1
|
Li C, Fu Y, Zhao Q, Zhang X, Ding R, Hao F, Yin G. Climatic driving mechanisms of the propagation from meteorological drought to agricultural and ecological droughts. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 383:125445. [PMID: 40288129 DOI: 10.1016/j.jenvman.2025.125445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/06/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
Droughts significantly impact terrestrial vegetation ecosystems. Understanding the mechanisms by which drought affects ecosystems under different hydrogeological conditions is crucial for ecosystem protection. The aim of this study was to investigate the characteristics and mechanisms of propagation from meteorological drought (MD) to agricultural drought (AD) and ecological drought (ED) in the Jinsha River Basin from 2000 to 2014. The monthly standardized precipitation evapotranspiration index (SPEI), soil moisture index (SSMI), normalized difference vegetation index (SNDVI), and solar-induced chlorophyll fluorescence (SSIF) data were used to investigate the responses of AD and ED to MD. On the basis of the maximum correlation coefficients (MCCs), the differences in the drought propagation times of MD to AD and ED were explored in positively and negatively correlated areas. A random forest algorithm was used to identify the impacts of climatic factors driving drought propagation. The results revealed that AD was mainly positively correlated with MD, whereas the correlation coefficients between ED and MD ranged from negative to positive. The propagation time from MD to AD was relatively short in summer and autumn. In positively correlated areas, the propagation time from MD to ecological drought indicated by NDVI (EDndvi) was longer than that indicated by SIF (EDsif), and the opposite was true in negatively correlated areas. The random forest algorithm results indicated that temperature (T), solar radiation (S) and precipitation (P) were key factors influencing ED in positively correlated areas and that T was an important factor in controlling the occurrence of ED in negatively correlated areas. Solar-induced chlorophyll fluorescence (SIF) was more sensitive to MD and had a shorter response time in positively correlated areas, suggesting its potential for monitoring vegetation growth responses to drought. We found that MD was not the main factor influencing vegetation growth in negatively correlated areas. The findings of this study had significant implications for understanding the mechanisms of the response of vegetation growth to MD and offered scientific guidance for maintaining terrestrial ecosystem health.
Collapse
Affiliation(s)
- Chong Li
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China; Key Laboratory of Environmental Change and Natural Disasters of Chinese Ministry of Education, Beijing Normal University, Beijing, 100875, China
| | - Yongshuo Fu
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Qianzuo Zhao
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xuan Zhang
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Ruiqiang Ding
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China; Key Laboratory of Environmental Change and Natural Disasters of Chinese Ministry of Education, Beijing Normal University, Beijing, 100875, China
| | - Fanghua Hao
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Guodong Yin
- China Renewable Energy Engineering Institute, Beijing, 100120, China
| |
Collapse
|
2
|
Schlaepfer DR, Chambers JC, Urza AK, Hanberry BB, Brown JL, Board DI, Campbell SB, Clause KJ, Crist MR, Bradford JB. Declining ecological resilience and invasion resistance under climate change in the sagebrush region, United States. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2025; 35:e3065. [PMID: 39581955 DOI: 10.1002/eap.3065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/26/2024] [Indexed: 11/26/2024]
Abstract
In water-limited dryland ecosystems of the Western United States, climate change is intensifying the impacts of heat, drought, and wildfire. Disturbances often lead to increased abundance of invasive species, in part, because dryland restoration and rehabilitation are inhibited by limited moisture and infrequent plant recruitment events. Information on ecological resilience to disturbance (recovery potential) and resistance to invasive species can aid in addressing these challenges by informing long-term restoration and conservation planning. Here, we quantified the impacts of projected future climate on ecological resilience and invasion resistance (R&R) in the sagebrush region using novel algorithms based on ecologically relevant and climate-sensitive predictors of climate and ecological drought. We used a process-based ecohydrological model to project these predictor variables and resulting R&R indicators for two future climate scenarios and 20 climate models. Results suggested widespread future R&R decreases (24%-34% of the 1.16 million km2 study area) that are generally consistent among climate models. Variables related to rising temperatures were most strongly linked to decreases in R&R indicators. New continuous R&R indices quantified responses to climate change; particularly useful for areas without projected change in the R&R category but where R&R still may decrease, for example, some of the areas with a historically low R&R category. Additionally, we found that areas currently characterized as having high sagebrush ecological integrity had the largest areal percentage with expected declines in R&R in the future, suggesting continuing declines in sagebrush ecosystems. One limitation of these R&R projections was relatively novel future climatic conditions in particularly hot and dry areas that were underrepresented in the training data. Including more data from these areas in future updates could further improve the reliability of the projections. Overall, these projected future declines in R&R highlight a growing challenge for natural resource managers in the region, and the resulting spatially explicit datasets provide information that can improve long-term risk assessments, prioritizations, and climate adaptation efforts.
Collapse
Affiliation(s)
- Daniel R Schlaepfer
- U.S. Geological Survey, Southwest Biological Science Center and Northwest Climate Adaptation Science Center, Flagstaff, Arizona, USA
- Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona, USA
| | - Jeanne C Chambers
- USDA Forest Service, Rocky Mountain Research Station, Reno, Nevada, USA
| | - Alexandra K Urza
- USDA Forest Service, Rocky Mountain Research Station, Reno, Nevada, USA
| | - Brice B Hanberry
- USDA Forest Service, Rocky Mountain Research Station, Rapid City, South Dakota, USA
| | - Jessi L Brown
- USDA Forest Service, Rocky Mountain Research Station, Reno, Nevada, USA
| | - David I Board
- USDA Forest Service, Rocky Mountain Research Station, Reno, Nevada, USA
| | - Steven B Campbell
- USDA Natural Resources Conservation Service, West National Technology Support Center, Portland, Oregon, USA
| | - Karen J Clause
- USDA Forest Service, Bridger-Teton National Forest, Pinedale, Wyoming, USA
| | - Michele R Crist
- U.S. Bureau of Land Management, National Interagency Fire Center, Boise, Idaho, USA
| | - John B Bradford
- U.S. Geological Survey, Southwest Biological Science Center and Northwest Climate Adaptation Science Center, Flagstaff, Arizona, USA
| |
Collapse
|
3
|
Zhu Y, Jiang S, Ren L, Guo J, Zhong F, Du S, Cui H, He M, Duan Z. Three-dimensional ecological drought identification and evaluation method considering eco-physiological status of terrestrial ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175423. [PMID: 39134267 DOI: 10.1016/j.scitotenv.2024.175423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024]
Abstract
Ecological drought is a complex process in terrestrial ecosystems where vegetation's eco-physiological functions are impaired due to water stress. However, there is currently a lack of long-term assessment of ecological drought from an eco-physiological perspective. In this study, the standardized ecological drought index (SESNDI) was developed using actual evaporation, root soil moisture, and kernel normalized difference vegetation index via the Euclidean distance method, reflecting ecosystem physiology, water supply capacity, and vegetation status. Solar-induced chlorophyll fluorescence validated SESNDI by reflecting vegetation photosynthesis. Using China as an example, severely impacted by climate change and ecological restoration, ecological drought's spatio-temporal variation and propagation characteristics was evaluated using clustering algorithms. The results demonstrated that (1) SESNDI showed superior performance over several other drought indices. (2) During 1982-2020, ecological drought was prevalent from 1990 to 2010, especially in the central and northeastern regions. (3) Compared to 1982-2000, the median duration and affected area of ecological drought events during 2001-2020 reduced by four months and 1.51 × 105 km2, respectively, while the median intensity increased by 0.06. (4) Decreased precipitation and increased temperature were the primary factors contributing to the frequent occurrence of ecological drought in China from 1990 to 2010. This study offers a crucial methodology for evaluating ecological drought, serving as a reference for developing effective terrestrial restoration strategies.
Collapse
Affiliation(s)
- Yongwei Zhu
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Shanhu Jiang
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China; Yinshanbeilu Grassland Eco-hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Beijing 100038, China.
| | - Liliang Ren
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China; Cooperative Innovation Center for Water Safety and Hydro-Science, Hohai University, Nanjing 210098, China
| | - Jianying Guo
- Yinshanbeilu Grassland Eco-hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Feng Zhong
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Shuping Du
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Hao Cui
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Miao He
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Zheng Duan
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Lu Y, Wang B, Zhang M, Yang W, Wu M, Ye J, Ye S, Zhu G. Exogenous Brassinolide Ameliorates the Adverse Effects of Gamma Radiation Stress and Increases the Survival Rate of Rice Seedlings by Modulating Antioxidant Metabolism. Int J Mol Sci 2024; 25:11523. [PMID: 39519076 PMCID: PMC11546918 DOI: 10.3390/ijms252111523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Gamma irradiation-based mutant creation is one of the most important methods for rice plant mutagenesis breeding and molecular biology research. Although median lethal dose irradiation severely damages rice seedlings, applying brassinolide (BR) can increase the survival rate of irradiated seedlings. In this study, we investigated the effects of soaking seeds in solutions containing different BR concentrations (0.001, 0.01, 0.1, 1.0, and 5.0 μmol/L) and then spraying the resulting seedlings twice with 0.1 μmol/L BR. The combined BR treatments markedly decreased the superoxide anion (O2•-), hydrogen peroxide (H2O2), and malondialdehyde contents but increased the chlorophyll content. An appropriate BR treatment of gamma-irradiated samples substantially increased the activities of the antioxidant enzymes superoxide dismutase, peroxidase, and ascorbate peroxidase as well as the proline, ascorbic acid, and glutathione contents in rice seedling shoots. The BR treatment also promoted the growth of seedlings derived from irradiated seeds and increased the shoot and root fresh and dry weights. Most notably, soaking seeds in 0.01 or 0.1 μmol/L BR solutions and then spraying seedlings twice with 0.1 μmol/L BR significantly increased the final seedling survival rate and decreased mutant loss. The study results suggest that exogenous BR treatments can protect rice seedlings from gamma irradiation stress by enhancing antioxidant metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guofu Zhu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 198 Shi-Qiao Road, Hangzhou 310021, China; (Y.L.); (B.W.); (M.Z.); (W.Y.); (M.W.); (J.Y.); (S.Y.)
| |
Collapse
|
5
|
Depardieu C, Lenz P, Marion J, Nadeau S, Girardin MP, Marchand W, Bégin C, Treydte K, Gessler A, Bousquet J, Savard MM, Isabel N. Contrasting physiological strategies explain heterogeneous responses to severe drought conditions within local populations of a widespread conifer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171174. [PMID: 38402972 DOI: 10.1016/j.scitotenv.2024.171174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/12/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Understanding how trees prioritize carbon gain at the cost of drought vulnerability under severe drought conditions is crucial for predicting which genetic groups and individuals will be resilient to future climate conditions. In this study, we investigated variations in growth, tree-ring anatomy as well as carbon and oxygen isotope ratios to assess the sensitivity and the xylem formation process in response to an episode of severe drought in 29 mature white spruce (Picea glauca [Moench] Voss) families grown in a common garden trial. During the drought episode, the majority of families displayed decreased growth and exhibited either sustained or increased intrinsic water-use efficiency (iWUE), which was largely influenced by reduced stomatal conductance as revealed by the dual carbon‑oxygen isotope approach. Different water-use strategies were detected within white spruce populations in response to drought conditions. Our results revealed intraspecific variation in the prevailing physiological mechanisms underlying drought response within and among populations of Picea glauca. The presence of different genetic groups reflecting diverse water-use strategies within this largely-distributed conifer is likely to lessen the negative effects of drought and decrease the overall forest ecosystems' sensitivity to it.
Collapse
Affiliation(s)
- Claire Depardieu
- Canada Research Chair in Forest Genomics, Institute for Systems and Integrative Biology, Université Laval, Québec, QC G1V 0A6, Canada; Forest Research Centre, Département des sciences du bois et de la forêt, Université Laval, Québec, QC G1V 0A6, Canada; Natural Ressources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 rue du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada.
| | - Patrick Lenz
- Canada Research Chair in Forest Genomics, Institute for Systems and Integrative Biology, Université Laval, Québec, QC G1V 0A6, Canada; Natural Resources Canada, Canadian Forest Service, Canadian Wood Fibre Centre, 1055 rue du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada
| | - Joelle Marion
- Geological Survey of Canada, Natural Resources Canada, 490 rue de la Couronne, Québec, QC G1K 9A9, Canada
| | - Simon Nadeau
- Canada Research Chair in Forest Genomics, Institute for Systems and Integrative Biology, Université Laval, Québec, QC G1V 0A6, Canada; Natural Resources Canada, Canadian Forest Service, Canadian Wood Fibre Centre, 1055 rue du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada
| | - Martin P Girardin
- Natural Ressources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 rue du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada; Centre d'étude de la forêt, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada; Forest Research Institute, Université du Québec en Abitibi-Témiscamingue, 445 boul. de l'Université, Rouyn-Noranda, QC J9X 5E4, Canada
| | - William Marchand
- Natural Ressources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 rue du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada; Centre d'étude de la forêt, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada; Forest Research Institute, Université du Québec en Abitibi-Témiscamingue, 445 boul. de l'Université, Rouyn-Noranda, QC J9X 5E4, Canada
| | - Christian Bégin
- Geological Survey of Canada, Natural Resources Canada, 490 rue de la Couronne, Québec, QC G1K 9A9, Canada
| | - Kerstin Treydte
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Arthur Gessler
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland; Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland
| | - Jean Bousquet
- Canada Research Chair in Forest Genomics, Institute for Systems and Integrative Biology, Université Laval, Québec, QC G1V 0A6, Canada; Forest Research Centre, Département des sciences du bois et de la forêt, Université Laval, Québec, QC G1V 0A6, Canada
| | - Martine M Savard
- Geological Survey of Canada, Natural Resources Canada, 490 rue de la Couronne, Québec, QC G1K 9A9, Canada
| | - Nathalie Isabel
- Canada Research Chair in Forest Genomics, Institute for Systems and Integrative Biology, Université Laval, Québec, QC G1V 0A6, Canada; Natural Ressources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 rue du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada
| |
Collapse
|
6
|
Seo J, Won J, Lee H, Kim S. Probabilistic monitoring of meteorological drought impacts on water quality of major rivers in South Korea using copula models. WATER RESEARCH 2024; 251:121175. [PMID: 38277826 DOI: 10.1016/j.watres.2024.121175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/12/2023] [Accepted: 01/19/2024] [Indexed: 01/28/2024]
Abstract
The impacts of drought range from water supply for humans to ecosystems. Drought affects river water quality by disturbing the hydrological regime in a variety of ways, and can degrade water quality by reducing surface and groundwater availability. In particular, drought-induced low flows, reduced nutrient dilution, and extreme increases in water temperature affect various water quality parameters in streams. Furthermore, the effects of drought on stream water quality may vary from season to season and from stream segment to stream segment, which requires careful investigation. In this study, Environmental Drought Condition Index - water quality (EDCI-wq) is proposed using a bivariate copula joint probability model between meteorological drought index and river water quality. Using this, environmental drought with respect to water quality is defined, and it is confirmed that environmental drought with respect to water quality can be routinely monitored through time series analysis and mapping of the proposed EDCI-wq. In addition, in order to express the environmental drought condition more explicitly to the general public, the environmental drought condition is graded into four classes based on the EDCI-wq. Furthermore, the sensitivity of river water quality to meteorological drought was estimated using the copula joint probability model, which allowed us to identify river segments that are relatively more sensitive to meteorological drought events.
Collapse
Affiliation(s)
- Jiyu Seo
- Division of Earth Environmental System Science (Major of Environmental Engineering), Pukyong National University, Busan 48513, Korea
| | - Jeongeun Won
- Division of Earth Environmental System Science (Major of Environmental Engineering), Pukyong National University, Busan 48513, Korea
| | - Hosun Lee
- Drought Information Analysis Center, Korea Water Resources Corporation, Daejeon 34350, Korea
| | - Sangdan Kim
- Division of Earth Environmental System Science (Major of Environmental Engineering), Pukyong National University, Busan 48513, Korea.
| |
Collapse
|
7
|
Yanting L, Bingkui W, Mengchao Z, Jing Y, Shenghai Y. Sensitivity of genotypically diverse rice varieties to radiation and the related changes to antioxidant enzyme activities. Int J Radiat Biol 2023; 100:453-465. [PMID: 38029339 DOI: 10.1080/09553002.2023.2290293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
PURPOSE Radiation mutagenesis, which typically involves gamma rays, is important for generating new rice germplasm resources. Determining the appropriate radiation dose range is critical for the success of radiation mutagenesis. Clarifying the sensitivity and tolerance of genotypically diverse rice varieties to gamma irradiation as well as the radiation-induced changes to reactive oxygen species (ROS) generation and antioxidant enzyme activities is crucial for increasing the utility of radiation mutagenesis in rice breeding programs. MATERIALS AND METHODS The seeds of the following four rice varieties with different genotypes were used as test materials: indica Zhe 1613, glutinous indica Zhe 1708, japonica Zhejing 100, and glutinous japonica Zhenuo 65. Additionally,60Co was used as the source of gamma rays. The rice seeds were irradiated with 14 doses (0, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, and 750 Gy). Non-irradiated seeds were used as the control. The seedling survival rate for each variety was recorded at 3, 7, 14, and 28 days after sowing. Moreover, the median lethal dose (LD50) and critical dose (LD40) were calculated according to the seedling survival rates at 28 days after sowing. The seedling superoxide anion (O2•-), hydrogen peroxide (H2O2), and malondialdehyde (MDA) contents and the superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX) activities were analyzed at 7 days after sowing. RESULTS As the radiation dose increased, the seedling survival rate decreased. The seedling survival rate also decreased significantly as the number of days after sowing increased. Among the rice genotypes, the rank-order of the radiation tolerance was as follows: indica Zhe 1613 > glutinous indica Zhe 1708 > japonica Zhejing 100 > glutinous japonica Zhenuo 65. The LD50 values were 426.7 Gy for Zhe 1613, 329.2 Gy for Zhe 1708, 318.3 Gy for Zhejing 100, and 316.6 Gy for Zhenuo 65. Increases in the radiation dose resulted in significant increases in the seedling O2•- and H2O2 contents, but only up to a certain point. Further increases in the radiation dose caused the seedling O2•- and H2O2 contents to decrease. The H2O2 content for each variety peaked when the radiation dose was very close to the LD50. We propose that the radiation dose associated with the highest H2O2 content (±50 Gy) should be used as the recommended dose for the gamma irradiation of rice. The radiation dose that resulted in peak seedling O2•- contents in the analyzed rice varieties was very close to the LD40. In all rice varieties, the MDA content increased as the radiation dose increased. The SOD, CAT, POD, and APX activities increased as the radiation dose increased within a certain range (less than 600 Gy for Zhe 1613 and 400 Gy for the other varieties), but there were slight differences among the rice varieties. CONCLUSIONS Genotypically diverse rice varieties vary regarding their sensitivity to gamma irradiation. Our findings suggest that ROS generation and antioxidant enzyme activities are important factors associated with the radiation mutagenesis of rice. The close relationship between the activities of key antioxidant enzymes, such as SOD, POD, APX, and CAT, and the LD50 and LD40 may be exploited to enhance radiation mutagenesis through the use of plant growth regulators.
Collapse
Affiliation(s)
- Lu Yanting
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wang Bingkui
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhang Mengchao
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ye Jing
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ye Shenghai
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
8
|
Gamon JA, Wang R, Russo SE. Contrasting photoprotective responses of forest trees revealed using PRI light responses sampled with airborne imaging spectrometry. THE NEW PHYTOLOGIST 2023; 238:1318-1332. [PMID: 36658464 DOI: 10.1111/nph.18754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
The Photochemical Reflectance Index (PRI) provides an optical indicator of photosynthetic light-use efficiency, photoprotection, and stress in plants. Although PRI can be applied in remote sensing, its interpretation depends on irradiance, which is hard to obtain from satellite or airborne imagery. To quantify forest photoprotective responses remotely, we developed a framework for modeling and interpreting PRI-light responses of individual trees and species using airborne imaging spectrometry coupled with georeferenced forest inventory data from a temperate broad-leaved forest. We derived an irradiance proxy, used hierarchical modeling to analyze PRI-light responses, and developed a framework of physiological interpretations of model parameters as facultative and constitutive components of photoprotection. Photochemical Reflectance Index declined with illumination, and PRI-light relationships varied with landscape position and among tree crowns and species. More sun-exposed foliage had lower intercepts and slopes of the relationship, indicating greater constitutive, but less facultative, photoprotection. We show that tree photoprotective strategies can be quantified at multiple scales using airborne hyperspectral data in structurally complex forests. Our findings and approach have important implications for the remote sensing of forest stress by offering a new way to assess functional diversity through dynamic differences in photoprotection and photosynthetic downregulation and providing previsual indicators of forest stress.
Collapse
Affiliation(s)
- John A Gamon
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, 68583-0961, USA
| | - Ran Wang
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, 68583-0961, USA
| | - Sabrina E Russo
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588-0118, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588-0660, USA
| |
Collapse
|
9
|
Ingrisch J, Umlauf N, Bahn M. Functional thresholds alter the relationship of plant resistance and recovery to drought. Ecology 2023; 104:e3907. [PMID: 36314950 PMCID: PMC10078541 DOI: 10.1002/ecy.3907] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/13/2022] [Accepted: 08/29/2022] [Indexed: 02/03/2023]
Abstract
The ecological consequences of future droughts are difficult to predict due to a limited understanding of the nonlinear responses of plants to increasing drought intensity, which can change abruptly when critical thresholds of drought intensity are crossed. Drought responses are composed of resistance and postdrought recovery. Although it is well established that higher drought intensity increases the impact and, thus, reduces plant resistance, less is known about how drought intensity affects recovery and how resistance and recovery are related. In this study, we tested the hypothesis that resistance, recovery, and their relationship change abruptly upon crossing critical thresholds of drought intensity. We exposed mesocosms of two monospecific stands of the common grassland species Dactylis glomerata and Plantago lanceolata to a large gradient of drought intensity and quantified the resistance and recovery of multiple measures of plant productivity, including gross-primary productivity, vegetative height, Normalized Difference Vegetation Index, and aboveground biomass production. Drought intensity had nonlinear and contrasting effects on plant productivity during drought and recovery, which differed between the two species. Increasing drought intensity decreased the resistance of plant productivity and caused rapid compensatory growth during postdrought recovery, the degree of which was highly dependent on drought intensity. Across multiple response parameters two thresholds of drought intensity emerged, upon which we observed abrupt changes in plant resistance and recovery, as well as their relationship. We conclude that across gradients of drought intensity resistance and recovery are tightly coupled and that both the magnitude and the direction of drought effects on resistance and recovery can change abruptly upon specific thresholds of stress intensity. These findings highlight the urgent need to account for nonlinear responses of resistance and recovery to drought intensity as critical drivers of productivity in a changing climate.
Collapse
Affiliation(s)
| | - Nikolaus Umlauf
- Department of StatisticsUniversity of InnsbruckInnsbruckAustria
| | - Michael Bahn
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
| |
Collapse
|
10
|
Haberstroh S, Werner C. The role of species interactions for forest resilience to drought. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1098-1107. [PMID: 35312142 DOI: 10.1111/plb.13415] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Increasing durations and frequencies of droughts under climate change endanger the sustainable functioning of forests worldwide. The admixture of species with complementary resource use may increase the resilience of forests towards drought; however, little is known about modifications of species interactions (i.e. facilitation and competition) by increasing drought severity in mixed forests. In particular, knowledge on the regulation of central ecohydrological processes, such as tree water fluxes, is lacking. Therefore, we conducted a literature review to assess the impact of species interactions on tree resilience (resistance + recovery) under increasing drought severity. The classification of studies into three drought classes suggested that beneficial species interactions, i.e. through improved water relations, were prevalent under mild droughts. However, with increasing drought, negative effects, such as interspecific competition, occurred. These negative interactions were prominent under extreme droughts, where even trees with complementary resource-use strategies competed for water resources. Fewer data are available on recovery of water fluxes. The limited evidence supported the patterns observed for drought resistance, with facilitation and complementarity of species in mixtures enhancing tree recovery after moderate droughts. However, after extreme droughts, competition effects and reduced recovery for some species were observed, which can strongly compromise tree resilience. While we acknowledge the importance of mixed forests for biodiversity, ecosystem services or pest resistance, we caution that beneficial species interactions may shift under extreme droughts. Thus, there is an urgent need to investigate species interaction effects on resilience in more depth to adapt forest trees to increasing drought stress.
Collapse
Affiliation(s)
- S Haberstroh
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University Freiburg, Freiburg, Germany
| | - C Werner
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Huang C, Liao J, Huang W, Qin N. Salicylic Acid Protects Sweet Potato Seedlings from Drought Stress by Mediating Abscisic Acid-Related Gene Expression and Enhancing the Antioxidant Defense System. Int J Mol Sci 2022; 23:14819. [PMID: 36499145 PMCID: PMC9736078 DOI: 10.3390/ijms232314819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
China has the largest sweet potato planting area worldwide, as well as the highest yield per unit area and total yield. Drought is the most frequently encountered environmental stress during the sweet potato growing season. In this study, we investigated salicylic acid (SA)-mediated defense mechanisms under drought conditions in two sweet potato varieties, Zheshu 77 and Zheshu 13. Drought stress decreased growth traits, photosynthetic pigments and relative water contents, as well as the photosynthetic capability parameters net photosynthetic rate, stomatal conductance and transpiration rate, whereas it increased reactive oxygen species production, as well as malondialdehyde and abscisic acid contents. The application of SA to drought-stressed plants reduced oxidative damage by triggering the modulation of antioxidant enzyme activities and the maintenance of optimized osmotic environments in vivo in the two sweet potato varieties. After SA solution applications, NCED-like3 expression was downregulated and the abscisic acid contents of drought-stressed plants decreased, promoting photosynthesis and plant growth. Thus, foliar spraying an appropriate dose of SA, 2.00-4.00 mg·L-1, on drought-stressed sweet potato varieties may induce resistance in field conditions, thereby increasing growth and crop yield in the face of increasingly frequent drought conditions.
Collapse
Affiliation(s)
- Chongping Huang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Sanya 572025, China
- Agricultural Experiment Station of Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Junlin Liao
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Wenjie Huang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Nannan Qin
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| |
Collapse
|
12
|
Sadiqi SSJ, Hong EM, Nam WH, Kim T. Review: An integrated framework for understanding ecological drought and drought resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157477. [PMID: 35870577 DOI: 10.1016/j.scitotenv.2022.157477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Droughts are a frequent natural phenomenon that has amplified globally in the 21st century and are projected to become more common and extreme in the future. Consequently, this affects the progress of drought indices and frameworks to categorize drought conditions. Several drought-related indices and variables are required to capture different features of complex drought conditions. Therefore, we explained the signs of progress of ecological drought that were ecologically expressive to promote the integration between the research on and identification of water scarcity situations and analyzed different frameworks to synthesize the drought effects on species and ecosystems. Notably, we present an inclusive review of an integrated framework for an ecological drought. The ecological drought framework affords the advantage of improved methodologies for assessing ecological drought. This is supported by research on water-limited ecosystems that incorporated several drought-related elements and indicators to produce an integrated drought framework. In this framework, we combined multiple studies on drought recovery, early warning signs, and the effects of land management interferences, along with a schematic representation of a new extension of the framework into ecological systems, to contribute to the success and long-term sustainability of ecological drought adaptation, as well as on-the-ground examples of climate-informed ecological drought management in action for an integrated framework for ecological drought. This study provides an integrated approach to the understanding of ecological drought in line with accelerated scientific advancement to promote persistence and plan for a future that irretrievably exceeds the ecosystem thresholds and new multivariate drought indices.
Collapse
Affiliation(s)
- Sayed Shah Jan Sadiqi
- Department of Environment Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Eun-Mi Hong
- School of Natural Resources and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Won-Ho Nam
- School of Social Safety and Systems Engineering, Hankyong National University, Anseong 17579, Republic of Korea; Institute of Agricultural Environmental Science, Hankyong National University, Anseong 17579, Republic of Korea; National Agricultural Water Research Center, Hankyong National University, Anseong 17579, Republic of Korea.
| | - Taegon Kim
- Department of Smart Farm, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| |
Collapse
|
13
|
Müller LM, Bahn M. Drought legacies and ecosystem responses to subsequent drought. GLOBAL CHANGE BIOLOGY 2022; 28:5086-5103. [PMID: 35607942 PMCID: PMC9542112 DOI: 10.1111/gcb.16270] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 05/19/2023]
Abstract
Climate change is expected to increase the frequency and severity of droughts. These events, which can cause significant perturbations of terrestrial ecosystems and potentially long-term impacts on ecosystem structure and functioning after the drought has subsided are often called 'drought legacies'. While the immediate effects of drought on ecosystems have been comparatively well characterized, our broader understanding of drought legacies is just emerging. Drought legacies can relate to all aspects of ecosystem structure and functioning, involving changes at the species and the community scale as well as alterations of soil properties. This has consequences for ecosystem responses to subsequent drought. Here, we synthesize current knowledge on drought legacies and the underlying mechanisms. We highlight the relevance of legacy duration to different ecosystem processes using examples of carbon cycling and community composition. We present hypotheses characterizing how intrinsic (i.e. biotic and abiotic properties and processes) and extrinsic (i.e. drought timing, severity, and frequency) factors could alter resilience trajectories under scenarios of recurrent drought events. We propose ways for improving our understanding of drought legacies and their implications for subsequent drought events, needed to assess the longer-term consequences of droughts on ecosystem structure and functioning.
Collapse
Affiliation(s)
- Lena M. Müller
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
| | - Michael Bahn
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
| |
Collapse
|
14
|
Seedling responses to soil moisture amount versus pulse frequency in a successfully encroaching semi-arid shrub. Oecologia 2022; 199:441-451. [PMID: 35661250 DOI: 10.1007/s00442-022-05193-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 05/20/2022] [Indexed: 10/18/2022]
Abstract
Rainfall timing, frequency, and quantity is rapidly changing in dryland regions, altering dryland plant communities. Understanding dryland plant responses to future rainfall scenarios is crucial for implementing proactive management strategies, particularly in light of land cover changes concurrent with climate change. One such change is woody plant encroachment, an increasing abundance of woody plants in areas formerly dominated by grasslands or savannas. Continued woody plant encroachment will depend, in part, on seedling capacity to establish and thrive under future climate conditions. Seedling performance is primarily impacted by soil moisture conditions governed by precipitation amount (quantity) and frequency. We hypothesized that (H1) seedling performance would be enhanced by both greater soil moisture and pulse frequency, such that seedlings with similar mean soil moisture would perform best under high pulse frequency. Alternatively, (H2) mean soil moisture would have greater influence than pulse frequency, such that a given pulse frequency would have little influence on seedling performance. The hypotheses were tested with Prosopis velutina, a shrub native to the United States that has encroached throughout its range and is invasive in other continents. Seedlings were grown in a greenhouse under two soil moisture treatments, each which was maintained by two pulse frequency treatments. Contrary to H1, mean soil moisture had greater impact than pulse frequency on seedling growth, photosynthetic gas exchange, leaf chemistry, and biomass allocation. These results indicate that P. velutina seedlings may be more responsive to rainfall amount than frequency, at least within the conditions seedlings experienced in this experimental manipulation.
Collapse
|
15
|
Asbjornsen H, McIntire CD, Vadeboncoeur MA, Jennings KA, Coble AP, Berry ZC. Sensitivity and threshold dynamics of Pinus strobus and Quercus spp. in response to experimental and naturally occurring severe droughts. TREE PHYSIOLOGY 2021; 41:1819-1835. [PMID: 33904579 DOI: 10.1093/treephys/tpab056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Increased drought frequency and severity are a pervasive global threat, yet the capacity of mesic temperate forests to maintain resilience in response to drought remains poorly understood. We deployed a throughfall removal experiment to simulate a once in a century drought in New Hampshire, USA, which coupled with the region-wide 2016 drought, intensified moisture stress beyond that experienced in the lifetimes of our study trees. To assess the sensitivity and threshold dynamics of two dominant northeastern tree genera (Quercus and Pinus), we monitored sap flux density (Js), leaf water potential and gas exchange, growth and intrinsic water-use efficiency (iWUE) for one pretreatment year (2015) and two treatment years (2016-17). Results showed that Js in pine (Pinus strobus L.) declined abruptly at a soil moisture threshold of 0.15 m3 m-3, whereas oak's (Quercus rubra L. and Quercus velutina Lam.) threshold was 0.11 m3 m-3-a finding consistent with pine's more isohydric strategy. Nevertheless, once oaks' moisture threshold was surpassed, Js declined abruptly, suggesting that while oaks are well adapted to moderate drought, they are highly susceptible to extreme drought. The radial growth reduction in response to the 2016 drought was more than twice as great for pine as for oaks (50 vs 18%, respectively). Despite relatively high precipitation in 2017, the oaks' growth continued to decline (low recovery), whereas pine showed neutral (treatment) or improved (control) growth. The iWUE increased in 2016 for both treatment and control pines, but only in treatment oaks. Notably, pines exhibited a significant linear relationship between iWUE and precipitation across years, whereas the oaks only showed a response during the driest conditions, further underscoring the different sensitivity thresholds for these species. Our results provide new insights into how interactions between temperate forest tree species' contrasting physiologies and soil moisture thresholds influence their responses and resilience to extreme drought.
Collapse
Affiliation(s)
- Heidi Asbjornsen
- Department of Natural Resources and the Environment, University of New Hampshire, 56 College Rd, Durham, NH 03824, USA
- Earth Systems Research Center, University of New Hampshire, 8 College Rd, Durham, NH 03824, USA
| | - Cameron D McIntire
- Department of Natural Resources and the Environment, University of New Hampshire, 56 College Rd, Durham, NH 03824, USA
- State and Private Forestry, USDA Forest Service, 271 Mast Road, Durham, NH 03824, USA
| | - Matthew A Vadeboncoeur
- Earth Systems Research Center, University of New Hampshire, 8 College Rd, Durham, NH 03824, USA
| | - Katie A Jennings
- Department of Natural Resources and the Environment, University of New Hampshire, 56 College Rd, Durham, NH 03824, USA
- Earth Systems Research Center, University of New Hampshire, 8 College Rd, Durham, NH 03824, USA
| | - Adam P Coble
- Department of Natural Resources and the Environment, University of New Hampshire, 56 College Rd, Durham, NH 03824, USA
- Private Forests Division, Oregon Department of Forestry, 2600 State St, Salem, OR 97310, USA
| | - Z Carter Berry
- Department of Natural Resources and the Environment, University of New Hampshire, 56 College Rd, Durham, NH 03824, USA
- Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| |
Collapse
|
16
|
Rezaei MR, Es-haghi A, Yaghmaei P, Ghobeh M. Assessment of Antioxidant and Antimicrobial Activities of Silver Nanoparticles Biosynthesized by Haplophyllum Obtusifolium. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2020. [DOI: 10.34172/ajmb.2020.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Plants comprise great antioxidant sources as a result of their redox and biochemical components, which are rich in secondary metabolites such as phenolic acids, flavonoids, and other constituents. Haplophyllum obtusifolium from polygonaceae is widely used for preventing and managing diabetes. This study investigated the antibacterial and antioxidant activities of silver nanoparticles (AgNPs) biosynthesized by H. obtusifolium. Methods: The aerial parts of H. obtusifolium were gathered from the north of Khorasan Razavi province, Iran and desiccated at the chamber temperature. The shoots were powdered by grinding, 5 g of the powder was mixed with 250 mL of deionized water, and the resultant blend was then filtered. Bactericidal properties and antioxidant activity of the nanoparticles were assessed using disk diffusion and DPPH (2, 2-diphenyl-1-picrylhydrazyl) tests, respectively. Results: The results of this study showed that the biosynthesized nanoparticles exhibited antibacterial activity against a gram-negative (Klebsiella pneumoniae) bacterium, but they had no effects on gram-positive Staphylococcus epidermidis. Antioxidant test results showed that these nanoparticles were capable of eliminating DPPH radicals in a concentration-dependent manner so that a more potent antioxidant activity was seen in higher concentrations of the nanoparticles. Conclusion: Our results suggested that H. obtusifolium can be used as a key source of antioxidants/ antimicrobial agents in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Mohammad Reza Rezaei
- Department of Biology, Science and Research Branch, Islamic Azad University (IAU), Tehran, Iran
| | - Ali Es-haghi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Parichehreh Yaghmaei
- Department of Biology, Science and Research Branch, Islamic Azad University (IAU), Tehran, Iran
| | - Maryam Ghobeh
- Department of Biology, Science and Research Branch, Islamic Azad University (IAU), Tehran, Iran
| |
Collapse
|