1
|
Kirwan ML, Michael HA, Gedan KB, Tully KL, Fagherazzi S, McDowell NG, Molino GD, Pratt D, Reay WG, Stotts S. Feedbacks Regulating the Salinization of Coastal Landscapes. ANNUAL REVIEW OF MARINE SCIENCE 2025; 17:461-484. [PMID: 39259980 DOI: 10.1146/annurev-marine-070924-031447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The impact of saltwater intrusion on coastal forests and farmland is typically understood as sea-level-driven inundation of a static terrestrial landscape, where ecosystems neither adapt to nor influence saltwater intrusion. Yet recent observations of tree mortality and reduced crop yields have inspired new process-based research into the hydrologic, geomorphic, biotic, and anthropogenic mechanisms involved. We review several negative feedbacks that help stabilize ecosystems in the early stages of salinity stress (e.g., reduced water use and resource competition in surviving trees, soil accretion, and farmland management). However, processes that reduce salinity are often accompanied by increases in hypoxia and other changes that may amplify saltwater intrusion and vegetation shifts after a threshold is exceeded (e.g., subsidence following tree root mortality). This conceptual framework helps explain observed rates of vegetation change that are less than predicted for a static landscape while recognizing the inevitability of large-scale change.
Collapse
Affiliation(s)
- Matthew L Kirwan
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, Virginia, USA;
| | - Holly A Michael
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA
- Department of Earth Sciences, University of Delaware, Newark, Delaware, USA
| | - Keryn B Gedan
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Katherine L Tully
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, USA
| | - Sergio Fagherazzi
- Department of Earth and Environment, Boston University, Boston, Massachusetts, USA
| | - Nate G McDowell
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Grace D Molino
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, Virginia, USA;
| | - Dannielle Pratt
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA
| | - William G Reay
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, Virginia, USA;
| | - Stephanie Stotts
- Department of Natural Sciences and Department of Agriculture, Food, and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, Maryland, USA
| |
Collapse
|
2
|
Carmichael MJ, Martinez M, Bräuer SL, Ardón M. Microbial Communities in Standing Dead Trees in Ghost Forests are Largely Aerobic, Saprophytic, and Methanotrophic. Curr Microbiol 2024; 81:229. [PMID: 38896154 PMCID: PMC11186919 DOI: 10.1007/s00284-024-03767-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Standing dead trees (snags) are recognized for their influence on methane (CH4) cycling in coastal wetlands, yet the biogeochemical processes that control the magnitude and direction of fluxes across the snag-atmosphere interface are not fully elucidated. Herein, we analyzed microbial communities and fluxes at one height from ten snags in a ghost forest wetland. Snag-atmosphere CH4 fluxes were highly variable (- 0.11-0.51 mg CH4 m-2 h-1). CH4 production was measured in three out of ten snags; whereas, CH4 consumption was measured in two out of ten snags. Potential CH4 production and oxidation in one core from each snag was assayed in vitro. A single core produced CH4 under anoxic and oxic conditions, at measured rates of 0.7 and 0.6 ng CH4 g-1 h-1, respectively. Four cores oxidized CH4 under oxic conditions, with an average rate of - 1.13 ± 0.31 ng CH4 g-1 h-1. Illumina sequencing of the V3/V4 region of the 16S rRNA gene sequence revealed diverse microbial communities and indicated oxidative decomposition of deadwood. Methanogens were present in 20% of the snags, with a mean relative abundance of < 0.0001%. Methanotrophs were identified in all snags, with a mean relative abundance of 2% and represented the sole CH4-cycling communities in 80% of the snags. These data indicate potential for microbial attenuation of CH4 emissions across the snag-atmosphere interface in ghost forests. A better understanding of the environmental drivers of snag-associated microbial communities is necessary to forecast the response of CH4 cycling in coastal ghost forest wetlands to a shifting coastal landscape.
Collapse
Affiliation(s)
- Mary Jane Carmichael
- Departments of Biology and Environmental Studies, Hollins University, Roanoke, VA, 24020, USA.
| | - Melinda Martinez
- U.S. Geological Survey, Eastern Ecological Science Center, Laurel, MD, 20708, USA
| | - Suzanna L Bräuer
- Department of Biology, Appalachian State University, Boone, NC, 28608, USA
| | - Marcelo Ardón
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
3
|
Ury EA, Ardón M, Wright JP, Bernhardt ES. Restored forested wetland surprisingly resistant to experimental salinization. PLoS One 2023; 18:e0296128. [PMID: 38128024 PMCID: PMC10734931 DOI: 10.1371/journal.pone.0296128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Salinization of coastal freshwater wetlands is an increasingly common and widespread phenomenon resulting from climate change. The ecosystem consequences of added salinity are poorly constrained and highly variable across prior observational and experimental studies. We added 1.8 metric tons of marine salts to replicated 200 m2 plots within a restored forested wetland in Eastern North Carolina over the course of four years. Based on prior small-scale experiments at this site, we predicted that salinization would lead to slower tree growth and suppressed soil carbon cycling. Results from this large-scale field experiment were subtle and inconsistent over space and time. By the fourth year of the experiment, we observed the predicted suppression of soil respiration and a reduction of water extractable carbon from soils receiving salt treatments. However, we found no cumulative effects of four years of salinization on total soil carbon stocks, tree growth, or root biomass. We observed substantial variation in soil solution chemistry (notably, pH and base saturation) across replicated treatment blocks; the effective salt levels, ionic composition, and pH varied following treatment depending upon pre-existing differences in edaphic factors. Our multi-year monitoring also revealed an underlying trend of wetland acidification across the entire site, a suspected effect of ecosystem recovery following wetland restoration on former agricultural land. The overwhelming resistance to our salt treatments could be attributed to the vigor of a relatively young, healthy wetland ecosystem. The heterogeneous responses to salt that we observed over space and time merits further investigation into the environmental factors that control carbon cycling in wetlands. This work highlights the importance of multi-year, large-scale field experiments for investigating ecosystem responses to global environmental change.
Collapse
Affiliation(s)
- Emily A. Ury
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Marcelo Ardón
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Justin P. Wright
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Emily S. Bernhardt
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
4
|
Canepuccia AD, Fanjul MS, Iribarne OO. Global distribution and richness of terrestrial mammals in tidal marshes. DIVERS DISTRIB 2023. [DOI: 10.1111/ddi.13683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Affiliation(s)
- Alejandro D. Canepuccia
- Instituto de Investigaciones Marinas y Costeras (IIMyC) Universidad Nacional de Mar Del Plata (UNMDP) ‐ Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Mar del Plata Argentina
| | - María Sol Fanjul
- Instituto de Investigaciones Marinas y Costeras (IIMyC) Universidad Nacional de Mar Del Plata (UNMDP) ‐ Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Mar del Plata Argentina
| | - Oscar O. Iribarne
- Instituto de Investigaciones Marinas y Costeras (IIMyC) Universidad Nacional de Mar Del Plata (UNMDP) ‐ Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Mar del Plata Argentina
| |
Collapse
|
5
|
McDowell NG, Ball M, Bond‐Lamberty B, Kirwan ML, Krauss KW, Megonigal JP, Mencuccini M, Ward ND, Weintraub MN, Bailey V. Processes and mechanisms of coastal woody-plant mortality. GLOBAL CHANGE BIOLOGY 2022; 28:5881-5900. [PMID: 35689431 PMCID: PMC9544010 DOI: 10.1111/gcb.16297] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/24/2022] [Indexed: 05/26/2023]
Abstract
Observations of woody plant mortality in coastal ecosystems are globally widespread, but the overarching processes and underlying mechanisms are poorly understood. This knowledge deficiency, combined with rapidly changing water levels, storm surges, atmospheric CO2 , and vapor pressure deficit, creates large predictive uncertainty regarding how coastal ecosystems will respond to global change. Here, we synthesize the literature on the mechanisms that underlie coastal woody-plant mortality, with the goal of producing a testable hypothesis framework. The key emergent mechanisms underlying mortality include hypoxic, osmotic, and ionic-driven reductions in whole-plant hydraulic conductance and photosynthesis that ultimately drive the coupled processes of hydraulic failure and carbon starvation. The relative importance of these processes in driving mortality, their order of progression, and their degree of coupling depends on the characteristics of the anomalous water exposure, on topographic effects, and on taxa-specific variation in traits and trait acclimation. Greater inundation exposure could accelerate mortality globally; however, the interaction of changing inundation exposure with elevated CO2 , drought, and rising vapor pressure deficit could influence mortality likelihood. Models of coastal forests that incorporate the frequency and duration of inundation, the role of climatic drivers, and the processes of hydraulic failure and carbon starvation can yield improved estimates of inundation-induced woody-plant mortality.
Collapse
Affiliation(s)
- Nate G. McDowell
- Atmospheric Sciences and Global Change DivisionPacific Northwest National LabRichlandWashingtonUSA
- School of Biological SciencesWashington State UniversityPullmanWashingtonUSA
| | - Marilyn Ball
- Plant Science Division, Research School of BiologyThe Australian National UniversityActonAustralian Capital TerritoryAustralia
| | - Ben Bond‐Lamberty
- Joint Global Change Research Institute, Pacific Northwest National LaboratoryCollege ParkMarylandUSA
| | - Matthew L. Kirwan
- Virginia Institute of Marine Science, William & MaryGloucester PointVirginiaUSA
| | - Ken W. Krauss
- U.S. Geological Survey, Wetland and Aquatic Research CenterLafayetteLouisianaUSA
| | | | - Maurizio Mencuccini
- ICREA, Passeig Lluís Companys 23BarcelonaSpain
- CREAFCampus UAB, BellaterraBarcelonaSpain
| | - Nicholas D. Ward
- Marine and Coastal Research LaboratoryPacific Northwest National LaboratorySequimWashingtonUSA
- School of OceanographyUniversity of WashingtonSeattleWashingtonUSA
| | - Michael N. Weintraub
- Department of Environmental SciencesUniversity of ToledoToledoOhioUSA
- Biological Sciences DivisionPacific Northwest National LaboratoryWashingtonUSA
| | - Vanessa Bailey
- Biological Sciences DivisionPacific Northwest National LaboratoryWashingtonUSA
| |
Collapse
|
6
|
Influence of Climate and Coastal Flooding on Eastern Red Cedar Growth along a Marsh-Forest Ecotone. FORESTS 2022. [DOI: 10.3390/f13060862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Coastal forests in the Mid-Atlantic region are threatened by sea level rise through chronic and episodic salinization and hydrologic alterations, leading to inland marsh migration and the occurrence of ghost forests. This study uses dendrochronology to explore the impact of rising sea level on the annual growth of Juniperus virginiana (the Eastern red cedar) at the St. Jones component of the Delaware National Estuarine Research Reserve in Dover, DE. Chronologies from low and high elevations were developed, and a difference chronology (high–low) was generated. A rapid field assessment of tree stress indicated greater stress in low elevation trees, and low elevation soil tests showed higher soil moisture and salt content compared to samples from high elevation. Ring width indices were analyzed in relation to water level, precipitation, the Standardized Precipitation Evapotranspiration Index, and temperature, with Pearson’s correlation analysis. Trees growing at low elevation showed greater climate sensitivity and responded favorably to cool, wet summers. Over time, correlations between growth and climate variables decreased, while negative correlations with tidal water level increased—a pattern that presented nearly a decade earlier in the low elevation system. Given the widespread distribution of the Eastern red cedar and its sensitivity to changes in sea level, this species may be particularly useful as a sentinel of change in coastal landscapes as sea levels rise.
Collapse
|
7
|
Kottler EJ, Gedan KB. Sexual reproduction is light-limited as marsh grasses colonize maritime forest. AMERICAN JOURNAL OF BOTANY 2022; 109:514-525. [PMID: 35244201 DOI: 10.1002/ajb2.1831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 01/24/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Climate change is driving abiotic shifts that can threaten the conservation of foundation species and the habitats they support. Directional range shifting is one mechanism of escape, but requires the successful colonization of habitats where interspecific interactions may differ from those to which a species has adapted. For plants with multiple reproductive strategies, these range-edge interactions may alter the investment or allocation toward a given reproductive strategy. In this study, we quantified sexual reproduction of the clonal marsh grass Spartina patens across an inland colonization front into maritime forest being driven by sea-level rise. We find that flowering is variable across S. patens meadows, but consistently reduced in low light conditions like those of the forest understory. Observational surveys of S. patens flowering at four sites in the Delmarva Peninsula agreed with the results of two experimental manipulations of light availability (shading experiment in S. patens-dominated marsh and a forest dieback manipulation). These three approaches pinpointed light limitation as a principal control on S. patens flowering capacity, suggesting that light competition with taller upland species can suppress S. patens flowering along its upland migration front. Consequently, all propagation in shaded conditions must occur clonally or via seeds from the marsh, a reproductive restriction that could limit the potential for local adaptation and reduce genetic diversity. Future research is needed to determine whether the lack of flowering is the result of a trade-off between sexual and clonal reproduction or results from insufficient photosynthetic products needed to achieve either reproductive method.
Collapse
Affiliation(s)
- Ezra J Kottler
- Department of Biological Sciences, George Washington University, 800 22nd ST NW, Suite 6000, Washington, D.C. 20052, USA
| | - Keryn B Gedan
- Department of Biological Sciences, George Washington University, 800 22nd ST NW, Suite 6000, Washington, D.C. 20052, USA
| |
Collapse
|
8
|
Subedi SC, Allen P, Vidales R, Sternberg L, Ross M, Afkhami ME. Salinity legacy: Foliar microbiome's history affects mutualist-conferred salinity tolerance. Ecology 2022; 103:e3679. [PMID: 35302649 DOI: 10.1002/ecy.3679] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/07/2022] [Indexed: 11/09/2022]
Abstract
The rapid human-driven changes in the environment during the Anthropocene have placed extreme stress on many plants and animals. Beneficial interactions with microorganisms may be crucial for ameliorating these stressors and facilitating the ecosystem services host organisms provide. Foliar endophytes, microorganisms that reside within leaves, are found in essentially all plants and can provide important benefits (e.g., enhanced drought tolerance or resistance to herbivory). However, it remains unclear how important the legacy effects of the abiotic stressors that select on these microbiomes are for affecting the degree of stress amelioration provided to their hosts. To elucidate foliar endophytes' role in host plant salt-tolerance, especially if salinity experienced in the field selects for endophytes that are better suited to improve salt-tolerance of their hosts, we combined field collections of 90 endophyte communities from 30 sites across the coastal Everglades with a manipulative growth experiment assessing endophyte inoculation effects on host plant performance. Specifically, we grew >350 red mangrove (Rhizophora mangle) seedlings in a factorial design that manipulated the salinity environment the seedlings experienced (freshwater vs. saltwater), the introduction of field-collected endophytes (live vs. sterilized inoculum), and the legacy of salinity stress experienced by these introduced endophytes [ranging from no salt stress (0 ppt salinity) to high salt stress (40 ppt) environments]. We found that inoculation with field-collected endophytes significantly increased mangrove performance across almost all metrics examined (15-20% increase on average) and these beneficial effects typically occurred when grown in saltwater. Importantly, our study revealed the novel result that endophyte-conferred salinity tolerance depended on microbiome salinity legacy in a key coastal foundation species. Salt-stressed mangroves inoculated with endophyte microbiomes from high salinity environments performed, on average, as well as plants grown in low-stress freshwater, while endophytes from freshwater environments did not relieve host salinity stress. Given the increasing salinity stress imposed by sea level rise and the importance of foundation species like mangroves for ecosystem services, our results indicate that consideration of endophytic associations and their salinity legacy may be critical for successful restoration and management of coastal habitats.
Collapse
Affiliation(s)
- Suresh C Subedi
- Department of Biology, University of Miami, Coral Gables, Florida
| | - Preston Allen
- Department of Biology, University of Miami, Coral Gables, Florida
| | - Rosario Vidales
- Department of Earth and environment, Florida International University, Miami, Florida
| | - Leonel Sternberg
- Department of Biology, University of Miami, Coral Gables, Florida
| | - Michael Ross
- Department of Earth and environment, Florida International University, Miami, Florida.,Institute of Environment, Florida International University, Miami, Florida
| | | |
Collapse
|
9
|
Detecting Coastal Wetland Degradation by Combining Remote Sensing and Hydrologic Modeling. FORESTS 2022. [DOI: 10.3390/f13030411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sea-level rise and climate change stresses pose increasing threats to coastal wetlands that are vital to wildlife habitats, carbon sequestration, water supply, and other ecosystem services with global significance. However, existing studies are limited in individual sites, and large-scale mapping of coastal wetland degradation patterns over a long period is rare. Our study developed a new framework to detect spatial and temporal patterns of coastal wetland degradation by analyzing fine-scale, long-term remotely sensed Normalized Difference Vegetation Index (NDVI) data. Then, this framework was tested to track the degradation of coastal wetlands at the Alligator River National Wildlife Refuge (ARNWR) in North Carolina, United States, during the period from 1995 to 2019. We identified six types of coastal wetland degradation in the study area. Most of the detected degradation was located within 2 km from the shoreline and occurred in the past five years. Further, we used a state-of-the-art coastal hydrologic model, PIHM-Wetland, to investigate key hydrologic processes/variables that control the coastal wetland degradation. The temporal and spatial distributions of simulated coastal flooding and saltwater intrusion confirmed the location and timing of wetland degradation detected by remote sensing. The combined method also quantified the possible critical thresholds of water tables for wetland degradation. The remote sensing–hydrologic model integrated scheme proposed in this study provides a new tool for detecting and understanding coastal wetland degradation mechanisms. Our study approach can also be extended to other coastal wetland regions to understand how climate change and sea-level rise impact wetland transformations.
Collapse
|
10
|
Ghasemi S, Javid AH, Farsad F, Robati M, Farshchi P. An evaluation of the marine environmental resilience to the north of Qeshm Island. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:859. [PMID: 34855014 DOI: 10.1007/s10661-021-09627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
There is always an adamant need to comprehend and draw the complex challenges of sustainability in order to help organize studies, due to the increasing human-related pressures on coastal zones. Hence, by formulating such a comprehensive framework, it could be possible to anticipate changes and support managerial decisions, as well as the degree of resilience of the region's environment. One of the approaches utilized in littoral or coastal zones is the conceptual framework of drivers, pressure, status, impact, and responses (DPSIR)..Qeshm Island, the largest island in the Persian Gulf, is accounted for being the most vital and strategic areas of the mentioned region. In recent decades, Qeshm has become one of the major cultural, natural, geological, and tourism hubs of the country due to its unique regional characteristics, along with its biodiversity and environmental sensitivity. Thereby, in the present research, a combined approach shall be followed to explore the resilience of the marine environment on the northern coast of Qeshm Island by taking advantage of the socioeconomic criterion. In this respect, the conceptual framework of the DPSIR model is utilized in combination with the structural equation model (SEM-PLS) (or partial least squares), which is one of the nonexperimental techniques, to quantify the results in the best manner possible. On the basis of the fuzzy cognitive map (FCM), the regional economic index bearing the weights of 0.62, 0.62, and 0.5, along with an institutional-managerial and biological index, respectively, denotes a two-way positive correlation, whereas this factor has a two-way, but adverse correlation, relationship with a weight of 0.65 in terms of the sociocultural index. Similarly, there is also a one-way and negative relationship, as to the economic index, with a weight of 0.69 which is in relevance with the physio-chemical index.
Collapse
Affiliation(s)
- Sarvin Ghasemi
- Department of Environmental Science, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amir Hossein Javid
- Department of Environmental Science, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Forough Farsad
- Department of Environmental Science, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Robati
- Department of Environmental Science, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parvin Farshchi
- Department of Environmental Science, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
11
|
Principal Factors Influencing Tree Growth in Low-Lying Mid Atlantic Coastal Forests. FORESTS 2021. [DOI: 10.3390/f12101351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Flood frequencies in coastal forests are increasing as sea level rise accelerates from 3–4 mm year−1 to possibly more than 10 mm year−1 by the end of this century. As flooding increases, coastal forests retreat, ghost forests form, and coastal marshes migrate inland. The existence of ghost forests makes the mechanism of forest retreat clear: low-lying trees become more exposed to coastal flooding until they ultimately die. Variability in these retreat rates, however, makes it difficult to predict where and when retreat will continue to occur. Understanding tree growth responses to tidal water levels relative to other environmental factors is a critical step in elucidating the factors that influence retreat variability. Here, dendrochronology was used to study factors that contribute to variations in growth patterns in four coastal forests fringing the Delaware and Barnegat Bays. Species chosen for study included loblolly pine (Pinus taeda), pitch pine (Pinus rigida), and American holly (Ilex opaca). Pearson’s and partial correlation tests showed that growth relationships with monthly environmental conditions varied across sites and were moderate in strength (generally R < 0.5), but each site had at least one significant growth-water level correlation. As coastal flooding exposure is spatially dependent, tree chronologies were also separated into high and low elevation groups. Pearson’s and partial correlation tests of the mean differences between elevation groups showed that at some sites, low elevation trees grew less than high elevation trees when water levels were high, as might be expected. At one site, however, lower elevation trees grew more when water levels were higher, which suggests that other interacting factors—regardless of current flood exposure—potentially have positive, yet likely temporary, influence over tree growth in these low-lying areas.
Collapse
|
12
|
Watershed and Estuarine Controls Both Influence Plant Community and Tree Growth Changes in Tidal Freshwater Forested Wetlands along Two U.S. Mid-Atlantic Rivers. FORESTS 2021. [DOI: 10.3390/f12091182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The tidal freshwater zone near the estuarine head-of-tide is potentially sensitive to both sea-level rise and associated salinity increases as well as changing watershed inputs of freshwater and nutrients. We evaluated the vegetation response of tidal freshwater forested wetlands (TFFW) to changes in nontidal river versus estuarine controls along the longitudinal gradient of the Mattaponi and Pamunkey rivers in the Mid-Atlantic USA. The gradient included nontidal freshwater floodplain (NT) and upper tidal (UT), lower tidal (LT), and stressed tidal forest transitioning to marsh (ST) TFFW habitats on both rivers. Plot-based vegetation sampling and dendrochronology were employed to examine: (1) downriver shifts in plant community composition and the structure of canopy trees, understory trees/saplings/shrubs and herbs, tree basal-area increment (BAI) and (2) interannual variability in BAI from 2015 dating back as far as 1969 in relation to long-term river and estuary monitoring data. With greater tidal influence downstream, tree species dominance shifted, live basal area generally decreased, long-term mean BAI of individual trees decreased, woody stem mortality increased, and live herbaceous vegetative cover and richness increased. Acer rubrum, Fagus grandifolia, Ilex opaca, and Fraxinus pennsylvanica dominated NT and UT sites, with F. pennsylvanica and Nyssa sylvatica increasingly dominating at more downstream tidal sites. Annual tree BAI growth was positively affected by nontidal river flow at NT and UT sites which were closer to the head-of-tide, positively influenced by small salinity increases at LT and ST sites further downstream, and positively influenced by estuarine water level throughout the gradient; nutrient influence was site specific with both positive and negative influences. The counterintuitive finding of salinity increasing tree growth at sites with low BAI is likely due to either competitive growth release from neighboring tree death or enhanced soil nutrient availability that may temporarily mitigate the negative effects of low-level salinization and sea-level increases on living TFFW canopy trees, even as overall plant community conversion to tidal marsh progresses.
Collapse
|
13
|
White EE, Ury EA, Bernhardt ES, Yang X. Climate Change Driving Widespread Loss of Coastal Forested Wetlands Throughout the North American Coastal Plain. Ecosystems 2021. [DOI: 10.1007/s10021-021-00686-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Quantifying Drivers of Coastal Forest Carbon Decline Highlights Opportunities for Targeted Human Interventions. LAND 2021. [DOI: 10.3390/land10070752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As coastal land use intensifies and sea levels rise, the fate of coastal forests becomes increasingly uncertain. Synergistic anthropogenic and natural pressures affect the extent and function of coastal forests, threatening valuable ecosystem services such as carbon sequestration and storage. Quantifying the drivers of coastal forest degradation is requisite to effective and targeted adaptation and management. However, disentangling the drivers and their relative contributions at a landscape scale is difficult, due to spatial dependencies and nonstationarity in the socio-spatial processes causing degradation. We used nonspatial and spatial regression approaches to quantify the relative contributions of sea level rise, natural disturbances, and land use activities on coastal forest degradation, as measured by decadal aboveground carbon declines. We measured aboveground carbon declines using time-series analysis of satellite and light detection and ranging (LiDAR) imagery between 2001 and 2014 in a low-lying coastal region experiencing synergistic natural and anthropogenic pressures. We used nonspatial (ordinary least squares regression–OLS) and spatial (geographically weighted regression–GWR) models to quantify relationships between drivers and aboveground carbon declines. Using locally specific parameter estimates from GWR, we predicted potential future carbon declines under sea level rise inundation scenarios. From both the spatial and nonspatial regression models, we found that land use activities and natural disturbances had the highest measures of relative importance (together representing 94% of the model’s explanatory power), explaining more variation in carbon declines than sea level rise metrics such as salinity and distance to the estuarine shoreline. However, through the spatial regression approach, we found spatial heterogeneity in the relative contributions to carbon declines, with sea level rise metrics contributing more to carbon declines closer to the shore. Overlaying our aboveground carbon maps with sea level rise inundation models we found associated losses in total aboveground carbon, measured in teragrams of carbon (TgC), ranged from 2.9 ± 0.1 TgC (for a 0.3 m rise in sea level) to 8.6 ± 0.3 TgC (1.8 m rise). Our predictions indicated that on the remaining non-inundated landscape, potential carbon declines increased from 29% to 32% between a 0.3 and 1.8 m rise in sea level. By accounting for spatial nonstationarity in our drivers, we provide information on site-specific relationships at a regional scale, allowing for more targeted management planning and intervention. Accordingly, our regional-scale assessment can inform policy, planning, and adaptation solutions for more effective and targeted management of valuable coastal forests.
Collapse
|
15
|
Ury EA, Yang X, Wright JP, Bernhardt ES. Rapid deforestation of a coastal landscape driven by sea-level rise and extreme events. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02339. [PMID: 33817890 DOI: 10.1002/eap.2339] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 09/16/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Climate change is driving ecological shifts in coastal regions of the world, where low topographic relief makes ecosystems particularly vulnerable to sea-level rise, salinization, storm surge, and other effects of global climate change. The consequences of rising water tables and salinity can penetrate well inland, and lead to particularly dramatic changes in freshwater forested wetlands dominated by tree species with low salt tolerance. The resulting loss of coastal forests could have significant implications to the coastal carbon cycle. We quantified the rates of vegetation change including land loss, forest loss, and shrubland expansion in North Carolina's largest coastal wildlife refuge over 35 yr. Despite its protected status, and in the absence of any active forest management, 32% (31,600 hectares) of the refuge area has changed landcover classification during the study period. A total of 1,151 hectares of land was lost to the sea and ~19,300 hectares of coastal forest habitat was converted to shrubland or marsh habitat. As much as 11% of all forested cover in the refuge transitioned to a unique land cover type-"ghost forest"-characterized by standing dead trees and fallen tree trunks. The formation of this ghost forest transition state peaked prominently between 2011 and 2012, following Hurricane Irene and a 5-yr drought, with 4,500 ± 990 hectares of ghost forest forming during that year alone. This is the first attempt to map and quantify coastal ghost forests using remote sensing. Forest losses were greatest in the eastern portion of the refuge closest to the Croatan and Pamlico Sounds, but also occurred much further inland in low-elevation areas and alongside major canals. These unprecedented rates of deforestation and land cover change due to climate change may become the status quo for coastal regions worldwide, with implications for wetland function, wildlife habitat, and global carbon cycling.
Collapse
Affiliation(s)
- Emily A Ury
- Department of Biology, Duke University, Box 90338, Durham, North Carolina, 27708, USA
| | - Xi Yang
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, 22904, USA
| | - Justin P Wright
- Department of Biology, Duke University, Box 90338, Durham, North Carolina, 27708, USA
| | - Emily S Bernhardt
- Department of Biology, Duke University, Box 90338, Durham, North Carolina, 27708, USA
| |
Collapse
|
16
|
Zhang P, McDowell NG, Zhou X, Wang W, Leff RT, Pivovaroff AL, Zhang H, Chow PS, Ward ND, Indivero J, Yabusaki SB, Waichler S, Bailey VL. Declining carbohydrate content of Sitka-spruce treesdying from seawater exposure. PLANT PHYSIOLOGY 2021; 185:1682-1696. [PMID: 33893814 PMCID: PMC8133543 DOI: 10.1093/plphys/kiab002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/09/2020] [Indexed: 05/13/2023]
Abstract
Increasing sea levels associated with climate change threaten the survival of coastal forests, yet the mechanisms by which seawater exposure causes tree death remain poorly understood. Despite the potentially crucial role of nonstructural carbohydrate (NSC) reserves in tree survival, their dynamics in the process of death under seawater exposure are unknown. Here we monitored progressive tree mortality and associated NSC storage in Sitka-spruce (Picea sitchensis) trees dying under ecosystem-scale increases in seawater exposure in western Washington, USA. All trees exposed to seawater, because of monthly tidal intrusion, experienced declining crown foliage during the sampling period, and individuals with a lower percentage of live foliated crown (PLFC) died faster. Tree PLFC was strongly correlated with subsurface salinity and needle ion contents. Total NSC concentrations in trees declined remarkably with crown decline, and reached extremely low levels at tree death (2.4% and 1.6% in leaves and branches, respectively, and 0.4% in stems and roots). Starch in all tissues was almost completely consumed, while sugars remained at a homeostatic level in foliage. The decreasing NSC with closer proximity to death and near zero starch at death are evidences that carbon starvation occurred during Sitka-spruce mortality during seawater exposure. Our results highlight the importance of carbon storage as an indicator of tree mortality risks under seawater exposure.
Collapse
Affiliation(s)
- Peipei Zhang
- Center for Global Change and Ecological Forecasting, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Atmospheric Sciences & Global Change, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Nate G McDowell
- Atmospheric Sciences & Global Change, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
- School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236, USA
| | - Xuhui Zhou
- Center for Global Change and Ecological Forecasting, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Author for communication:
| | - Wenzhi Wang
- Atmospheric Sciences & Global Change, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Riley T Leff
- Atmospheric Sciences & Global Change, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Alexandria L Pivovaroff
- Atmospheric Sciences & Global Change, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Hongxia Zhang
- Atmospheric Sciences & Global Change, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Pak S Chow
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada T6G 2R3
| | - Nicholas D Ward
- Marine Sciences Laboratory, Pacific Northwest National Laboratory, Sequim, Washington 98382, USA
- School of Oceanography, University of Washington, Seattle, Washington 98195, USA
| | - Julia Indivero
- Marine Sciences Laboratory, Pacific Northwest National Laboratory, Sequim, Washington 98382, USA
| | - Steven B Yabusaki
- Earth Systems Science, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Scott Waichler
- Earth Systems Science, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Vanessa L Bailey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| |
Collapse
|