1
|
Holmes MJ, Lewis RJ. Reviewing Evidence for Disturbance to Coral Reefs Increasing the Risk of Ciguatera. Toxins (Basel) 2025; 17:195. [PMID: 40278692 PMCID: PMC12030847 DOI: 10.3390/toxins17040195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
The hypothesis that disturbance to coral reefs creates new surfaces that increase the risk of ciguatera is premised upon the increased algal substrates that develop on these surfaces being colonised by high ciguatoxin (CTX)-producing Gambierdiscus species that proliferate and enter the ciguatera food chain. Current evidence indicates that new algal substrates are indeed rapidly colonised by Gambierdiscus. However, the requirement that these Gambierdiscus species include at least one that is a significant (high) CTX-producer is more likely a limiting step. While ambient environmental conditions impact the capacity of Gambierdiscus to bloom, factors that limit the growth of the bloom could influence (typically increase) the flux of CTX entering marine food chains. Additionally, new algal substrates on damaged reefs can be preferentially grazed to funnel ciguatoxins from Gambierdiscus to herbivores in disturbed reef areas. In societies consuming second trophic level species (herbivores, grazers, and detritivores), such funnelling of CTX would increase the risk of ciguatera, although such risk would be partially offset over time by growth (toxin-dilution) and depuration. Here, we review evidence for six potential mechanisms to increase ciguatera risk from disturbance to coral reefs and suggest a hypothesis where ecosystem changes could increase the flux of CTX to groupers through a shift in predation from predominately feeding on planktonic-feeding prey to mostly feeding on benthic-feeding prey, increasing the potential for CTX to accumulate. Evidence for this hypothesis is stronger for the Pacific and Indian Oceans, and it may not apply to the Caribbean Sea/Atlantic Ocean.
Collapse
Affiliation(s)
| | - Richard J. Lewis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia;
| |
Collapse
|
2
|
Peters JR, Reed DC, Shrestha J, Hamilton SL, Burkepile DE. Frequent disturbance to a foundation species disrupts consumer-mediated nutrient cycling in giant kelp forests. Ecology 2025; 106:e70019. [PMID: 40066697 DOI: 10.1002/ecy.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 10/19/2024] [Accepted: 11/14/2024] [Indexed: 05/13/2025]
Abstract
Structure-forming foundation species facilitate consumers by providing habitat and refugia. In return, consumers can benefit foundation species by reducing top-down pressures and increasing the supply of nutrients. Consumer-mediated nutrient dynamics (CND) fuel the growth of autotrophic foundation species and generate more habitat for consumers, forming reciprocal feedbacks. Such feedbacks are threatened when foundation species are lost to disturbances, yet testing these interactions requires long-term studies, which are rare. Here, we experimentally evaluated how disturbance to giant kelp, a marine foundation species, affects (1) CND of the forest animal community and (2) nutrient feedbacks that help sustain forest primary production during extended periods of low nitrate. Our experiment involved removing giant kelp annually during the winter for 10 years at four sites to mimic frequent wave disturbance. We paired temporal changes in the forest community in kelp removal and control plots with estimates of taxon-specific ammonium excretion rates (reef fishes and macroinvertebrates) and nitrogen (N) demand (giant kelp and understory macroalgae) to determine the effects of disturbance on CND as measured by ammonium excretion, N demand by kelp forest macroalgae, and the percentage of nitrogen demand met by ammonium excretion. We found that disturbance to giant kelp decreased ammonium excretion by 66% over the study, mostly due to declines in fishes. Apart from a few fish species that dominated CND, most reef-associated consumers were unaffected by disturbance. Disturbance to giant kelp reduced its N demand by 56% but increased that of the understory by 147% due to its increased abundance in the absence of a kelp canopy. Overall, disturbance had little effect on the fraction of N demand of macroalgae met by consumer excretion due to the offsetting responses of giant kelp, understory macroalgae, and consumers to disturbance. Across both disturbance regimes, on average, consumers supported 11%-12% of the N required by all kelp forest macroalgae and 48% of N demand by the understory macroalgae (which are confined to the benthos where most reef-associated consumers reside). Our findings suggest that CND constitutes a considerable contribution of N required in kelp forests, yet nutrient inputs decrease following reductions in essential habitat perpetuated by frequent disturbances.
Collapse
Affiliation(s)
- Joseph R Peters
- Marine Science Institute, University of California, Santa Barbara, California, USA
| | - Daniel C Reed
- Marine Science Institute, University of California, Santa Barbara, California, USA
| | - June Shrestha
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, California, USA
| | - Scott L Hamilton
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, California, USA
| | - Deron E Burkepile
- Marine Science Institute, University of California, Santa Barbara, California, USA
- Department of Ecology, Evolution, & Marine Biology, University of California, Santa Barbara, California, USA
| |
Collapse
|
3
|
Detmer AR, Miller SD, Dubel AK, Ring K, John C, Briggs CJ, Rassweiler A, Moeller HV. A Busse Balloon in the Lagoon: Herbivore Behaviour Generates Spatial Patterns in Coral Reef Ecosystems. Ecol Lett 2025; 28:e70098. [PMID: 40094189 PMCID: PMC11912107 DOI: 10.1111/ele.70098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/19/2025]
Abstract
Spatial processes, particularly scale-dependent feedbacks, may play important and underappreciated roles in the dynamics of bistable ecosystems. For example, self-organised spatial patterns can allow for stable coexistence of alternative states outside regions of bistability, a phenomenon known as a Busse balloon. We used partial differential equations to explore the potential for such dynamics in coral reefs, focusing on how herbivore behaviour and mobility affect the stability of coral- and macroalgal-dominated states. Herbivore attraction to coral resulted in a Busse balloon that enhanced macroalgal resilience, with patterns persisting in regions of parameter space where nonspatial models predict uniform coral dominance. Thus, our work suggests herbivore association with coral (e.g., for shelter) can prevent reefs from reaching a fully coral-dominated state. More broadly, this study illustrates how consumer space use can prevent ecosystems from undergoing wholesale state transitions, highlighting the importance of explicitly accounting for space when studying bistable systems.
Collapse
Affiliation(s)
- A. Raine Detmer
- Department of Ecology, Evolution, and Marine BiologyUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Scott D. Miller
- Department of Ecology, Evolution, and Marine BiologyUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Alexandra K. Dubel
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Kacie Ring
- Department of Ecology, Evolution, and Marine BiologyUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Christian John
- Department of Ecology, Evolution, and Marine BiologyUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Cheryl J. Briggs
- Department of Ecology, Evolution, and Marine BiologyUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Andrew Rassweiler
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Holly V. Moeller
- Department of Ecology, Evolution, and Marine BiologyUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| |
Collapse
|
4
|
Munsterman KS, Hesselbarth MHK, Allgeier JE. Smaller and bolder fish enhance ecosystem-scale primary production around artificial reefs in seagrass beds. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2025; 35:e3055. [PMID: 39575845 PMCID: PMC11733711 DOI: 10.1002/eap.3055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/11/2024] [Accepted: 08/26/2024] [Indexed: 01/16/2025]
Abstract
Effective management of wild animals requires understanding how predation and harvest alter the composition of populations. These top-down processes can alter consumer body size and behavior and thus should also have consequences for bottom-up processes because (1) body size is a critical determinant of the amount of nutrients excreted and (2) variation in foraging behavior, which is strongly influenced by predation, can determine the amount and spatial distribution of nutrients. Changes to either are known to affect ecosystem-scale nutrient dynamics, but the consequences of these dynamics on ecosystem processes are poorly understood. We used an individual-based model of an artificial reef (AR) and reef fish in a subtropical seagrass bed to test how fish body size can interact with variation in foraging behavior at the population and individual levels to affect seagrass production in a nutrient-limited system. Seagrass production dynamics can be driven by both belowground (BGPP) and aboveground primary production (AGPP); thus, we quantified ecosystem-scale production via these different mechanistic pathways. We found that (1) populations of small fish generated greater total primary production (TLPP = BGPP + AGPP) than large fish, (2) fish that foraged more increased TLPP more than those that spent time sheltering on ARs, and (3) small fish that foraged more led to greatest increases in TLPP. The mechanism by which this occurred was primarily through increased BGPP, highlighting the importance of cryptic belowground dynamics in seagrass ecosystems. Populations of extremely bold individuals (i.e., foraged significantly more) slightly increased TLPP but strongly affected the distribution of production, whereby bold individuals increased BGPP, while populations of shy individuals increased AGPP. Taken together, these results provide a link between consumer body size, variation in consumer behavior, and primary production-which, in turn, will support secondary production for fisheries. Our study suggests that human-induced changes-such as fishing-that alter consumer body size and behavior will fundamentally change ecosystem-scale production dynamics. Understanding the ecosystem effects of harvest on consumer populations is critical for ecosystem-based management, including the development of ARs for fisheries.
Collapse
Affiliation(s)
- Katrina S. Munsterman
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Maximilian H. K. Hesselbarth
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
- Biodiversity, Ecology, & Conservation GroupInternational Institute for Applied Systems AnalysisLaxenburgAustria
| | - Jacob E. Allgeier
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
5
|
Robinson JPW, Benkwitt CE, Maire E, Morais R, Schiettekatte NMD, Skinner C, Brandl SJ. Quantifying energy and nutrient fluxes in coral reef food webs. Trends Ecol Evol 2024; 39:467-478. [PMID: 38105132 DOI: 10.1016/j.tree.2023.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/19/2023]
Abstract
The movement of energy and nutrients through ecological communities represents the biological 'pulse' underpinning ecosystem functioning and services. However, energy and nutrient fluxes are inherently difficult to observe, particularly in high-diversity systems such as coral reefs. We review advances in the quantification of fluxes in coral reef fishes, focusing on four key frameworks: demographic modelling, bioenergetics, micronutrients, and compound-specific stable isotope analysis (CSIA). Each framework can be integrated with underwater surveys, enabling researchers to scale organismal processes to ecosystem properties. This has revealed how small fish support biomass turnover, pelagic subsidies sustain fisheries, and fisheries benefit human health. Combining frameworks, closing data gaps, and expansion to other aquatic ecosystems can advance understanding of how fishes contribute to ecosystem functions and services.
Collapse
Affiliation(s)
- James P W Robinson
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.
| | | | - Eva Maire
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Renato Morais
- Université Paris Sciences et Lettres, École Pratique des Hautes Études, USR 3278 CRIOBE, Perpignan 66860, France
| | | | - Christina Skinner
- School of the Environment, University of Queensland, St Lucia 4072, QLD, Australia
| | - Simon J Brandl
- Department of Marine Science, The University of Texas at Austin, Marine Science Institute, Port Aransas, TX 78373, USA
| |
Collapse
|
6
|
Klein SG, Roch C, Duarte CM. Systematic review of the uncertainty of coral reef futures under climate change. Nat Commun 2024; 15:2224. [PMID: 38472196 DOI: 10.1038/s41467-024-46255-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Climate change impact syntheses, such as those by the Intergovernmental Panel on Climate Change, consistently assert that limiting global warming to 1.5 °C is unlikely to safeguard most of the world's coral reefs. This prognosis is primarily based on a small subset of available models that apply similar 'excess heat' threshold methodologies. Our systematic review of 79 articles projecting coral reef responses to climate change revealed five main methods. 'Excess heat' models constituted one third (32%) of all studies but attracted a disproportionate share (68%) of citations in the field. Most methods relied on deterministic cause-and-effect rules rather than probabilistic relationships, impeding the field's ability to estimate uncertainty. To synthesize the available projections, we aimed to identify models with comparable outputs. However, divergent choices in model outputs and scenarios limited the analysis to a fraction of available studies. We found substantial discrepancies in the projected impacts, indicating that the subset of articles serving as a basis for climate change syntheses may project more severe consequences than other studies and methodologies. Drawing on insights from other fields, we propose methods to incorporate uncertainty into deterministic modeling approaches and propose a multi-model ensemble approach to generating probabilistic projections for coral reef futures.
Collapse
Affiliation(s)
- Shannon G Klein
- Marine Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| | - Cassandra Roch
- Marine Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Carlos M Duarte
- Marine Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
7
|
Dunne AF, Tietbohl MD, Nuber C, Berumen M, Jones BH. Fish-mediated nutrient flows from macroalgae habitats to coral reefs in the Red Sea. MARINE ENVIRONMENTAL RESEARCH 2023; 185:105884. [PMID: 36701826 DOI: 10.1016/j.marenvres.2023.105884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Macroalgae canopies are common in tropical coastlines, and can be feeding grounds for coral reef fishes. We investigated whether fish transfer algal material from Sargassum-dominated macroalgae habitats to coral reefs by collecting gut contents of two herbivorous fish species (Naso elegans and N. unicornis) from coral reefs in the central Red Sea. On inshore reefs close to macroalgae canopies, Sargassum accounted for up to 41% of these species' gut contents while almost no Sargassum was found in the stomachs of fish on offshore reefs farther from macroalgae canopies. Using consumption and excretion rates from literature, we estimate that these fish consume up to 6.0 mmol C/m2 reef/day and excrete up to 10.8 μmol N/m2 reef/day and 1.0 μmol P/m2 reef/day across inshore reefs as a result of Sargassum consumption. Examining fish-mediated connections between habitats illuminates the role of fish as a vector of nutrition to nutrient-poor coral reefs.
Collapse
Affiliation(s)
- Aislinn F Dunne
- King Abdullah University of Science and Technology, Red Sea Research Center, Thuwal, 23955-6900, Saudi Arabia.
| | - Matthew D Tietbohl
- King Abdullah University of Science and Technology, Red Sea Research Center, Thuwal, 23955-6900, Saudi Arabia.
| | - Clara Nuber
- King Abdullah University of Science and Technology, Red Sea Research Center, Thuwal, 23955-6900, Saudi Arabia; Carl von Ossietzky University Oldenburg, Institute for Chemistry and Biology of the Marine Environment (ICBM), Wilhelmshaven, Germany.
| | - Michael Berumen
- King Abdullah University of Science and Technology, Red Sea Research Center, Thuwal, 23955-6900, Saudi Arabia.
| | - Burton H Jones
- King Abdullah University of Science and Technology, Red Sea Research Center, Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
8
|
Guerra AS, Van Wert JC, Haupt AJ, McCauley DJ, Eliason EJ, Young HS, Lecchini D, White TD, Caselle JE. Differences in the behavior and diet between shoaling and solitary surgeonfish ( Acanthurus triostegus). Ecol Evol 2023; 13:e9686. [PMID: 36620397 PMCID: PMC9817200 DOI: 10.1002/ece3.9686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 01/09/2023] Open
Abstract
Variation in behavior within marine and terrestrial species can influence the functioning of the ecosystems they inhabit. However, the contribution of social behavior to ecosystem function remains underexplored. Many coral reef fish species provide potentially insightful models for exploring how social behavior shapes ecological function because they exhibit radical intraspecific variation in sociality within a shared habitat. Here, we provide an empirical exploration on how the ecological function of a shoaling surgeonfish (Acanthurus triostegus) may differ from that of solitary conspecifics on two Pacific coral reefs combining insight from behavioral observations, stable isotope analysis, and macronutrient analysis of gut and fecal matter. We detected important differences in how the social mode of A. triostegus affected its spatial and feeding ecology, as well as that of other reef fish species. Specifically, we found increased distance traveled and area covered by shoaling fish relative to solitary A. triostegus. Additionally, shoaling A. triostegus primarily grazed within territories of other herbivorous fish and had piscivorous and nonpiscivorous heterospecific fish associated with the shoal, while solitary A. triostegus grazed largely grazed outside of any territories and did not have any such interactions with heterospecific fish. Results from stable isotope analysis show a difference in δ15N isotopes between shoaling and solitary fish, which suggests that these different social modes are persistent. Further, we found a strong interaction between social behavior and site and carbohydrate and protein percentages in the macronutrient analysis, indicating that these differences in sociality are associated with measurable differences in both the feeding ecology and nutrient excretion patterns. Our study suggests that the social behavior of individuals may play an important and underappreciated role in mediating their ecological function.
Collapse
Affiliation(s)
- Ana Sofia Guerra
- Department of Ecology, Evolution, and Marine BiologyUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Jacey C. Van Wert
- Department of Ecology, Evolution, and Marine BiologyUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Alison J. Haupt
- Department of Marine ScienceCalifornia State University Monterey BaySeasideCaliforniaUSA
| | - Douglas J. McCauley
- Department of Ecology, Evolution, and Marine BiologyUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
- Marine Science InstituteUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Erika J. Eliason
- Department of Ecology, Evolution, and Marine BiologyUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
- Marine Science InstituteUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Hillary S. Young
- Department of Ecology, Evolution, and Marine BiologyUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - David Lecchini
- EPHE‐UPVD‐CNRSPSL UniversityMo'oreaFrench Polynesia
- Laboratoire d'Excellence "CORAIL"ParisFrance
| | - Timothy D. White
- Hopkins Marine StationStanford UniversityPacific GroveCaliforniaUSA
| | - Jennifer E. Caselle
- Marine Science InstituteUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| |
Collapse
|
9
|
Ibarra-García EC, Cáceres I, Ortiz M, Rodríguez-Troncoso AP, Ríos-Jara E, Cupul-Magaña AL, del Carmen García Rivas M, Rodríguez-Zaragoza FA. Effects of Hurricane Dean and tropical storm Karl on the coral reef fish assemblage of Banco Chinchorro: temporal changes in rarity, and alpha and beta taxonomic diversity. COMMUNITY ECOL 2022. [DOI: 10.1007/s42974-022-00093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Capitani L, Roos N, Longo GO, Angelini R, Schenone L. Resource‐to‐consumer ratio determines the functional response of an herbivorous fish in a field experiment. OIKOS 2021. [DOI: 10.1111/oik.08784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Leonardo Capitani
- Post‐Graduate Program in Ecology, Bioscience Inst., Univ. Federal do Rio Grande do Norte Natal Brazil
- Marine Ecology Laboratory, Dept of Oceanography and Limnology, Univ. Federal do Rio Grande do Norte Natal RN Brazil
| | - Natalia Roos
- Post‐Graduate Program in Ecology, Bioscience Inst., Univ. Federal do Rio Grande do Norte Natal Brazil
- Marine Ecology Laboratory, Dept of Oceanography and Limnology, Univ. Federal do Rio Grande do Norte Natal RN Brazil
| | - Guilherme Ortigara Longo
- Post‐Graduate Program in Ecology, Bioscience Inst., Univ. Federal do Rio Grande do Norte Natal Brazil
- Marine Ecology Laboratory, Dept of Oceanography and Limnology, Univ. Federal do Rio Grande do Norte Natal RN Brazil
| | - Ronaldo Angelini
- Post‐Graduate Program in Ecology, Bioscience Inst., Univ. Federal do Rio Grande do Norte Natal Brazil
- Dept of Civil Engeneering, Univ. Federal do Rio Grande do Norte Natal Brazil
| | - Luca Schenone
- Laboratorio de Limnología, INIBIOMA (CONICET‐UNCo) Río Negro Argentina
| |
Collapse
|
11
|
Loeffler CR, Tartaglione L, Friedemann M, Spielmeyer A, Kappenstein O, Bodi D. Ciguatera Mini Review: 21st Century Environmental Challenges and the Interdisciplinary Research Efforts Rising to Meet Them. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3027. [PMID: 33804281 PMCID: PMC7999458 DOI: 10.3390/ijerph18063027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/19/2022]
Abstract
Globally, the livelihoods of over a billion people are affected by changes to marine ecosystems, both structurally and systematically. Resources and ecosystem services, provided by the marine environment, contribute nutrition, income, and health benefits for communities. One threat to these securities is ciguatera poisoning; worldwide, the most commonly reported non-bacterial seafood-related illness. Ciguatera is caused by the consumption of (primarily) finfish contaminated with ciguatoxins, potent neurotoxins produced by benthic single-cell microalgae. When consumed, ciguatoxins are biotransformed and can bioaccumulate throughout the food-web via complex pathways. Ciguatera-derived food insecurity is particularly extreme for small island-nations, where fear of intoxication can lead to fishing restrictions by region, species, or size. Exacerbating these complexities are anthropogenic or natural changes occurring in global marine habitats, e.g., climate change, greenhouse-gas induced physical oceanic changes, overfishing, invasive species, and even the international seafood trade. Here we provide an overview of the challenges and opportunities of the 21st century regarding the many facets of ciguatera, including the complex nature of this illness, the biological/environmental factors affecting the causative organisms, their toxins, vectors, detection methods, human-health oriented responses, and ultimately an outlook towards the future. Ciguatera research efforts face many social and environmental challenges this century. However, several future-oriented goals are within reach, including digital solutions for seafood supply chains, identifying novel compounds and methods with the potential for advanced diagnostics, treatments, and prediction capabilities. The advances described herein provide confidence that the tools are now available to answer many of the remaining questions surrounding ciguatera and therefore protection measures can become more accurate and routine.
Collapse
Affiliation(s)
- Christopher R. Loeffler
- National Reference Laboratory of Marine Biotoxins, Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (A.S.); (O.K.); (D.B.)
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Luciana Tartaglione
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
- CoNISMa—National Inter-University Consortium for Marine Sciences, Piazzale Flaminio 9, 00196 Rome, Italy
| | - Miriam Friedemann
- Department Exposure, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany;
| | - Astrid Spielmeyer
- National Reference Laboratory of Marine Biotoxins, Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (A.S.); (O.K.); (D.B.)
| | - Oliver Kappenstein
- National Reference Laboratory of Marine Biotoxins, Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (A.S.); (O.K.); (D.B.)
| | - Dorina Bodi
- National Reference Laboratory of Marine Biotoxins, Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (A.S.); (O.K.); (D.B.)
| |
Collapse
|