department of Pathology, Hospital Universitario Virgen del Rocío, CSIC-Universidad de Sevilla, 41013 Seville, Spain; (C.S.-A.)
- Centro de Investigación Biomédica en Red de Cáncer, Instituto de Salud Carlos III (CB16/12/00361; CIBERONC-ISCIII), 28029 Madrid, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41004 Seville, Spain
| | - Elena Di Blasi
- Istituto Nazionale dei Tumori, Università degli Studi di Milano, 20133 Milan, Italy
| | - Lourdes Galán
- Instituto de Biomedicina de Sevilla, Department of Pathology, Hospital Universitario Virgen del Rocío, CSIC-Universidad de Sevilla, 41013 Seville, Spain; (C.S.-A.)
| | - Laura Zaldumbide
- Department of Pathology, Hospital Universitario Cruces, 48903 Barakaldo, Spain
| | - Gema Civantos
- Instituto de Biomedicina de Sevilla, Department of Pathology, Hospital Universitario Virgen del Rocío, CSIC-Universidad de Sevilla, 41013 Seville, Spain; (C.S.-A.)
| | - David Marcilla
- Instituto de Biomedicina de Sevilla, Department of Pathology, Hospital Universitario Virgen del Rocío, CSIC-Universidad de Sevilla, 41013 Seville, Spain; (C.S.-A.)
| | - Enrique de Álava
- Instituto de Biomedicina de Sevilla, Department of Pathology, Hospital Universitario Virgen del Rocío, CSIC-Universidad de Sevilla, 41013 Seville, Spain; (C.S.-A.)
- Centro de Investigación Biomédica en Red de Cáncer, Instituto de Salud Carlos III (CB16/12/00361; CIBERONC-ISCIII), 28029 Madrid, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41004 Seville, Spain
| | - Juan Díaz-Martín
- Instituto de Biomedicina de Sevilla, Department of Pathology, Hospital Universitario Virgen del Rocío, CSIC-Universidad de Sevilla, 41013 Seville, Spain; (C.S.-A.)
- Centro de Investigación Biomédica en Red de Cáncer, Instituto de Salud Carlos III (CB16/12/00361; CIBERONC-ISCIII), 28029 Madrid, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41004 Seville, Spain
| |
Collapse
|
13
|
Chou S, Nael A, Crawford JR, Sato M. A rare case of pediatric MN1-altered astroblastoma with concomitant ATM germline mutation. Pediatr Blood Cancer 2023; 70:e30502. [PMID: 37391863 DOI: 10.1002/pbc.30502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/20/2023] [Accepted: 06/05/2023] [Indexed: 07/02/2023]
Affiliation(s)
- Stephanie Chou
- CHOC Children's Hospital of Orange County, Department of Pediatrics, University of California Irvine, Department of Pediatrics, Irvine, California, USA
| | - Ali Nael
- CHOC Children's Hospital of Orange County, Department of Pathology, University of California Irvine, Department of Pathology, Irvine, California, USA
| | - John R Crawford
- CHOC Children's Hospital of Orange County, Department of Neurology and Neurosciences Institute, Department of Pediatrics Division of Child Neurology and University of California Irvine, Orange, California, USA
| | - Mariko Sato
- CHOC Children's Hospital of Orange County, Department of Neurology and Neurosciences Institute, Orange, USA
- CHOC Children's Hospital of Orange County, Department of Oncology, Orange, California, USA
| |
Collapse
|
14
|
Agaimy A, Kasajima A, Stoehr R, Haller F, Schubart C, Tögel L, Pfarr N, von Werder A, Pavel ME, Sessa F, Uccella S, La Rosa S, Klöppel G. Gene fusions are frequent in ACTH-secreting neuroendocrine neoplasms of the pancreas, but not in their non-pancreatic counterparts. Virchows Arch 2023; 482:507-516. [PMID: 36690805 PMCID: PMC10033480 DOI: 10.1007/s00428-022-03484-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/01/2022] [Accepted: 12/18/2022] [Indexed: 01/25/2023]
Abstract
Ectopic Cushing syndrome is a rare clinical disorder resulting from excessive adrenocorticotrophic hormone (ACTH) produced by non-pituitary neoplasms, mainly neuroendocrine neoplasms (NENs) of the lung, pancreas, and gastrointestinal tract, and other less common sites. The genetic background of ACTH-producing NENs has not been well studied. Inspired by an index case of ACTH-producing pancreatic NEN carrying a gene fusion, we postulated that ACTH-producing NENs might be enriched for gene fusions. We herein examined 21 ACTH-secreting NENs of the pancreas (10), lung (9), thymus (1), and kidney (1) using targeted RNA sequencing. The tumors were classified according to the most recent WHO classification as NET-G1/typical carcinoid (n = 4), NETG-2/atypical carcinoid (n = 14), and NET-G3 (n = 3). Overall, targeted RNA sequencing was successful in 11 cases (4 of 10 pancreatic tumors, 5 of 9 pulmonary tumors, and in the one renal and one thymic tumor). All four successfully tested pancreatic tumors revealed a gene fusion: two had a EWSR1::BEND2 and one case each had a KMT2A::BCOR and a TFG::ADGRG7 fusion, respectively. EWSR1 rearrangements were confirmed in both tumors with a EWSR1::BEND2 by FISH. Gene fusions were mutually exclusive with ATRX, DAXX, and MEN1 mutations (the most frequently mutated genes in NETs) in all four cases. Using RNA-based variant assessment (n = 16) or via the TSO500 panel (n = 5), no pathogenic BCOR mutations were detected in any of the cases. Taken together, gene fusions were detected in 4/4 (100%) pancreatic versus 0/7 (0%) non-pancreatic tumors, respectively. These results suggest a potential role for gene fusions in triggering the ACTH production in pancreatic NENs presenting with ectopic Cushing syndrome. While the exact mechanisms responsible for the ectopic ACTH secretion are beyond the scope of this study, overexpressed fusion proteins might be involved in promoter-mediated overexpression of pre-ACTH precursors in analogy to the mechanisms postulated for EWSR1::CREB1-mediated paraneoplastic phenomena in certain mesenchymal neoplasms. The genetic background of the ACTH-producing non-pancreatic NENs remains to be further studied.
Collapse
Affiliation(s)
- Abbas Agaimy
- Institute of Pathology, University Hospital Erlangen, Friedrich Alexander University of Erlangen-Nuremberg & Comprehensive Cancer Center, European Metropolitan Area Erlangen-Nuremberg (CCC ER-EMN), Erlangen, Germany.
| | - Atsuko Kasajima
- Institute of Pathology, Technical University Munich, Munich, Germany
| | - Robert Stoehr
- Institute of Pathology, University Hospital Erlangen, Friedrich Alexander University of Erlangen-Nuremberg & Comprehensive Cancer Center, European Metropolitan Area Erlangen-Nuremberg (CCC ER-EMN), Erlangen, Germany
| | - Florian Haller
- Institute of Pathology, University Hospital Erlangen, Friedrich Alexander University of Erlangen-Nuremberg & Comprehensive Cancer Center, European Metropolitan Area Erlangen-Nuremberg (CCC ER-EMN), Erlangen, Germany
| | - Christoph Schubart
- Institute of Pathology, University Hospital Erlangen, Friedrich Alexander University of Erlangen-Nuremberg & Comprehensive Cancer Center, European Metropolitan Area Erlangen-Nuremberg (CCC ER-EMN), Erlangen, Germany
| | - Lars Tögel
- Institute of Pathology, University Hospital Erlangen, Friedrich Alexander University of Erlangen-Nuremberg & Comprehensive Cancer Center, European Metropolitan Area Erlangen-Nuremberg (CCC ER-EMN), Erlangen, Germany
| | - Nicole Pfarr
- Institute of Pathology, Technical University Munich, Munich, Germany
| | | | - Marianne E Pavel
- Department of Medicine 1, Division of Endocrinology, Comprehensive Cancer Center, Erlangen University Hospital, European Metropolitan Area Erlangen-Nuremberg (CCC ER-EMN), Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Fausto Sessa
- Unit of Pathology, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Silvia Uccella
- Humanitas University, Pieve Emanuele, Milan, Italy
- Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Stefano La Rosa
- Unit of Pathology, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Günter Klöppel
- Institute of Pathology, Technical University Munich, Munich, Germany
| |
Collapse
|
15
|
Lehman NL. Early ependymal tumor with MN1-BEND2 fusion: a mostly cerebral tumor of female children with a good prognosis that is distinct from classical astroblastoma. J Neurooncol 2023; 161:425-439. [PMID: 36604386 PMCID: PMC9992034 DOI: 10.1007/s11060-022-04222-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Review of the clinicopathologic and genetic features of early ependymal tumor with MN1-BEND2 fusion (EET MN1-BEND2), classical astroblastomas, and recently described related pediatric CNS tumors. I also briefly review general mechanisms of gene expression silencing by DNA methylation and chromatin remodeling, and genomic DNA methylation profiling as a powerful new tool for CNS tumor classification. METHODS Literature review and illustration of tumor histopathologic features and prenatal gene expression timelines. RESULTS Astroblastoma, originally descried by Bailey and Cushing in 1926, has been an enigmatic tumor. Whether they are of ependymal or astrocytic derivation was argued for decades. Recent genetic evidence supports existence of both ependymal and astrocytic astroblastoma-like tumors. Studies have shown that tumors exhibiting astroblastoma-like histology can be classified into discrete entities based on their genomic DNA methylation profiles, gene expression, and in some cases, the presence of unique gene fusions. One such tumor, EET MN1-BEND2 occurs mostly in female children, and has an overall very good prognosis with surgical management. It contains a gene fusion comprised of portions of the MN1 gene at chromosomal location 22q12.1 and the BEND2 gene at Xp22.13. Other emerging pediatric CNS tumor entities demonstrating ependymal or astroblastoma-like histological features also harbor gene fusions involving chromosome X, 11q22 and 22q12 breakpoint regions. CONCLUSIONS Genomic DNA profiling has facilitated discovery of several new CNS tumor entities, however, traditional methods, such as immunohistochemistry, DNA or RNA sequencing, and cytogenetic studies, including fluorescence in situ hybridization, remain necessary for their accurate biological classification and diagnosis.
Collapse
Affiliation(s)
- Norman L Lehman
- Departments of Pathology and Laboratory Medicine, Biochemistry and Molecular Genetics, and the Brown Cancer Center, University of Louisville, 505 S Hancock St, Louisville, KY, 40202, USA.
| |
Collapse
|
16
|
The spectrum of morphological findings in pediatric central nervous system MN1-fusion-positive neuroepithelial tumors. Childs Nerv Syst 2023; 39:379-386. [PMID: 36534132 DOI: 10.1007/s00381-022-05741-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 11/03/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE Central nervous system high-grade neuroepithelial tumor with MN1 alteration (CNS-HGNET-MN1) is a rare entity defined by its DNA methylation pattern and pathologically considered to be high-grade with mixed patterns, stromal hyalinization, and with astrocytic differentiation. Our aim was to present six pediatric cases to contribute to the characterization of this group of tumors. MATERIAL AND METHODS Six female patients aged 4 to 12 years with CNS tumors with MN1 alteration identified using genome-wide methylation arrays and/or RT-PCR were included. Clinicopathological, morphological, immunohistochemical, and molecular findings were analyzed. RESULTS Tumor location was the parietal lobe in four and the intramedullary spinal cord in two. Two were morphologically diagnosed as ependymomas, one as gliofibroma, one as a HGNET-MN1 altered and the other two were difficult to classify. All were well-defined tumors, with a cystic component in three. Only two tumors had extensive stromal hyalinization, three had pseudopapillary formations, and four had other patterns. Multinucleated, clear, and rhabdoid cells were present. Necrosis and histiocyte clusters were also observed. Proliferative index was >10 in four. GFAP, EMA, CK, and SYN were variable, while Olig2 staining was mostly positive. Four of six patients with supratentorial tumors and complete resections were alive and tumor free after 2 to 10 years of follow-up. The two cases with medullary involvement and incomplete resections were alive and undergoing treatment 2 years after surgery. CONCLUSION Neuroepithelial-MN1 tumors are challenging and suspicion requires molecular confirmation. Our pediatric data contribute to the knowledge for accurate diagnosis. Although further studies with a larger number of cases should be conducted in order to draw more robust conclusions regarding clinico-pathological features, here we present valuable pediatric data to increase the knowledge that may lead to the accurate management of this group of tumors.
Collapse
|
17
|
Mugge L, Dang DD, Stabingas K, Keating G, Rossi C, Keating R. MN1 altered astroblastoma with APC and LRP1B gene mutations: a unique variant in the cervical spine of a pediatric patient. Childs Nerv Syst 2023; 39:1309-1315. [PMID: 36648513 DOI: 10.1007/s00381-022-05795-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/08/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE Astroblastomas (AB) are high-grade neoplasms which typically occur within the cerebral hemisphere. However, given the rarity of this neoplasm and the number of variants, the relevance of this molecular makeup is unknown. We sought to describe the clinical presentation, treatment, and pathological analysis of a novel MN1 (meningioma 1) cervical spinal cord astroblastoma variant presenting in a pediatric patient. METHODS A retrospective review of electronic medical records was performed with an emphasis on neuroimaging, perioperative course, and pathological analysis. RESULTS An 11-month-old male with no significant history presented with two weeks of neck stiffness and cervicalgia. Neurologically, the patient was intact without signs of infection or trauma. Cervical CT was unremarkable. A subsequent MRI demonstrated a heterogeneously enhancing intramedullary lesion extending from the craniocervical junction to T4. The patient was treated with perioperative steroids and underwent C1-C3 laminectomies and C4-T4 laminotomies for tumor resection. Upon completion of the durotomy, an exophytic gray-red tumor was appreciated within the epidural space and gross total resection was achieved (no change on intraoperative neurophysiological monitoring) and confirmed on post-operative imaging. Immunohistochemical analysis was consistent with an astroblastoma with atypical diffuse positivity of CD56, CD99, and nuclear OLIG2. Molecular analysis revealed not only MN1 alterations but also changes in genes encoding APC and LRP1B. Both alterations were not previously documented to be associated with an astroblastoma. CONCLUSION Our case represents the first report of an infant with an MN1 astroblastoma with APC and LRP1B gene alterations in the cervical spine. Gross total resection paired with a detailed histopathologic analysis is vital for optimizing adjuvant treatment.
Collapse
Affiliation(s)
- Luke Mugge
- Department of Neurosurgery, Children's National Medical Center, Washington, DC, USA. .,Department of Neurosciences, Inova Neuroscience and Spine Institute, 3300 Gallows Road, Falls Church, VA, 22042, USA.
| | - Danielle D Dang
- Department of Neurosciences, Inova Neuroscience and Spine Institute, 3300 Gallows Road, Falls Church, VA, 22042, USA
| | - Kristen Stabingas
- Department of Neurosurgery, Children's National Medical Center, Washington, DC, USA
| | - Gregory Keating
- Department of Neurosurgery, Children's National Medical Center, Washington, DC, USA.,Department of Neurosurgery, MedStar Georgetown University Hospital, Washington, DC, USA
| | - Christopher Rossi
- Department of Pathology, Children's National Medical Center, Washington, DC, USA
| | - Robert Keating
- Department of Neurosurgery, Children's National Medical Center, Washington, DC, USA
| |
Collapse
|
18
|
Liu J, Sun D, Lin F, Li Y, Wu T, Liu X. An EWSR1-EZHIP fusion in a cerebral hemisphere astroblastoma. Neuropathology 2023. [PMID: 36624615 DOI: 10.1111/neup.12893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 01/11/2023]
Abstract
Astroblastomas are considered extremely rare tumors and have not been formally graded. While gene mutations are used to diagnose these tumors, further research is needed for proper diagnosis and classification. This report presents a case of astroblastoma in a 44-year-old woman. A tumor was found to have histology consistent with astroblastoma, with no MN1 gene changes. Several mutations were present, and fusion of the EWSR1 and EZHIP genes was noted, which has never been reported before in the literature. Fusions of the EWSR1 gene could be characteristics of astroblastomas, in addition to MN1 alterations, and identification of these mutations could help in the diagnosis of these rare tumors.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pathology, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, China
| | - Dongjin Sun
- Department of Pathology, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, China
| | - Fan Lin
- Department of Radiology, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, China
| | - Yun Li
- Department of Central Laboratory, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, China
| | - Tingting Wu
- Department of Pathology, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, China
| | - Xia Liu
- Department of Pathology, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, China
| |
Collapse
|
19
|
Yoshida A, Satomi K, Kobayashi E, Ryo E, Matsushita Y, Narita Y, Ichimura K, Kawai A, Mori T. Soft-tissue sarcoma with MN1-BEND2 fusion: A case report and comparison with astroblastoma. Genes Chromosomes Cancer 2022; 61:427-431. [PMID: 35094441 DOI: 10.1002/gcc.23028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
MN1-BEND2 is considered as a defining gene fusion of astroblastoma. Herein, we report the first case of soft-tissue sarcoma with this fusion. The tumor developed in the abdominal wall of an 87-year-old woman, and consisted of a striking storiform growth of low-grade spindle cells admixed with a dense proliferation of oval cells with a higher nuclear atypia and mitotic activity. The sarcoma was immunohistochemically positive for actin but negative for S100 protein, glial fibrillary acidic protein, and Olig2. Targeted RNA sequencing identified an in-frame MN1 (exon 1)-BEND2 (exon 11) fusion transcript, which was validated by reverse transcription polymerase chain reaction, Sanger sequencing, and MN1 break-apart fluorescence in situ hybridization. DNA methylation profiling revealed that the tumor did not match any sarcoma classes based on the DKFZ classifier. Using T-distributed stochastic neighbor embedding analysis, the sarcoma was plotted close to the provisional class "Sarcoma (malignant peripheral nerve sheath tumor-like)," despite no phenotypic resemblance. Copy number analysis using methylation data demonstrated losses at 2q, 8p, 9p, 11p, 14q, 19q, and 22q. When compared with a cerebral astroblastoma sample with MN1 (exon 1)-BEND2 (exon 9) fusion, the sarcoma showed no resemblance in histology, immunophenotype, or DNA methylation profile, although they shared copy number loss at 14q, 19q, and 22q. The present report demonstrated that MN1-BEND2 is another example of a pleiotropic fusion gene that is shared among different tumor types.
Collapse
Affiliation(s)
- Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan.,Rare Cancer Center, National Cancer Center Hospital, Tokyo, Japan
| | - Kaishi Satomi
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan.,Department of Pathology, Kyorin University, Tokyo, Japan
| | - Eisuke Kobayashi
- Rare Cancer Center, National Cancer Center Hospital, Tokyo, Japan.,Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Eijitsu Ryo
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuko Matsushita
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan.,Department of Brain Disease Translational Research, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yoshitaka Narita
- Department of Neurooncology, National Cancer Center Hospital, Tokyo, Japan
| | - Koichi Ichimura
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan.,Department of Brain Disease Translational Research, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Akira Kawai
- Rare Cancer Center, National Cancer Center Hospital, Tokyo, Japan.,Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Taisuke Mori
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan.,Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
20
|
Gopakumar S, McDonald MF, Sharma H, Tatsui CE, Fuller GN, Rao G. Recurrent HGNET-MN1 altered (astroblastoma MN1-altered) of the foramen magnum: Case report and molecular classification. Surg Neurol Int 2022; 13:139. [PMID: 35509530 PMCID: PMC9062895 DOI: 10.25259/sni_1208_2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/14/2022] [Indexed: 11/04/2022] Open
Abstract
Background Astroblastoma is a rare primary brain tumor of unclear origin, often occurring in young patients less than 30-years-old. It typically arises supratentorially and is diagnosed based on histological features including vascular hyalinization and perivascular pseudorosettes. Recent molecular characterization of primary CNS high-grade neuroepithelial tumors with meningioma I alteration (HGNET-MN1) found that HGNET-MN1 and tumors with morphological signatures of astroblastoma clustered together. Further analysis revealed such astroblastomas have MN1 alteration and the 2021 WHO classification of tumors of the CNS now recognizes astroblastoma MN1-altered as a new entity. Case Description Here, we present the case of a 36-year-old right-handed woman with recurrent low-grade astroblastoma in the cervicomedullary junction. The patient presented with worsening motor and sensory deficits of her upper extremities, pain, ataxia, visual disturbance, and nausea. Due to extensive recurrence and neurological symptoms, the patient underwent reoperation. Conclusion We review a rare case of recurrent astroblastoma in the foramen magnum in light of new relevant literature about tumor biology and prognostic significance of the new classification of astroblastoma MN1-altered.
Collapse
Affiliation(s)
| | | | | | - Claudio E. Tatsui
- Departments of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gregory N. Fuller
- Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ganesh Rao
- Department of Neurosurgery, Baylor College of Medicine
| |
Collapse
|
21
|
Lucas CHG, Gupta R, Wu J, Shah K, Ravindranathan A, Barreto J, Gener M, Ginn KF, Prall OWJ, Xu H, Kee D, Ko HS, Yaqoob N, Zia N, Florez A, Cha S, Perry A, Clarke JL, Chang SM, Berger MS, Solomon DA. EWSR1-BEND2 fusion defines an epigenetically distinct subtype of astroblastoma. Acta Neuropathol 2022; 143:109-113. [PMID: 34825267 PMCID: PMC8732961 DOI: 10.1007/s00401-021-02388-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/05/2021] [Accepted: 11/17/2021] [Indexed: 11/02/2022]
Affiliation(s)
- Calixto-Hope G Lucas
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
| | - Rohit Gupta
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
| | - Jasper Wu
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
| | - Kathan Shah
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
| | - Ajay Ravindranathan
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
| | - Jairo Barreto
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
| | - Melissa Gener
- Department of Pathology, Children's Mercy Hospital, Kansas City, MO, USA
| | - Kevin F Ginn
- Department of Pediatric Hematology and Oncology, Children's Mercy Hospital, Kansas City, MO, USA
| | - Owen W J Prall
- Department of Pathology, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Huiling Xu
- Department of Pathology, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Damien Kee
- Department of Medical Oncology, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Hyun S Ko
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Nausheen Yaqoob
- Department of Histopathology, Indus Hospital and Health Network, Karachi, Pakistan
| | - Nida Zia
- Department of Pediatric Hematology and Oncology, Indus Hospital and Health Network, Karachi, Pakistan
| | - Adriana Florez
- Department of Pathology, Fundación Santafé de Bogotá, Bogota, Colombia
| | - Soonmee Cha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Arie Perry
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Jennifer L Clarke
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Susan M Chang
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - David A Solomon
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, Health Sciences West 451, San Francisco, CA, 94143, USA.
| |
Collapse
|