1
|
Jiang L, Wen G, Lu J, Yang H, Jin Y, Nie X, Wang Z, Chen M, Du Y, Wang Y. Machine learning in soil nutrient dynamics of alpine grasslands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174295. [PMID: 38936732 DOI: 10.1016/j.scitotenv.2024.174295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/23/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
As a terrestrial ecosystem, alpine grasslands feature diverse vegetation types and play key roles in regulating water resources and carbon storage, thus shaping global climate. The dynamics of soil nutrients in this ecosystem, responding to regional climate change, directly impact primary productivity. This review comprehensively explored the effects of climate change on soil nitrogen (N), phosphorus (P), and their balance in the alpine meadows, highlighting the significant roles these nutrients played in plant growth and species diversity. We also shed light on machine learning utilization in soil nutrient evaluation. As global warming continues, alongside shifting precipitation patterns, soil characteristics of grasslands, such as moisture and pH values vary significantly, further altering the availability and composition of soil nutrients. The rising air temperature in alpine regions substantially enhances the activity of soil organisms, accelerating nutrient mineralization and the decomposition of organic materials. Combined with varied nutrient input, such as increased N deposition, plant growth and species composition are changing. With the robust capacity to use and integrate diverse data sources, including satellite imagery, sensor-collected spectral data, camera-captured videos, and common knowledge-based text and audio, machine learning offers rapid and accurate assessments of the changes in soil nutrients and associated determinants, such as soil moisture. When combined with powerful large language models like ChatGPT, these tools provide invaluable insights and strategies for effective grassland management, aiming to foster a sustainable ecosystem that balances high productivity and advanced services with reduced environmental impacts.
Collapse
Affiliation(s)
- Lili Jiang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Guoqi Wen
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| | - Jia Lu
- China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Hengyuan Yang
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Yuexia Jin
- Computer Programing, Algonquin College, Ottawa, ON K2G 1V8, Canada
| | - Xiaowei Nie
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Zongsong Wang
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Meirong Chen
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yangong Du
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Yanfen Wang
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Zhou M, Jin X, Jiang M, Lü X, Lou Y. Helophytes adapt to water and N-enrichment stresses by adjusting and coordinating stoichiometry characteristics in main organs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165538. [PMID: 37454833 DOI: 10.1016/j.scitotenv.2023.165538] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Exploring the adaptation strategies of plants under stressful environments from an ecological stoichiometry perspective is a critical but underexplored research topic, and multi-organ collaborative research for multi-species can provide a comprehensive understanding. In this study, helophytes were selected as the subjects, and water depth and water N-enrichment were set as the stressors. A simulation experiment including three water depths (drought stress, control and flooding stress) and four water N-enrichment levels (control, low, medium and high N-enrichment stresses) for six helophyte species was carried out. Overall, C concentrations in all plant organs remained stable under water (drought-flooding stress) and N-enrichment stress. N concentrations increased under both flooding and drought stresses, while P concentrations and the N:P ratio showed an increase and decrease under only flooding stress, respectively. N concentration and N:P ratio increased with water N-enrichment level. The interaction only promoted the accumulation of N concentrations in aboveground organs. Especially, several species also changed organ C concentrations to adapt to water stress and adjusted root N concentrations for the combined stresses of flooding or drought and high N. Leaf and stem were strongly synergistic in N element, and leaf and root were mainly synergistic in P element. Water N-enrichment determined organ element concentrations more than water depth, and species identity dictated organ C:N:P ratios. Our results reveal that the allocation and synergy of nutrients among organs are important adaptive strategies for plants in stressful environments. Meanwhile, increasing water N-enrichment can be an unignored stressor, and species identity should be paid attention as a countermeasure.
Collapse
Affiliation(s)
- Mengdie Zhou
- Key Laboratory of Wetland Ecology and Environment & Jilin Provincial Joint Key Laboratory of Changbai Mountain Wetland and Ecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianglong Jin
- Key Laboratory of Wetland Ecology and Environment & Jilin Provincial Joint Key Laboratory of Changbai Mountain Wetland and Ecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Jiang
- Key Laboratory of Wetland Ecology and Environment & Jilin Provincial Joint Key Laboratory of Changbai Mountain Wetland and Ecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Xianguo Lü
- Key Laboratory of Wetland Ecology and Environment & Jilin Provincial Joint Key Laboratory of Changbai Mountain Wetland and Ecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yanjing Lou
- Key Laboratory of Wetland Ecology and Environment & Jilin Provincial Joint Key Laboratory of Changbai Mountain Wetland and Ecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
3
|
Lü XT, Reed SC, Hou SL, Yang GJ. Assessing community assembly controls over community-scale nutrient resorption responses to nitrogen deposition. Oecologia 2023:10.1007/s00442-023-05415-9. [PMID: 37454309 DOI: 10.1007/s00442-023-05415-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 07/02/2023] [Indexed: 07/18/2023]
Abstract
Nutrient resorption is a fundamental physiological process in plants, with important ecological controls over numerous ecosystem functions. However, the role of community assembly in driving responses of nutrient resorption to perturbation remains largely unknown. Following the Price equation framework and the Community Assembly and Ecosystem Function framework, we quantified the contribution of species loss, species gain, and shared species to the reduction of community-level nutrient resorption efficiency in response to multi-level nitrogen (N) addition in a temperate steppe, after continuous N addition for seven years. Reductions of both N and phosphorus (P) resorption efficiency (NRE and PRE, respectively) were positively correlated with N addition levels. The dissimilarities in species composition between N-enriched and control communities increased with N addition levels, and N-enriched plots showed substantial species losses and gains. Interestingly, the reduction of community-scale NRE and PRE mostly resulted from N-induced decreases in resorption efficiency for the shared species in the control and N-enriched communities. There were negative correlations between the contributions of species richness effect and species identity effect and between the number and identity of species gained for the changes in both NRE and PRE following N enrichment. By simultaneously considering N-induced changes in species composition and in species-level resorption, our work presents a more complete picture of how different community assembly processes contribute to N-induced changes in community-level resorption.
Collapse
Affiliation(s)
- Xiao-Tao Lü
- Erguna Forest-Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management, Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Liaoning Province, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Sasha C Reed
- U.S. Geological Survey, Southwest Biological Science Center, Moab, UT, USA
| | - Shuang-Li Hou
- Erguna Forest-Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management, Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Liaoning Province, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Guo-Jiao Yang
- Erguna Forest-Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management, Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Liaoning Province, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
- College of Ecology and Environment, Hainan University, Haikou, China
| |
Collapse
|
4
|
Wang P, Fu C, Wang L, Yan T. Delayed autumnal leaf senescence following nutrient fertilization results in altered nitrogen resorption. TREE PHYSIOLOGY 2022; 42:1549-1559. [PMID: 35274706 DOI: 10.1093/treephys/tpac028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Increased atmospheric nitrogen (N) deposition could create an imbalance between N and phosphorus (P), which may substantially impact ecosystem functioning. Changes in autumnal phenology (i.e., leaf senescence) and associated leaf nutrient resorption may profoundly impact plant fitness and productivity. However, we know little about how and to what extent nutrient addition affects leaf senescence in tree species, or how changes in senescence may influence resorption. We thus investigated the impacts of N and P addition on leaf senescence and leaf N resorption in 2-year-old larch (Larix principisrupprechtii) seedlings in northern China. Results showed that nutrient addition (i.e., N, P or N + P addition) significantly delayed autumnal leaf senescence, and decreased leaf N resorption efficiency (NRE) and proficiency (NRP), particularly in the N and N + P treatments. Improved leaf N concentrations were correlated with delayed leaf senescence, as indicated by the positive relationship between mature leaf N concentrations and the timing of leaf senescence. Following nutrient addition, larch seedlings shifted toward delayed onset, but more rapid, leaf senescence. Additionally, we observed an initial negative correlation between the timing of leaf senescence and NRE and NRP, followed by a positive correlation, indicating delayed and less efficient remobilization during the early stages of senescence, followed by accelerated resorption in the later stages. However, the latter effect was potentially impaired by the increased risk of early autumn frost damage, thus failed to fully compensate for the negative effects observed during the early stages of senescence. Improved soil P availability increased leaf N resorption and thus weakened the negative impact of delayed leaf senescence on leaf N resorption, so P addition had no significant impact on leaf N resorption. Overall, our findings clarify the relationship between nutrient addition-resorption and the linkage with leaf senescence, and would have important implications for plant nutrient conservation strategy and nutrient cycling.
Collapse
Affiliation(s)
- Peilin Wang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, No. 768 Jiayuguan West Road Chenggguan District, Lanzhou 730000, China
| | - Chen Fu
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, No. 768 Jiayuguan West Road Chenggguan District, Lanzhou 730000, China
| | - Liying Wang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, No. 768 Jiayuguan West Road Chenggguan District, Lanzhou 730000, China
| | - Tao Yan
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, No. 768 Jiayuguan West Road Chenggguan District, Lanzhou 730000, China
| |
Collapse
|
5
|
Li M, Wang L, Li J, Peng Z, Wang L, Zhang X, Xu S. Grazing exclusion had greater effects than nitrogen addition on soil and plant community in a desert steppe, Northwest of China. BMC PLANT BIOLOGY 2022; 22:60. [PMID: 35114932 PMCID: PMC8812004 DOI: 10.1186/s12870-021-03400-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND The impacts of increasing nitrogen (N) deposition and overgrazing on terrestrial ecosystems have been continuously hot issues. Grazing exclusion, aimed at restoration of grassland ecosystem function and service, has been extensively applied, and considered a rapid and effective vegetation restoration method. However, the synthetic effects of exclosure and N deposition on plant and community characteristics have rarely been studied. Here, a 4-year field experiment of N addition and exclusion treatment had been conducted in the desert steppe dominated by Alhagi sparsifolia and Lycium ruthenicum in northwest of China, and the responses of soil characteristics, plant nutrition and plant community to the treatments had been analyzed. RESULTS The grazing exclusion significantly increased total N concentration in the surface soil (0-20 cm), and increased plant height, coverage (P < 0.05) and aboveground biomass. Specifically, A. sparsifolia recovered faster both in individual and community levels than L. ruthenicum did after exclusion. There was no difference in response to N addition gradients between the two plants. CONCLUSIONS Our findings suggest that it is exclusion rather than N addition that has greater impacts on soil properties and plant community in desert steppe. Present N deposition level has no effect on plant community of desert steppe based on short-term experimental treatments.
Collapse
Affiliation(s)
- Mengru Li
- School of Life Sciences, Lanzhou University, No. 222, Southern Tianshui Road, Lanzhou, 730000, China
| | - Lilong Wang
- School of Life Sciences, Lanzhou University, No. 222, Southern Tianshui Road, Lanzhou, 730000, China
- Northwest Institute of Eco-Environment and Resources, CAS, Lanzhou, 730000, China
| | - Junjun Li
- School of Life Sciences, Lanzhou University, No. 222, Southern Tianshui Road, Lanzhou, 730000, China
| | - Zhenling Peng
- School of Life Sciences, Lanzhou University, No. 222, Southern Tianshui Road, Lanzhou, 730000, China
| | - Liang Wang
- Administration of Anxi Extra-arid Desert National Nature Reserve, Guazhou, 736100, China
| | - Xinfang Zhang
- School of Life Sciences, Lanzhou University, No. 222, Southern Tianshui Road, Lanzhou, 730000, China
| | - Shijian Xu
- School of Life Sciences, Lanzhou University, No. 222, Southern Tianshui Road, Lanzhou, 730000, China.
| |
Collapse
|
6
|
Gao J, Li Q, Zhang J, Cui K, Wu Z, Shi M, Song X. Biochar Amendment Alters the Nutrient-Use Strategy of Moso Bamboo Under N Additions. FRONTIERS IN PLANT SCIENCE 2021; 12:667964. [PMID: 34249039 PMCID: PMC8261046 DOI: 10.3389/fpls.2021.667964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/31/2021] [Indexed: 05/05/2023]
Abstract
Nutrient resorption can affect plant growth, litter decomposition, and nutrient cycling. Although the effects of nitrogen (N) and biochar fertilizers on soil nutrient concentrations and plant nutrient uptake have been studied, an understanding of how combined applications of N and biochar affect plant nutrient resorption in plantations is lacking. In this study, we applied N (0, 30, 60, and 90 kg N ha-1 yr-1 defined as N0, N30, N60, and N90, respectively) and biochar (0, 20, and 40 t biochar ha-1 defined as BC0, BC20, and BC40, respectively) to the soil of a Moso bamboo plantation. We investigated the effects of these treatments on N and phosphorus (P) resorption by young and mature bamboo plants, as well as the relationships between nutrient resorption and leaf and soil nutrient concentrations. Young bamboo showed significantly greater foliar N resorption efficiency (NRE) and P resorption efficiency (PRE) than mature bamboo. N addition alone significantly increased the N resorption proficiency (NRP) and P resorption proficiency (PRP) but significantly decreased the NRE and PRE of both young and mature bamboo. In both the N-free and N-addition treatments, biochar amendments significantly reduced the foliar NRE and PRE of young bamboo but had the opposite effect on mature bamboo. Foliar NRE and PRE were significantly negatively correlated with fresh leaf N and P concentrations and soil total P concentration but significantly positively correlated with soil pH. Our findings suggest that N addition inhibits plant nutrient resorption and alters the nutrient-use strategy of young and mature bamboo from "conservative consumption" to "resource spending." Furthermore, biochar amendment enhanced the negative effect of N addition on nutrient resorption in young bamboo but reduced the negative effect on that of mature bamboo under N-addition treatments. This study provides new insights into the combined effects of N and biochar on the nutrient resorption of Moso bamboo and may assist in improving fertilization strategies in Moso bamboo plantations.
Collapse
Affiliation(s)
- Jinpei Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Quan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Center for Ecological Forecasting and Global Change, College of Forestry, Northwest A&F University, Yangling, China
| | - Junbo Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Kunkai Cui
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Zhizhuang Wu
- Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, China National Bamboo Research Center, Hangzhou, China
| | - Man Shi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Xinzhang Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- *Correspondence: Xinzhang Song,
| |
Collapse
|