1
|
Kazmi FA, Mander Ü, Khanongnuch R, Öpik M, Ranniku R, Soosaar K, Masta M, Tenhovirta SAM, Kasak K, Ah-Peng C, Espenberg M. Distinct microbial communities drive methane cycling in below- and above-ground compartments of tropical cloud forests growing on peat. ENVIRONMENTAL MICROBIOME 2025; 20:54. [PMID: 40390074 PMCID: PMC12090414 DOI: 10.1186/s40793-025-00718-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 05/10/2025] [Indexed: 05/21/2025]
Abstract
Cloud forests are unique yet understudied ecosystems regarding CH4 exchange despite their significance in carbon storage. We investigated CH4 fluxes in peat soil and tree stems of two tropical cloud forests on Réunion Island, one featuring Erica reunionensis and the second a mix of E. reunionensis and Alsophila glaucifolia. The study examined microbiomes across below-ground (soil) and above-ground (canopy soil, leaves, and stems) forest compartments. Metagenomics and qPCR analyses targeted key genes in methanogenesis and methanotrophy in soil and above-ground samples, alongside soil physicochemical measurements. CH4 fluxes from peat soil and tree stems were measured using gas chromatography and portable trace gas analyzers. Peat soil in both forests acted as a CH4 sink (- 23.8 ± 4.84 µg C m- 2 h- 1) and CO2 source (55.5 ± 5.51 µg C m- 2 h- 1), with higher CH4 uptake in sites dominated by endemic tree species E. reunionensis. In forest soils, a high abundance of n-DAMO 16 S rRNA gene (3.42 × 107 ± 7 × 106 copies/g dw) was associated with nitrate levels and higher rates of CH4 uptake and CO2 emissions. NC-10 bacteria (0.1-0.3%) were detected in only the Erica forest soil, verrucomicrobial methanotrophs (0.1-3.1%) only in the mixed forest soil, whereas alphaproteobacterial methanotrophs (0.1-3.3%) were present in all soils. Tree stems in both forests were weak sinks of CH4 (-0.94 ± 0.4 µg C m- 2 h- 1). The canopy soil hosted verrucomicrobial methanotrophs (0.1-0.3%). The leaves in both forests exhibited metabolic potential for CH4 production, e.g., exhibiting high mcrA copy numbers (3.5 × 105 ± 2.3 × 105 copies/g dw). However, no CH4-cycling functional genes were detected in the stem core samples. Tropical cloud forest peat soils showed high anaerobic methanotrophy via the n-DAMO process, while aerobic methanotrophs were abundant in canopy soils. Leaves hosted methanotrophs but predominantly methanogens. These results highlight the significant differences between canopy and soil microbiomes in the CH4 cycle, emphasizing the importance of above-ground microbiomes in forest CH4 gas budgets.
Collapse
Affiliation(s)
- Fahad Ali Kazmi
- Department of Geography, University of Tartu, Tartu, 51003, Estonia.
| | - Ülo Mander
- Department of Geography, University of Tartu, Tartu, 51003, Estonia
| | | | - Maarja Öpik
- Department of Botany, University of Tartu, Tartu, 50409, Estonia
| | - Reti Ranniku
- Department of Geography, University of Tartu, Tartu, 51003, Estonia
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Kaido Soosaar
- Department of Geography, University of Tartu, Tartu, 51003, Estonia
| | - Mohit Masta
- Department of Geography, University of Tartu, Tartu, 51003, Estonia
| | - Salla A M Tenhovirta
- Department of Geography, University of Tartu, Tartu, 51003, Estonia
- Department of Agricultural Sciences, Environmental Soil Science, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, Finland
| | - Kuno Kasak
- Department of Geography, University of Tartu, Tartu, 51003, Estonia
- Department of Environmental Science, Policy and Management, University of California, Berkeley, USA
| | - Claudine Ah-Peng
- UMR PVBMT, Université de La Réunion, Saint-Pierre, La Réunion, 97410, France
- OSU-Réunion, Université de La Réunion, Saint-Denis, La Réunion, 97400, France
| | - Mikk Espenberg
- Department of Geography, University of Tartu, Tartu, 51003, Estonia
| |
Collapse
|
2
|
Karim MR, Halim MA, Thomas SC. Foliar methane and nitrous oxide fluxes in tropical tree species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176503. [PMID: 39343402 DOI: 10.1016/j.scitotenv.2024.176503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/05/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Methane (CH₄) and nitrous oxide (N₂O) are critical biogenic greenhouse gases (GHGs) with global warming potentials substantially greater than that of carbon dioxide (CO₂). The exchange of these gases in tropical forests, particularly via foliar processes, remains poorly understood. We quantified foliar CH₄ and N₂O fluxes among tropical tree species and examined their potential association with the leaf economics spectrum (LES) traits. Sampling within Lawachara National Park, Bangladesh, we used in-situ measurements of foliar CH₄ and N₂O fluxes employing off-axis integrated cavity output spectroscopy (CH₄, CO₂ and H₂O) and optical feedback-cavity enhanced absorption spectroscopy (N₂O) analyzers. Leaves were measured under dark, low, and high (0, 100, and 1000 μmol·m-2·s-1) light conditions. Surveyed tree species exhibited both net foliar uptake and efflux of CH₄, with a mean flux not different from zero, suggesting negligible net foliar emissions at the stand level. Plant families showed differences in CH₄, but not N₂O fluxes. Consistent efflux was observed for N₂O, with a mean of 0.562 ± 0.060 pmol·m-2·s-1. Pioneer species exhibited a higher mean N₂O flux (0.81 ± 0.17 pmol·m-2·s-1) compared to late-successional species (0.37 ± 0.05 pmol·m-2·s-1). Pioneer species also showed a trend toward a higher mean CH₄ flux (0.24 ± 0.21 nmol·m-2·s-1) compared to mid-successional (-0.01 ± 0.26 nmol·m-2·s-1) and late-successional species (-0.05 ± 0.28 nmol·m-2·s-1). Moreover, among all leaf traits within the leaf economic spectrum, a significant positive relationship was observed between leaf N₂O flux and total leaf nitrogen. Our results suggest that pioneer tree species significantly contribute to net CH₄ and N₂O emissions, potentially counteracting the carbon sequestration benefits in regenerating tropical forests. These findings indicate that accurate GHG budgeting should include direct measurements of foliar CH₄ and N₂O fluxes. Moreover, the results suggest that forest conservation and management strategies that prioritize late successional species will better mitigate GHG emissions.
Collapse
Affiliation(s)
- Md Rezaul Karim
- Institute of Forestry and Conservation, John H Daniels Faculty of Architecture Landscape and Design, University of Toronto, 33 Willcocks St. Toronto, ON M5S 3B3, Canada.
| | - Md Abdul Halim
- Institute of Forestry and Conservation, John H Daniels Faculty of Architecture Landscape and Design, University of Toronto, 33 Willcocks St. Toronto, ON M5S 3B3, Canada
| | - Sean C Thomas
- Institute of Forestry and Conservation, John H Daniels Faculty of Architecture Landscape and Design, University of Toronto, 33 Willcocks St. Toronto, ON M5S 3B3, Canada
| |
Collapse
|
3
|
Wigley K, Armstrong C, Smaill SJ, Reid NM, Kiely L, Wakelin SA. Methane cycling in temperate forests. CARBON BALANCE AND MANAGEMENT 2024; 19:37. [PMID: 39438363 PMCID: PMC11515791 DOI: 10.1186/s13021-024-00283-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Temperate forest soils are considered significant methane (CH4) sinks, but other methane sources and sinks within these forests, such as trees, litter, deadwood, and the production of volatile organic compounds are not well understood. Improved understanding of all CH4 fluxes in temperate forests could help mitigate CH4 emissions from other sources and improve the accuracy of global greenhouse gas budgets. This review highlights the characteristics of temperate forests that influence CH4 flux and assesses the current understanding of the CH4 cycle in temperate forests, with a focus on those managed for specific purposes. Methane fluxes from trees, litter, deadwood, and soil, as well as the interaction of canopy-released volatile organic compounds on atmospheric methane chemistry are quantified, the processes involved and factors (biological, climatic, management) affecting the magnitude and variance of these fluxes are discussed. Temperate forests are unique in that they are extremely variable due to strong seasonality and significant human intervention. These features control CH4 flux and need to be considered in CH4 budgets. The literature confirmed that temperate planted forest soils are a significant CH4 sink, but tree stems are a small CH4 source. CH4 fluxes from foliage and deadwood vary, and litter fluxes are negligible. The production of volatile organic compounds could increase CH4's lifetime in the atmosphere, but current in-forest measurements are insufficient to determine the magnitude of any effect. For all sources and sinks more research is required into the mechanisms and microbial community driving CH4 fluxes. The variability in CH4 fluxes within each component of the forest, is also not well understood and has led to overestimation of CH4 fluxes when scaling up measurements to a forest or global scale. A roadmap for sampling and scaling is required to ensure that all CH4 sinks and sources within temperate forests are accurately accounted for and able to be included in CH4 budgets and models to ensure accurate estimates of the contribution of temperate planted forests to the global CH4 cycle.
Collapse
Affiliation(s)
| | | | - Simeon J Smaill
- Scion, P.O. Box 29237, Riccarton, Christchurch, 8440, New Zealand
| | - Nicki M Reid
- Scion, Private Bag 3020, Rotorua, 3046, New Zealand
| | - Laura Kiely
- Scion, P.O. Box 29237, Riccarton, Christchurch, 8440, New Zealand
| | - Steve A Wakelin
- Scion, P.O. Box 29237, Riccarton, Christchurch, 8440, New Zealand
| |
Collapse
|
4
|
Moisan MA, Lajoie G, Constant P, Martineau C, Maire V. How tree traits modulate tree methane fluxes: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173730. [PMID: 38839018 DOI: 10.1016/j.scitotenv.2024.173730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Trees can play different roles in the regulation of fluxes of methane (CH4), a greenhouse gas with a warming potential 83 times greater than that of carbon dioxide. Forest soils have the greatest potential for methane uptake compared to other land uses. In addition to their influence on soil CH4 fluxes, trees can act directly as a source or sink of CH4, by transporting CH4 produced in the soil and harbouring the key microorganisms involved in CH4 production and consumption (methanogens and methanotrophs). Tree CH4 fluxes can vary between species characterized by different traits that influence transport and modify the availability of CH4 reaction substrates as well as the habitat for methanogens and methanotrophs. Despite their important role in modulating CH4 fluxes from forest ecosystems, the identity and role of tree traits influencing these fluxes are poorly consolidated in the literature. The objectives of this paper are to 1) Review the functional traits of trees associated with their role in the regulation of CH4 emissions; 2) Assess the importance of inter-specific variability in CH4 fluxes via a global analysis of tree methane fluxes in the literature. Our review highlights that differences in CH4 fluxes between tree species and individuals can be explained by a diversity of traits influencing CH4 transport and microbial production of CH4 such as wood density and secondary metabolites. We propose a functional classification for trees based on the key traits associated with a function in CH4 emissions. We identified the fast-growing species with low wood density, species adapted to flood and species vulnerable to rot as functional groups which can be net sources of CH4 in conditions favorable to CH4 production. The global analysis further demonstrated the importance of taxonomy, with other factors such as land type and season in explaining variability in tree CH4 fluxes.
Collapse
Affiliation(s)
- Marie-Ange Moisan
- Canadian Forest Service, Natural Resources Canada, Laurentian Forestry Centre, 1055 Rue du Peps, Québec, QC G1V 4C7, Canada; Département des Sciences de l'environnement, Université du Québec à Trois-Rivières, 3351 Bd des Forges, Trois-Rivières, QC G8Z 4M3, Canada; Centre de Recherche sur les Interactions Bassins Versants - Écosystèmes Aquatiques (RIVE), Université du Québec à Trois-Rivières, 3351 Bd des Forges, Trois-Rivières, QC G8Z 4M3, Canada.
| | - Geneviève Lajoie
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal H1X 2B2, Canada; Jardin Botanique de Montréal, 4101 Sherbrooke St E, Montréal H1X 2B2, Canada
| | - Philippe Constant
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
| | - Christine Martineau
- Canadian Forest Service, Natural Resources Canada, Laurentian Forestry Centre, 1055 Rue du Peps, Québec, QC G1V 4C7, Canada
| | - Vincent Maire
- Département des Sciences de l'environnement, Université du Québec à Trois-Rivières, 3351 Bd des Forges, Trois-Rivières, QC G8Z 4M3, Canada; Centre de Recherche sur les Interactions Bassins Versants - Écosystèmes Aquatiques (RIVE), Université du Québec à Trois-Rivières, 3351 Bd des Forges, Trois-Rivières, QC G8Z 4M3, Canada
| |
Collapse
|
5
|
Gauci V, Pangala SR, Shenkin A, Barba J, Bastviken D, Figueiredo V, Gomez C, Enrich-Prast A, Sayer E, Stauffer T, Welch B, Elias D, McNamara N, Allen M, Malhi Y. Global atmospheric methane uptake by upland tree woody surfaces. Nature 2024; 631:796-800. [PMID: 39048683 PMCID: PMC11269171 DOI: 10.1038/s41586-024-07592-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/23/2024] [Indexed: 07/27/2024]
Abstract
Methane is an important greenhouse gas1, but the role of trees in the methane budget remains uncertain2. Although it has been shown that wetland and some upland trees can emit soil-derived methane at the stem base3,4, it has also been suggested that upland trees can serve as a net sink for atmospheric methane5,6. Here we examine in situ woody surface methane exchange of upland tropical, temperate and boreal forest trees. We find that methane uptake on woody surfaces, in particular at and above about 2 m above the forest floor, can dominate the net ecosystem contribution of trees, resulting in a net tree methane sink. Stable carbon isotope measurement of methane in woody surface chamber air and process-level investigations on extracted wood cores are consistent with methanotrophy, suggesting a microbially mediated drawdown of methane on and in tree woody surfaces and tissues. By applying terrestrial laser scanning-derived allometry to quantify global forest tree woody surface area, a preliminary first estimate suggests that trees may contribute 24.6-49.9 Tg of atmospheric methane uptake globally. Our findings indicate that the climate benefits of tropical and temperate forest protection and reforestation may be greater than previously assumed.
Collapse
Affiliation(s)
- Vincent Gauci
- Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK.
- School of Geography, Earth and Environmental Science, University of Birmingham, Birmingham, UK.
| | | | - Alexander Shenkin
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | - Josep Barba
- Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
- School of Geography, Earth and Environmental Science, University of Birmingham, Birmingham, UK
- CREAF, Cerdanyola del Vallès, Spain
| | - David Bastviken
- Department of Thematic Studies-Environmental Change, Linköping University, Linkoping, Sweden
| | - Viviane Figueiredo
- Department of Thematic Studies-Environmental Change, Linköping University, Linkoping, Sweden
| | - Carla Gomez
- School of Environment, Earth and Ecosystem Studies, The Open University, Milton Keynes, UK
| | - Alex Enrich-Prast
- Department of Thematic Studies-Environmental Change, Linköping University, Linkoping, Sweden
- Multiuser Unit of Environmental Analysis, University Federal of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Marine Science, Federal University of São Paulo (IMar/UNIFESP), Santos, Brazil
| | - Emma Sayer
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
- Smithsonian Tropical Research Institute, Balboa, Panama City, Republic of Panama
- Institute of Botany, Ulm University, Ulm, Germany
| | - Tainá Stauffer
- Multiuser Unit of Environmental Analysis, University Federal of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bertie Welch
- School of Environment, Earth and Ecosystem Studies, The Open University, Milton Keynes, UK
| | - Dafydd Elias
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Lancaster, UK
| | - Niall McNamara
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Lancaster, UK
| | - Myles Allen
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
- Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford, UK
| | - Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
- Leverhulme Centre for Nature Recovery, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Vestin P. Forests don't just absorb CO 2 - they also take up methane. Nature 2024; 631:744-745. [PMID: 39048686 DOI: 10.1038/d41586-024-02270-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
|
7
|
Tenhovirta SAM, Kohl L, Koskinen M, Polvinen T, Salmon Y, Paljakka T, Pihlatie M. Aerobic methane production in Scots pine shoots is independent of drought or photosynthesis. THE NEW PHYTOLOGIST 2024; 242:2440-2452. [PMID: 38549455 DOI: 10.1111/nph.19724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/14/2024] [Indexed: 05/24/2024]
Abstract
Shoot-level emissions of aerobically produced methane (CH4) may be an overlooked source of tree-derived CH4, but insufficient understanding of the interactions between their environmental and physiological drivers still prevents the reliable upscaling of canopy CH4 fluxes. We utilised a novel automated chamber system to continuously measure CH4 fluxes from the shoots of Pinus sylvestris (Scots pine) saplings under drought to investigate how canopy CH4 fluxes respond to the drought-induced alterations in their physiological processes and to isolate the shoot-level production of CH4 from soil-derived transport and photosynthesis. We found that aerobic CH4 emissions are not affected by the drought-induced stress, changes in physiological processes, or decrease in photosynthesis. Instead, these emissions vary on short temporal scales with environmental drivers such as temperature, suggesting that they result from abiotic degradation of plant compounds. Our study shows that aerobic CH4 emissions from foliage are distinct from photosynthesis-related processes. Thus, instead of photosynthesis rates, it is more reliable to construct regional and global estimates for the aerobic CH4 emission based on regional differences in foliage biomass and climate, also accounting for short-term variations of weather variables such as air temperature and solar radiation.
Collapse
Affiliation(s)
- Salla A M Tenhovirta
- Department of Agricultural Sciences, Environmental Soil Science, University of Helsinki, PO Box 56, Helsinki, 00014, Finland
- Institute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, 00014, Finland
| | - Lukas Kohl
- Department of Agricultural Sciences, Environmental Soil Science, University of Helsinki, PO Box 56, Helsinki, 00014, Finland
- Institute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, 00014, Finland
- Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, PO Box 1627, Kuopio, 70211, Finland
| | - Markku Koskinen
- Department of Agricultural Sciences, Environmental Soil Science, University of Helsinki, PO Box 56, Helsinki, 00014, Finland
- Institute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, 00014, Finland
| | - Tatu Polvinen
- Department of Agricultural Sciences, Environmental Soil Science, University of Helsinki, PO Box 56, Helsinki, 00014, Finland
- Institute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, 00014, Finland
| | - Yann Salmon
- Institute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, 00014, Finland
- Department of Forest Sciences, Forest Ecology and Management, University of Helsinki, PO Box 27, Helsinki, 00014, Finland
| | - Teemu Paljakka
- Institute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, 00014, Finland
- Department of Forest Sciences, Forest Ecology and Management, University of Helsinki, PO Box 27, Helsinki, 00014, Finland
| | - Mari Pihlatie
- Department of Agricultural Sciences, Environmental Soil Science, University of Helsinki, PO Box 56, Helsinki, 00014, Finland
- Institute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, 00014, Finland
- Department of Agricultural Sciences, Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, 00014, Finland
| |
Collapse
|
8
|
Kohl L, Tenhovirta SAM, Koskinen M, Putkinen A, Haikarainen I, Polvinen T, Galeotti L, Mammarella I, Siljanen HMP, Robson TM, Adamczyk B, Pihlatie M. Radiation and temperature drive diurnal variation of aerobic methane emissions from Scots pine canopy. Proc Natl Acad Sci U S A 2023; 120:e2308516120. [PMID: 38127980 PMCID: PMC10756279 DOI: 10.1073/pnas.2308516120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/29/2023] [Indexed: 12/23/2023] Open
Abstract
Methane emissions from plant foliage may play an important role in the global methane cycle, but their size and the underlying source processes remain poorly understood. Here, we quantify methane fluxes from the shoots of Scots pine trees, a dominant tree species in boreal forests, to identify source processes and environmental drivers, and we evaluate whether these fluxes can be constrained at the ecosystem-level by eddy covariance flux measurements. We show that shoot-level measurements conducted in forest, garden, or greenhouse settings; on mature trees and saplings; manually and with an automated CO2-, temperature-, and water-controlled chamber system; and with multiple methane analyzers all resulted in comparable daytime fluxes (0.144 ± 0.019 to 0.375 ± 0.074 nmol CH4 g-1 foliar d.w. h-1). We further find that these emissions exhibit a pronounced diurnal cycle that closely follows photosynthetically active radiation and is further modulated by temperature. These diurnal patterns indicate that methane production is associated with diurnal cycle of sunlight, indicating that this production is either a byproduct of photosynthesis-associated biochemical reactions (e.g., the methionine cycle) or produced through nonenzymatic photochemical reactions in plant biomass. Moreover, we identified a light-dependent component in stand-level methane fluxes, which showed order-of-magnitude agreement with shoot-level measurements (0.968 ± 0.031 nmol CH4 g-1 h-1) and which provides an upper limit for shoot methane emissions.
Collapse
Affiliation(s)
- Lukas Kohl
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki00790, Finland
- Institute for Atmosphere and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki00790, Finland
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio70600, Finland
| | - Salla A. M. Tenhovirta
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki00790, Finland
- Institute for Atmosphere and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki00790, Finland
| | - Markku Koskinen
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki00790, Finland
- Institute for Atmosphere and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki00790, Finland
| | - Anuliina Putkinen
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki00790, Finland
- Institute for Atmosphere and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki00790, Finland
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki00790, Finland
| | - Iikka Haikarainen
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki00790, Finland
- Institute for Atmosphere and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki00790, Finland
| | - Tatu Polvinen
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki00790, Finland
- Institute for Atmosphere and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki00790, Finland
| | - Luca Galeotti
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki00790, Finland
- Institute for Atmosphere and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki00790, Finland
| | - Ivan Mammarella
- Institute for Atmosphere and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki00560, Finland
| | - Henri M. P. Siljanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio70600, Finland
- Archaea Biology and Ecogenomics Unit, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna1030, Austria
| | - Thomas Matthew Robson
- National School of Forestry, University of Cumbria, AmblesideLA22 9BB, United Kingdom
- Organismal and Evolutionary Biology (OEB), Faculty of Biological and Environmental Science, University of Helsinki, Helsinki00790, Finland
| | - Bartosz Adamczyk
- Natural Resources Institute Finland (Luke), Helsinki00790, Finland
| | - Mari Pihlatie
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki00790, Finland
- Institute for Atmosphere and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki00790, Finland
- Viikki Plant Science Center, University of Helsinki, Helsinki00790, Finland
| |
Collapse
|