1
|
Garbowski M, Laughlin DC, Blumenthal DM, Sofaer HR, Barnett DT, Beaury EM, Buonaiuto DM, Corbin JD, Dukes JS, Early R, Nebhut AN, Petri L, Vilà M, Pearse IS. Naturalized species drive functional trait shifts in plant communities. Proc Natl Acad Sci U S A 2024; 121:e2403120121. [PMID: 39298470 PMCID: PMC11459196 DOI: 10.1073/pnas.2403120121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/31/2024] [Indexed: 09/21/2024] Open
Abstract
Despite decades of research documenting the consequences of naturalized and invasive plant species on ecosystem functions, our understanding of the functional underpinnings of these changes remains rudimentary. This is partially due to ineffective scaling of trait differences between native and naturalized species to whole plant communities. Working with data from over 75,000 plots and over 5,500 species from across the United States, we show that changes in the functional composition of communities associated with increasing abundance of naturalized species mirror the differences in traits between native and naturalized plants. We find that communities with greater abundance of naturalized species are more resource acquisitive aboveground and belowground, shorter, more shallowly rooted, and increasingly aligned with an independent strategy for belowground resource acquisition via thin fine roots with high specific root length. We observe shifts toward herbaceous-dominated communities but shifts within both woody and herbaceous functional groups follow community-level patterns for most traits. Patterns are remarkably similar across desert, grassland, and forest ecosystems. Our results demonstrate that the establishment and spread of naturalized species, likely in combination with underlying environmental shifts, leads to predictable and consistent changes in community-level traits that can alter ecosystem functions.
Collapse
Affiliation(s)
- Magda Garbowski
- Botany Department, University of Wyoming, Laramie, WY82071
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM88003
| | | | - Dana M. Blumenthal
- U.S. Department of Agriculture, Agricultural Research Service, Fort Collins, CO80526
| | - Helen R. Sofaer
- U.S. Geological Survey, Pacific Island Ecosystems Research Center, Hilo, HI96718
| | | | - Evelyn M. Beaury
- Department of Ecology and Evolution and the High Meadows Environmental Institute, Princeton University, Princeton, NJ08544
| | - Daniel M. Buonaiuto
- Department of Environmental Conservation, University of Massachusetts, Amherst, MA01003
- North East Climate Adaptation Science Center, U.S. Geological Survey, Amherst, MA01003
| | - Jeffrey D. Corbin
- Department of Biological Sciences, Union College, Schenectady, NY12308
| | - Jeffrey S. Dukes
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA94305
- Departments of Biology and Earth System Science, Stanford University, Stanford, CA94305
| | - Regan Early
- Department of Biosciences, University of Exeter, CornwallEX4 4QD, UK
| | | | - Laís Petri
- Department of Plant Biology, Michigan State University, East Lansing, MI48824
| | - Montserrat Vilà
- Estación Biológica de Doñana, Spanish National Research Council, Sevilla41092, Spain
- Department of Plant Biology and Ecology, University of Sevilla, Sevilla41092, Spain
| | - Ian S. Pearse
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO80526
| |
Collapse
|
2
|
Mazzorato ACM, Esch EH, MacDougall AS. Prospects for soil carbon storage on recently retired marginal farmland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150738. [PMID: 34606864 DOI: 10.1016/j.scitotenv.2021.150738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Soil organic carbon (SOC) is strongly affected by farm cropping, which covers >10% of the earth's surface. Land retirement of marginal fields, now a global initiative, can increase SOC storage but reported accumulation rates are variable. Here, we quantify SOC in crop fields and retired marginal land in an intensely farmed 10,000 km 2 region of central North America, testing nutrients, soil texture and management as drivers of SOC storage. Overwhelmingly, SOC was associated with farm management with among-farm differences varying >fourfold (17.4-81 t ha -1) in the top 15 cm. Total farm SOC averaged 502.2 t farm -1 but again ranged widely (216-1611 t farm -1). Farm-specific SOC was often, but not always, higher on farms with N-rich silt-clay soils, and lower on sandy soils with higher P relating to former tobacco production. In contrast, within-farm SOC between crop fields and retired land did not significantly differ with time. Low SOC on retired lands was associated with persistently high soil N and P and elevated microbial respiration. Retired soils did possess substantially larger pools of lignin-rich root biomass to depths of 60 cm, which may signify eventual SOC accumulation possibly as nutrient legacies diminish. Our work shows that management legacy, interacting with soil texture and nutrients, predicts SOC more than short-term retirement. Indeed, crop fields averaged 67% of farm SOC because they represented up to 94% of total farm area - SOC retention on cropland remains a management priority, above and beyond gains with retirement. Interestingly, the largest per-volume SOC levels were in remnant forest that contained 25% of farm SOC despite only averaging 11% of farm area. Maintaining SOC stocks in farm landscapes may be more quickly attained by protecting remnant forest, with retired lands needing time to re-build SOC stocks.
Collapse
Affiliation(s)
- Annalisa C M Mazzorato
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph N1G2W1, Ontario, Canada
| | - Ellen H Esch
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph N1G2W1, Ontario, Canada
| | - Andrew S MacDougall
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph N1G2W1, Ontario, Canada.
| |
Collapse
|
3
|
Träger S, Milbau A, Wilson SD. Potential contributions of root decomposition to the nitrogen cycle in arctic forest and tundra. Ecol Evol 2018; 7:11021-11032. [PMID: 29299278 PMCID: PMC5743615 DOI: 10.1002/ece3.3522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/17/2017] [Accepted: 09/21/2017] [Indexed: 12/01/2022] Open
Abstract
Plant contributions to the nitrogen (N) cycle from decomposition are likely to be altered by vegetation shifts associated with climate change. Roots account for the majority of soil organic matter input from vegetation, but little is known about differences between vegetation types in their root contributions to nutrient cycling. Here, we examine the potential contribution of fine roots to the N cycle in forest and tundra to gain insight into belowground consequences of the widely observed increase in woody vegetation that accompanies climate change in the Arctic. We combined measurements of root production from minirhizotron images with tissue analysis of roots from differing root diameter and color classes to obtain potential N input following decomposition. In addition, we tested for changes in N concentration of roots during early stages of decomposition, and investigated whether vegetation type (forest or tundra) affected changes in tissue N concentration during decomposition. For completeness, we also present respective measurements of leaves. The potential N input from roots was twofold greater in forest than in tundra, mainly due to greater root production in forest. Potential N input varied with root diameter and color, but this variation tended to be similar in forest and tundra. As for roots, the potential N input from leaves was significantly greater in forest than in tundra. Vegetation type had no effect on changes in root or leaf N concentration after 1 year of decomposition. Our results suggest that shifts in vegetation that accompany climate change in the Arctic will likely increase plant‐associated potential N input both belowground and aboveground. In contrast, shifts in vegetation might not alter changes in tissue N concentration during early stages of decomposition. Overall, differences between forest and tundra in potential contribution of decomposing roots to the N cycle reinforce differences between habitats that occur for leaves.
Collapse
Affiliation(s)
- Sabrina Träger
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| | - Ann Milbau
- Research Institute for Nature and Forest INBO Brussels Belgium.,Department of Ecology and Environmental Science Climate Impacts Research Centre Umeå University Abisko Sweden
| | - Scott D Wilson
- Department of Ecology and Environmental Science Climate Impacts Research Centre Umeå University Abisko Sweden.,Department of Biology University of Regina Regina SK Canada
| |
Collapse
|