1
|
Tantular IS, Kawamoto F. Distribution of G6PD deficiency genotypes among Southeast Asian populations. Trop Med Health 2021; 49:97. [PMID: 34930507 PMCID: PMC8686385 DOI: 10.1186/s41182-021-00387-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/05/2021] [Indexed: 11/10/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a group of X-linked, hereditary genetic disorders caused by mutations in the G6PD gene and results in functional variants of about 400 biochemical and clinical phenotypes. Among them, more than 215 genotypes have been identified so far. In this review, specific features of the genotype distribution in different communities and countries are discussed based on multiple reports and our molecular epidemiological studies of Southeast Asian countries. Particularly, in Indonesia, the frequency distribution of G6PD deficiency variants was distinct between western and eastern Indonesian populations, suggesting two different gene flows during Indonesian expansions.
Collapse
Affiliation(s)
- Indah S Tantular
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Parasitology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Fumihiko Kawamoto
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia. .,Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan.
| |
Collapse
|
2
|
van Zutphen KG, Kraemer K, Melse-Boonstra A. Knowledge Gaps in Understanding the Etiology of Anemia in Indonesian Adolescents. Food Nutr Bull 2021; 42:S39-S58. [PMID: 34282655 PMCID: PMC8293751 DOI: 10.1177/0379572120979241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Anemia is a public health problem among adolescents in Indonesia. Strategies to prevent or treat anemia should be tailored to local conditions, taking into account its specific etiology and prevalence in a given setting and population group. OBJECTIVE This review aims to (1) identify and synthesize the current knowledge on the etiology of anemia among adolescents in Indonesia, (2) reveal knowledge gaps in this area, and (3) suggest directions for future research and programmatic work. METHODS We systematically searched PubMed, Web of Science, Scopus, Medline, and WorldCat databases for peer-reviewed journal articles to identify which etiological factors were related to anemia among Indonesian adolescents. Research papers were reviewed and included in the review according to inclusion criteria. RESULTS Of 13 studies, 8 showed that anemia was associated with iron deficiency; 4 are suggestive of vitamin A deficiency; and 2 of folic acid deficiency. Five studies underscore different etiological determinants for anemia, such as malaria, protein and energy malnutrition, vitamin B2 deficiency, calcium, and vitamin C deficiency. Based on these findings, we developed a framework on knowledge gaps on the etiology of anemia among adolescents in Indonesia, divided in 3 levels of knowledge: (1) significant knowledge gaps, (2) knowledge gaps, and (3) established knowledge. CONCLUSIONS The knowledge gaps around the etiology of anemia among Indonesian adolescents are significant. Our framework emphasizes the need for further research across all etiological factors, namely inadequate nutritional intake and absorption, genetic hemoglobin disorders, infection and inflammation, and menstrual disorders.
Collapse
Affiliation(s)
- Kesso Gabrielle van Zutphen
- 4508Wageningen University & Research, Wageningen, the Netherlands.,Sight and Life Foundation, Basel, Switzerland
| | - Klaus Kraemer
- Sight and Life Foundation, Basel, Switzerland.,Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | |
Collapse
|
3
|
Sulistyaningrum N, Arlinda D, Hutagalung J, Sunarno S, Oktoberia IS, Handayani S, Ekowatiningsih R, Yusnita EA, Prasetyorini B, Rizki A, Tjitra E, Na-Bangchang K, Chaijaroenkul W. Prevalence of Glucose 6-Phosphate Dehydrogenase Variants in Malaria-Endemic Areas of South Central Timor, Eastern Indonesia. Am J Trop Med Hyg 2020; 103:760-766. [PMID: 32602432 DOI: 10.4269/ajtmh.19-0780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Primaquine is an effective anti-hypnozoite drug for Plasmodium vivax and Plasmodium ovale. However, it can trigger erythrocyte hemolysis in people with glucose 6-phosphate dehydrogenase (G6PD) deficiency. In a previous report from South Central Timor (SCT), Indonesia, we described the prevalence of Vanua Lava, Chatham, and Viangchan variants; in this study, other G6PD variants (Kaiping, Coimbra, Gaohe, Canton, and Mahidol) were subsequently analyzed. For clarity, all of these results are described together. The 381 DNA samples from the previous study during 2013-2014 were analyzed for G6PD variants by using PCR-restriction fragment length polymorphism (RFLP). The prevalence of G6PD deficiency in SCT was 6.3% (24/381 cases), including 4.2% (16/381 cases), 0.5% (2/381 cases), and 1.6% (6/381 cases) for Coimbra, Kaiping, and Vanua Lava variants, respectively. No other variants were found in this population. A significant association was found between ethnicity and the distribution of G6PD Kaiping in female subjects. A positive association was shown between G6PD activity and heterozygous females carrying Coimbra genotype, hemizygous males carrying Vanua Lava, Plasmodium falciparum infection in female subjects, and P. vivax infection in male subjects. Further molecular analysis of heterozygous females, particularly in malaria-endemic areas, is needed for mapping distribution of G6PD deficiency status in Indonesia.
Collapse
Affiliation(s)
- Novi Sulistyaningrum
- National Institute of Health Research and Development, Ministry of Health, Republic of Indonesia, Jakarta, Indonesia.,Chulabhorn International College of Medicine (CICM), Thammasat University (Rangsit Campus), Patum Thani, Thailand
| | - Dona Arlinda
- National Institute of Health Research and Development, Ministry of Health, Republic of Indonesia, Jakarta, Indonesia.,Chulabhorn International College of Medicine (CICM), Thammasat University (Rangsit Campus), Patum Thani, Thailand
| | - Jontari Hutagalung
- National Institute of Health Research and Development, Ministry of Health, Republic of Indonesia, Jakarta, Indonesia
| | - Sunarno Sunarno
- National Institute of Health Research and Development, Ministry of Health, Republic of Indonesia, Jakarta, Indonesia
| | - Intan Sari Oktoberia
- National Institute of Health Research and Development, Ministry of Health, Republic of Indonesia, Jakarta, Indonesia
| | - Sarwo Handayani
- National Institute of Health Research and Development, Ministry of Health, Republic of Indonesia, Jakarta, Indonesia
| | - Riyanti Ekowatiningsih
- National Institute of Health Research and Development, Ministry of Health, Republic of Indonesia, Jakarta, Indonesia
| | - Endah Ariyanti Yusnita
- National Institute of Health Research and Development, Ministry of Health, Republic of Indonesia, Jakarta, Indonesia
| | - Budi Prasetyorini
- National Institute of Health Research and Development, Ministry of Health, Republic of Indonesia, Jakarta, Indonesia
| | - Aulia Rizki
- National Institute of Health Research and Development, Ministry of Health, Republic of Indonesia, Jakarta, Indonesia
| | | | - Kesara Na-Bangchang
- Chulabhorn International College of Medicine (CICM), Thammasat University (Rangsit Campus), Patum Thani, Thailand
| | - Wanna Chaijaroenkul
- Chulabhorn International College of Medicine (CICM), Thammasat University (Rangsit Campus), Patum Thani, Thailand
| |
Collapse
|
4
|
Wisnumurti DA, Sribudiani Y, Porsch RM, Maskoen AM, Rahayuningsih SE, Asni EK, Sleutels F, van Ijcken WFJ, Sukadi A, Achmad TH. G6PD genetic variations in neonatal Hyperbilirubinemia in Indonesian Deutromalay population. BMC Pediatr 2019; 19:506. [PMID: 31862010 PMCID: PMC6923888 DOI: 10.1186/s12887-019-1882-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 12/10/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Neonatal jaundice is a common finding in newborns in Asia, including Indonesia. In some cases, the serum total bilirubin levels exceeds the 95th percentile for hours of life (neonatal hyperbilirubinemia). Severe neonatal hyperbilirubinemia (NH) could lead to kernicterus and neonatal death. Glucose-6-Phosphage Dehydrogenase (G6PD) genetic variations and deficiency have been reported in several studies to be associated with NH. This study aimed to analyze the G6PD genetic variations and its activity in neonates with and without hyperbilirubinemia in the Deutromalay Indonesian population. METHODS Deoxyribose Nucleic Acid (DNA) was isolated from peripheral blood of 116 and 115 healthy term neonates with and without hyperbilirubinemia. All infants underwent the following laboratory examinations: routine hematologic evaluation, Coombs test, G6PD activity measurement using the Randox kit method, and serum total bilirubin level. All exons of the G6PD gene were targeted for deep sequencing using MiSeq (Illumina). An association study of G6PD polymorphisms with NH was performed using PLINK. RESULTS The prevalence of G6PD deficiency in neonates with and without hyperbilirubinemia in Indonesian Deutromalay population were 1.72% (95% Confidence Interval (CI): 0.6-4.1%) and 1.74% (95% CI: 0.7-4.1%), respectively. The most common G6PD polymorphisms, i.e. rs1050757/c.* + 357A > G, rs2230037/c.1311C > T, and rs2071429/c.1365-13 T/IVS11, were identified. However, none of those polymorphisms and their haplotype were associated with NH (p > 0.05, Odds Ratio (OR) ~1.00). The prevalence of G6PD mutations in neonates with and without hyperbilirubinemia were 6.8% (95% CI: 2.3-11.5%) and 6.9% (95% CI: 2.3-11.6%), respectively. The most frequently identified G6PD mutation was the Viangchan variant (p.V291 M), which was followed by the Canton (p.R459L) and Vanua Lava (p.L128P) variants. Two novel mutations were identified both in case (p.V369A, p.I167F) and control (p.L474=, p.I36T) groups. CONCLUSION The prevalence of G6PD deficiency is low in neonates with or without hyperbilirubinemia in Deutromalay Indonesian population. The majority of G6PD mutations identified among Indonesian Deutromalay population in this study are Viangchan, Canton and Vanua Lava variants.
Collapse
Affiliation(s)
- Dewi A Wisnumurti
- Departement of Pediatric, Neonatology Subdivision, Arifin Achmad General Hospital, Universitas Riau, Pekanbaru, Indonesia
- Research Center of Medical Genetics, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Yunia Sribudiani
- Research Center of Medical Genetics, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia.
- Department of Biomedical Sciences, Division of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia.
| | - Robert M Porsch
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong kong SAR, China
| | - Ani M Maskoen
- Research Center of Medical Genetics, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Department of Biomedical Sciences, Division of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Sri E Rahayuningsih
- Departement of Pediatric, Cardiology Subdivision, Dr. Hasan Sadikin Hospital, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Eni K Asni
- Department of Biochemistry, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
| | - Frank Sleutels
- Erasmus Center for Biomics, Erasmus MC, Rotterdam, The Netherlands
| | | | - Abdurachman Sukadi
- Departement of Pediatric, Neonatology Subdivision, Dr. Hasan Sadikin Hospital, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Tri H Achmad
- Department of Biomedical Sciences, Division of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
5
|
Tantular I. MTT FORMAZAN REPLACED WST-8 AS A BETTER SIMPLE SCREENING METHOD FOR DETECTION OF GLUCOSE-6-PHOSPHATE DEHYDROGENASE DEFICIENCY. INDONESIAN JOURNAL OF TROPICAL AND INFECTIOUS DISEASE 2019. [DOI: 10.20473/ijtid.v7i6.13454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have previously developed the WST-8 method as a simple and rapid screening test for detection of glucose-6-phosphate dehydrogenase (G6PD) deficiency accomplished by the naked eye. However, it was little difficult to distinguish between faint orange colors developed by heterozygous females and pink colors of normal hemolyzed blood, since both have similar tones. To solve this problem, we established a new and simple screening method that utilizes another formazan substrate, MTT (3-(4,5-dimethyl-2- thiazolyl)-2,5-diphenyl-2H tetrazolium bromide) in combination with a hydrogen carrier, 1-methoxy phenazine methosulfate. MTT formazan exhibits a purple color, thus allowing for the ability to easily distinguish the pink colors of hemolyzed blood. However, MTT has been reported to react with hemoglobin non-specifically and to interfere with the interpretation of the color reaction. In our examinations by mixing MTT with hemolyzed blood, we found that the non-specific reaction was very slow, and that the addition of a small amount of blood (5~10 μl) into a reaction mixture (800 μl) did not interfere with the reaction of G6PD activity. In this new MTT method, a strong purple color was generated in normal blood samples at 20~30 min after incubation, which could be distinguished by the naked eye from G6PD-deficient blood samples with less than 50% residual activity. In addition, quantitative measurement using a spectrophotometer was also possible despite the fact that MTT formazan is water-insoluble.
Collapse
|
6
|
Satyagraha AW, Sadhewa A, Baramuli V, Elvira R, Ridenour C, Elyazar I, Noviyanti R, Coutrier FN, Harahap AR, Baird JK. G6PD deficiency at Sumba in Eastern Indonesia is prevalent, diverse and severe: implications for primaquine therapy against relapsing Vivax malaria. PLoS Negl Trop Dis 2015; 9:e0003602. [PMID: 25746733 PMCID: PMC4351883 DOI: 10.1371/journal.pntd.0003602] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 02/06/2015] [Indexed: 12/23/2022] Open
Abstract
Safe treatment of Plasmodium vivax requires diagnosis of both the infection and status of erythrocytic glucose-6-phosphate dehydrogenase (G6PD) activity because hypnozoitocidal therapy against relapse requires primaquine, which causes a mild to severe acute hemolytic anemia in G6PD deficient patients. Many national malaria control programs recommend primaquine therapy without G6PD screening but with monitoring due to a broad lack of G6PD deficiency screening capacity. The degree of risk in doing so hinges upon the level of residual G6PD activity among the variants present in any given area. We conducted studies on Sumba Island in eastern Indonesia in order to assess the potential threat posed by primaquine therapy without G6PD screening. We sampled 2,033 residents of three separate districts in western Sumba for quantitative G6PD activity and 104 (5.1%) were phenotypically deficient (<4.6U/gHb; median normal 10U/gHb). The villages were in two distinct ecosystems, coastal and inland. A positive correlation occurred between the prevalence of malaria and G6PD deficiency: 5.9% coastal versus inland 0.2% for malaria (P<0.001), and 6.7% and 3.1% for G6PD deficiency (P<0.001) at coastal and inland sites, respectively. The dominant genotypes of G6PD deficiency were Vanua Lava, Viangchan, and Chatham, accounting for 98.5% of the 70 samples genotyped. Subjects expressing the dominant genotypes all had less than 10% of normal enzyme activities and were thus considered severe variants. Blind administration of anti-relapse primaquine therapy at Sumba would likely impose risk of serious harm. G6PD deficiency affects over 400 million people worldwide. This enormously diverse disorder causes acute hemolytic anemia upon exposure to oxidizing chemicals, e.g., naphthalene, some sulfa drugs, and certain antimalarials, including primaquine. The primary public health concern with G6PD deficiency involves that latter drug, the only one available for the radical cure of vivax and ovale malarias. Absent primaquine therapy, patients will suffer multiple recurrent attacks called relapses in the two years following the primary attack. Primaquine in G6PD-deficient patients triggers a mild to severe acute hemolytic anemia, depending upon dose administered and the specific variant involved. Relatively high therapeutic doses in severely deficient variants will threaten life. Malaria therapeutic policy and practice regarding primaquine may hinge upon the prevalence and severity of G6PD deficiency weighed against the therapeutic benefit of averting risk of relapse and attendant morbidity, mortality and onward transmission. In the current study we aimed to inform that weighing by characterizing the frequency and type of G6PD deficiency occurring in populations enduring endemic vivax malaria transmission on a single island in eastern Indonesia. The findings infer risk of serious harm caused by primaquine administered to residents of unknown G6PD status.
Collapse
Affiliation(s)
| | | | | | - Rosalie Elvira
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Chase Ridenour
- University of Northern Arizona, Flagstaff, Arizona, United States of America
| | - Iqbal Elyazar
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
| | | | | | | | - J. Kevin Baird
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Rai V, Kumar P. Glucose 6-phosphate dehydrogenase deficiency in Muslim community settled in Jaunpur district. INDIAN JOURNAL OF HUMAN GENETICS 2014; 20:96-7. [PMID: 24959025 PMCID: PMC4065490 DOI: 10.4103/0971-6866.132770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Vandana Rai
- Department of Biotechnology, Human Molecular Genetics Laboratory, Veer Bahadur Singh Purvanchal University, Jaunpur, Uttar Pradesh, India
| | - Pradeep Kumar
- Department of Biotechnology, Human Molecular Genetics Laboratory, Veer Bahadur Singh Purvanchal University, Jaunpur, Uttar Pradesh, India
| |
Collapse
|
8
|
von Seidlein L, Auburn S, Espino F, Shanks D, Cheng Q, McCarthy J, Baird K, Moyes C, Howes R, Ménard D, Bancone G, Winasti-Satyahraha A, Vestergaard LS, Green J, Domingo G, Yeung S, Price R. Review of key knowledge gaps in glucose-6-phosphate dehydrogenase deficiency detection with regard to the safe clinical deployment of 8-aminoquinoline treatment regimens: a workshop report. Malar J 2013; 12:112. [PMID: 23537118 PMCID: PMC3616837 DOI: 10.1186/1475-2875-12-112] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 03/14/2013] [Indexed: 01/24/2023] Open
Abstract
The diagnosis and management of glucose-6-phosphate dehydrogenase (G6PD) deficiency is a crucial aspect in the current phases of malaria control and elimination, which will require the wider use of 8-aminoquinolines for both reducing Plasmodium falciparum transmission and achieving the radical cure of Plasmodium vivax. 8-aminoquinolines, such as primaquine, can induce severe haemolysis in G6PD-deficient individuals, potentially creating significant morbidity and undermining confidence in 8-aminoquinoline prescription. On the other hand, erring on the side of safety and excluding large numbers of people with unconfirmed G6PD deficiency from treatment with 8-aminoquinolines will diminish the impact of these drugs. Estimating the remaining G6PD enzyme activity is the most direct, accessible, and reliable assessment of the phenotype and remains the gold standard for the diagnosis of patients who could be harmed by the administration of primaquine. Genotyping seems an unambiguous technique, but its use is limited by cost and the large range of recognized G6PD genotypes. A number of enzyme activity assays diagnose G6PD deficiency, but they require a cold chain, specialized equipment, and laboratory skills. These assays are impractical for care delivery where most patients with malaria live. Improvements to the diagnosis of G6PD deficiency are required for the broader and safer use of 8-aminoquinolines to kill hypnozoites, while lower doses of primaquine may be safely used to kill gametocytes without testing. The discussions and conclusions of a workshop conducted in Incheon, Korea in May 2012 to review key knowledge gaps in G6PD deficiency are reported here.
Collapse
Affiliation(s)
- Lorenz von Seidlein
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Herdiana H, Fuad A, Asih PB, Zubaedah S, Arisanti RR, Syafruddin D, Kusnanto H, Sumiwi ME, Yuniarti T, Imran A, Rahmadyani R, Yani M, Kusriastuti R, Tarmizi SN, Laihad FJ, Hawley WA. Progress towards malaria elimination in Sabang Municipality, Aceh, Indonesia. Malar J 2013; 12:42. [PMID: 23363768 PMCID: PMC3564785 DOI: 10.1186/1475-2875-12-42] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 01/25/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Indonesia has set 2030 as its deadline for elimination of malaria transmission in the archipelago, with regional deadlines established according to present levels of malaria endemicity and strength of health infrastructure. The Municipality of Sabang which historically had one of the highest levels of malaria in Aceh province aims to achieve elimination by the end of 2013. METHOD From 2008 to 2010, baseline surveys of malaria interventions, mapping of all confirmed malaria cases, categorization of residual foci of malaria transmission and vector surveys were conducted in Sabang, Aceh, a pilot district for malaria elimination in Indonesia. To inform future elimination efforts, mass screening from the focal areas to measure prevalence of malaria with both microscopy and PCR was conducted. G6PD deficiency prevalence was also measured. RESULT Despite its small size, a diverse mixture of potential malaria vectors were documented in Sabang, including Anopheles sundaicus, Anopheles minimus, Anopheles aconitus and Anopheles dirus. Over a two-year span, the number of sub-villages with ongoing malaria transmission reduced from 61 to 43. Coverage of malaria diagnosis and treatment, IRS, and LLINs was over 80%. Screening of 16,229 residents detected 19 positive people, for a point prevalence of 0.12%. Of the 19 positive cases, three symptomatic infections and five asymptomatic infections were detected with microscopy and 11 asymptomatic infections were detected with PCR. Of the 19 cases, seven were infected with Plasmodium falciparum, 11 were infected with Plasmodium vivax, and one subject was infected with both species. Analysis of the 937 blood samples for G6PD deficiency revealed two subjects (0.2%) with deficient G6PD. DISCUSSION The interventions carried out by the government of Sabang have dramatically reduced the burden of malaria over the past seven years. The first phase, carried out between 2005 and 2007, included improved malaria diagnosis, introduction of ACT for treatment, and scale-up of coverage of IRS and LLINs. The second phase, from 2008 to 2010, initiated to eliminate the persistent residual transmission of malaria, consisted of development of a malaria database to ensure rapid case reporting and investigation, stratification of malaria foci to guide interventions, and active case detection to hunt symptomatic and asymptomatic malaria carriers.
Collapse
Affiliation(s)
- Herdiana Herdiana
- Child Survival and Development Cluster, UNICEF Indonesia Country Office, Jalan Sudirman Kav, 31, Wisma Metropolitan II, Fl 10th, Jakarta, 12920, Indonesia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Elyazar IRF, Gething PW, Patil AP, Rogayah H, Sariwati E, Palupi NW, Tarmizi SN, Kusriastuti R, Baird JK, Hay SI. Plasmodium vivax malaria endemicity in Indonesia in 2010. PLoS One 2012; 7:e37325. [PMID: 22615978 PMCID: PMC3355104 DOI: 10.1371/journal.pone.0037325] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 04/18/2012] [Indexed: 11/25/2022] Open
Abstract
Background Plasmodium vivax imposes substantial morbidity and mortality burdens in endemic zones. Detailed understanding of the contemporary spatial distribution of this parasite is needed to combat it. We used model based geostatistics (MBG) techniques to generate a contemporary map of risk of Plasmodium vivax malaria in Indonesia in 2010. Methods Plasmodium vivax Annual Parasite Incidence data (2006–2008) and temperature masks were used to map P. vivax transmission limits. A total of 4,658 community surveys of P. vivax parasite rate (PvPR) were identified (1985–2010) for mapping quantitative estimates of contemporary endemicity within those limits. After error-checking a total of 4,457 points were included into a national database of age-standardized 1–99 year old PvPR data. A Bayesian MBG procedure created a predicted PvPR1–99 endemicity surface with uncertainty estimates. Population at risk estimates were derived with reference to a 2010 human population surface. Results We estimated 129.6 million people in Indonesia lived at risk of P. vivax transmission in 2010. Among these, 79.3% inhabited unstable transmission areas and 20.7% resided in stable transmission areas. In western Indonesia, the predicted P. vivax prevalence was uniformly low. Over 70% of the population at risk in this region lived on Java and Bali islands, where little malaria transmission occurs. High predicted prevalence areas were observed in the Lesser Sundas, Maluku and Papua. In general, prediction uncertainty was relatively low in the west and high in the east. Conclusion Most Indonesians living with endemic P. vivax experience relatively low risk of infection. However, blood surveys for this parasite are likely relatively insensitive and certainly do not detect the dormant liver stage reservoir of infection. The prospects for P. vivax elimination would be improved with deeper understanding of glucose-6-phosphate dehydrogenase deficiency (G6PDd) distribution, anti-relapse therapy practices and manageability of P. vivax importation risk, especially in Java and Bali.
Collapse
|
11
|
Prevalence and molecular characterization of Glucose-6-Phosphate dehydrogenase deficient variants among the Kurdish population of Northern Iraq. BMC HEMATOLOGY 2010; 10:6. [PMID: 20602793 PMCID: PMC2913952 DOI: 10.1186/1471-2326-10-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Accepted: 07/05/2010] [Indexed: 11/10/2022]
Abstract
Background Glucose-6-Phosphate dehydrogenase (G6PD) is a key enzyme of the pentose monophosphate pathway, and its deficiency is the most common inherited enzymopathy worldwide. G6PD deficiency is common among Iraqis, including those of the Kurdish ethnic group, however no study of significance has ever addressed the molecular basis of this disorder in this population. The aim of this study is to determine the prevalence of this enzymopathy and its molecular basis among Iraqi Kurds. Methods A total of 580 healthy male Kurdish Iraqis randomly selected from a main regional premarital screening center in Northern Iraq were screened for G6PD deficiency using methemoglobin reduction test. The results were confirmed by quantitative enzyme assay for the cases that showed G6PD deficiency. DNA analysis was performed on 115 G6PD deficient subjects, 50 from the premarital screening group and 65 unrelated Kurdish male patients with documented acute hemolytic episodes due to G6PD deficiency. Analysis was performed using polymerase chain reaction/restriction fragment length polymorphism for five deficient molecular variants, namely G6PD Mediterranean (563 C→T), G6PD Chatham (1003 G→A), G6PD A- (202 G→A), G6PD Aures (143 T→C) and G6PD Cosenza (1376 G→C), as well as the silent 1311 (C→T) mutation. Results Among 580 random Iraqi male Kurds, 63 (10.9%) had documented G6PD deficiency. Molecular studies performed on a total of 115 G6PD deficient males revealed that 101 (87.8%) had the G6PD Mediterranean variant and 10 (8.7%) had the G6PD Chatham variant. No cases of G6PD A-, G6PD Aures or G6PD Cosenza were identified, leaving 4 cases (3.5%) uncharacterized. Further molecular screening revealed that the silent mutation 1311 was present in 93/95 of the Mediterranean and 1/10 of the Chatham cases. Conclusions The current study revealed a high prevalence of G6PD deficiency among Iraqi Kurdish population of Northern Iraq with most cases being due to the G6PD Mediterranean and Chatham variants. These results are similar to those reported from neighboring Iran and Turkey and to lesser extent other Mediterranean countries.
Collapse
|
12
|
Nkhoma ET, Poole C, Vannappagari V, Hall SA, Beutler E. The global prevalence of glucose-6-phosphate dehydrogenase deficiency: A systematic review and meta-analysis. Blood Cells Mol Dis 2009; 42:267-78. [DOI: 10.1016/j.bcmd.2008.12.005] [Citation(s) in RCA: 440] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 12/19/2008] [Indexed: 11/15/2022]
|
13
|
Hung NM, Eto H, Mita T, Tsukahara T, Hombhanje FW, Hwaihwanje I, Takahashi N, Kobayakawa T. Glucose -6- Phosphate Dehydrogenase (G6PD) variants in East Sepik Province of Papua New Guinea: G6PD Jammu, G6PD Vanua Lava, and a novel variant (G6PD Dagua). Trop Med Health 2008. [DOI: 10.2149/tmh.2008-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
14
|
Kawamoto F, Matsuoka H, Kanbe T, Tantular IS, Pusarawati S, Kerong HI, Damianus W, Mere D, Dachlan YP. Further investigations of glucose-6-phosphate dehydrogenase variants in Flores Island, eastern Indonesia. J Hum Genet 2006; 51:952-957. [PMID: 16927025 DOI: 10.1007/s10038-006-0044-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Accepted: 07/26/2006] [Indexed: 10/24/2022]
Abstract
We conducted field surveys for malaria and glucose-6-phosphate dehydrogenase (G6PD) deficiency in the eastern part of Flores Island, East Nusa Tenggara Province, Indonesia. A total of 1,108 volunteers (642 males and 466 females) belonging to three ethnic groups (Sikka, Ende and Bajo) were examined, and 55 G6PD-deficient individuals (38 males and 17 females) were detected. Among them, 50 samples were analyzed molecularly, in addition to three deficient cases in a Bajo family. In the Sikka population, G6PD Kaiping (1388G>A), one of the two common variants in the Chinese population, was unexpectedly found as the most dominant variant (11/22, 50.0%), followed by G6PD Chatham (1003G>A, 36.4%), G6PD Coimbra (592C>T, 9.1%) and G6PD Vanua Lava (383T>C, 4.5%). Frequency of G6PD Kaiping in the Sikka might be the highest among non-Chinese populations reported so far. In the Ende population, G6PD Vanua Lava (9/14, 64.3%) was the highest, followed by G6PD Kaiping (14.3%), G6PD Chinese-5 (1024C>T, 14.3%) and G6PD Chatham (7.1%). In the Bajo population, a total of 18 deficient cases were analyzed, and a novel mutation (844G>T) in exon 8 with a predicted amino acid change of 282 Asp>Tyr was found in a 7-year-old boy at a Bajo village near Maumere. This new Class II (mild type) variant was also confirmed in his mother and sister, and designated as G6PD Bajo Maumere. The missense mutation at the same nucleotide 844 has been known as G6PD Seattle/Lodi/Modena/Ferrara II, but this mutation is caused by a G>C substitution (282 Asp>His). In the Bajo population, G6PD Viangchan (871G>A, IVS 11 nt93 T>C, 1311C>T), the most common variant in continental Southeast Asian populations, was found to be the dominant (11/18, 61.1%), followed by G6PD Vanua Lava and the new variant (each 16.7%), and G6PD Coimbra (5.6%). These results strongly suggest that the Bajo peoples may have different ancestors from those for Sikka and Ende, and may be much closer to continental Southeast Asian populations. It is interesting that G6PD Canton (1376G>T), another common variant in Chinese, was not seen in the Flores population.
Collapse
Affiliation(s)
- Fumihiko Kawamoto
- Institute of Scientific Research, Faculty of Medicine, Oita University, Yufu, Japan.
| | - Hiroyuki Matsuoka
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke, Japan
| | - Toshio Kanbe
- Department of Advanced Medical Science, Nagoya University Graduate School of Medicine, Showa, Nagoya, Japan
| | - Indah S Tantular
- Tropical Disease Center, Airlangga University, Surabaya, Indonesia
| | | | - Henyo I Kerong
- Health Department, Maumere, Sikka District, East Nusa Tenggala Province, Indonesia
| | - Wera Damianus
- Health Department, Maumere, Sikka District, East Nusa Tenggala Province, Indonesia
| | - Dominikus Mere
- Health Department, Ende, Ende District, East Nusa Tenggala Province, Indonesia
| | - Yoes P Dachlan
- Tropical Disease Center, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
15
|
Matsuoka H, Nguon C, Kanbe T, Jalloh A, Sato H, Yoshida S, Hirai M, Arai M, Socheat D, Kawamoto F. Glucose-6-phosphate dehydrogenase (G6PD) mutations in Cambodia: G6PD Viangchan (871G>A) is the most common variant in the Cambodian population. J Hum Genet 2005; 50:468-472. [PMID: 16136268 DOI: 10.1007/s10038-005-0279-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Accepted: 07/11/2005] [Indexed: 11/24/2022]
Abstract
We conducted a survey of malaria diagnoses and glucose-6-phosphate dehydrogenase (G6PD) testing in remote areas of Cambodia. Blood specimens from 670 people were collected by the finger-prick method. Of these people, 24.9% were found to have malaria, and 7.0% of people were G6PD deficient. In the Khmer, the largest ethnical population in Cambodia, the G6PD deficiency rate of males was 12.6% (25/199) whereas the rates in the minorities of the Tum Pun and the Cha Ray were 1.1% (1/93) and 3.2% (2/63), respectively. Of the G6PD-deficient subjects, 97.9% (46/47) were G6PD Viangchan (871G>A), and only one case (2.1%) was G6PD Union (1360C>T). Since G6PD Mahidol (487G>A) is common in Myanmar according to our previous study, the current finding suggests that the Cambodian population is derived from homogeneous ancestries and is different from the Myanmar population. All G6PD Viangchan cases were linked to two other mutations of 1311C>T and IVS-11 nt93T>C in the G6PD gene.
Collapse
Affiliation(s)
- Hiroyuki Matsuoka
- Department of Medical Zoology, Jichi Medical School, 3311-1 Yakushij, Minami-kawachi, Tochigi, 329-0498, Japan.
| | - Chea Nguon
- National Malaria Center, Ministry of Health, Phnom Penh, Cambodia
| | - Toshio Kanbe
- Department of Advanced Medical Science, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Amadu Jalloh
- Department of Advanced Medical Science, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroko Sato
- Faculty of Medicine, Department of Infectious Disease Control, Oita University, Oita, Japan
| | - Shigeto Yoshida
- Department of Medical Zoology, Jichi Medical School, 3311-1 Yakushij, Minami-kawachi, Tochigi, 329-0498, Japan
| | - Makoto Hirai
- Department of Medical Zoology, Jichi Medical School, 3311-1 Yakushij, Minami-kawachi, Tochigi, 329-0498, Japan
| | - Meiji Arai
- Department of Medical Zoology, Jichi Medical School, 3311-1 Yakushij, Minami-kawachi, Tochigi, 329-0498, Japan
| | - Duong Socheat
- National Malaria Center, Ministry of Health, Phnom Penh, Cambodia
| | - Fumihiko Kawamoto
- Faculty of Medicine, Institute of Scientific Research, Oita University, Oita, Japan
| |
Collapse
|
16
|
Shimizu H, Tamam M, Soemantri A, Ishida T. Glucose-6-phosphate dehydrogenase deficiency and Southeast Asian ovalocytosis in asymptomatic Plasmodium carriers in Sumba island, Indonesia. J Hum Genet 2005; 50:420-424. [PMID: 16059744 DOI: 10.1007/s10038-005-0271-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Accepted: 06/12/2005] [Indexed: 10/25/2022]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency and Southeast Asian ovalocytosis (SAO) caused by a 27-bp deletion in the band 3 gene (Band3Delta 27) are well-documented genetic traits resistant to malarial diseases; however, relationships between these traits and asymptomatic malaria infection hitherto had not been investigated. Filter-blotted blood samples were collected from a total of 210 healthy individuals, 100 males and 110 females, aged 6-17 years, in Sumba island, Indonesia, to survey for the presence of Plasmodium parasites, G6PD activity and the Band3Delta 27 mutation. Presence of P. falciparum and/or P. vivax was identified in 25 subjects (11.9%). In all, 24 subjects (11.4%) showed Band3Delta 27 heterozygously. In males and females, eight and nine subjects, respectively, showed G6PD deficiency. There was no significant difference in the prevalence of asymptomatic malaria infection between individuals with or without these traits (P>0.05). No alterations in the prevalence of asymptomatic malaria infection suggest that parasite invasion into erythrocytes is unlikely to be a target phase in which the two polymorphisms demonstrate possible protective effects against malaria.
Collapse
Affiliation(s)
- Hana Shimizu
- Department of Human Ecology, School of International Health, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Moedrik Tamam
- Department of Child Health, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
- Dr. Kariadi Hospital, Semarang, Indonesia
| | - Augustinus Soemantri
- Department of Child Health, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
- Dr. Kariadi Hospital, Semarang, Indonesia
| | - Takafumi Ishida
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
17
|
Matsuoka H, Wang J, Hirai M, Arai M, Yoshida S, Kobayashi T, Jalloh A, Lin K, Kawamoto F. Glucose-6-phosphate dehydrogenase (G6PD) mutations in Myanmar: G6PD Mahidol (487G>A) is the most common variant in the Myanmar population. J Hum Genet 2004; 49:544-547. [PMID: 15349799 DOI: 10.1007/s10038-004-0187-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Accepted: 07/12/2004] [Indexed: 10/26/2022]
Abstract
We conducted a survey of malaria diagnoses and treatments in remote areas of Myanmar. Blood specimens from more than 1,000 people were collected by the finger-prick method, and 121 (11%) of these people were found to be glucose-6-phosphate dehydrogenase (G6PD) deficient. Of these 121, 50 consented to analysis of the G6PD genome. We read the G6PD sequences of these subjects and found 45 cases of G6PD Mahidol (487G>A), two of G6PD Coimbra (592C>T), two of G6PD Union (1360C>T), and one of G6PD Canton (1376G>T). Taken together with data from our previous report, 91.3% (73/80) of G6PD variants were G6PD Mahidol. This finding suggests that the Myanmar population is derived from homogeneous ancestries and are different from Thai, Malaysian, and Indonesian populations.
Collapse
Affiliation(s)
- Hiroyuki Matsuoka
- Department of Medical Zoology, Jichi Medical School, 3311-1 Yakushiji, Minami-kawachi, Tochigi, 329-0498, Japan.
| | - Jichun Wang
- Department of Medical Zoology, Jichi Medical School, 3311-1 Yakushiji, Minami-kawachi, Tochigi, 329-0498, Japan
| | - Makoto Hirai
- Department of Medical Zoology, Jichi Medical School, 3311-1 Yakushiji, Minami-kawachi, Tochigi, 329-0498, Japan
| | - Meiji Arai
- Department of Medical Zoology, Jichi Medical School, 3311-1 Yakushiji, Minami-kawachi, Tochigi, 329-0498, Japan
| | - Shigeto Yoshida
- Department of Medical Zoology, Jichi Medical School, 3311-1 Yakushiji, Minami-kawachi, Tochigi, 329-0498, Japan
| | - Tamaki Kobayashi
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Amadu Jalloh
- Department of Advanced Medical Science, Nagoya University Graduate School of Medicine, Showa, Nagoya, Japan
| | - Khin Lin
- Parasitology Division, Department of Medical Research, Upper Myanmar, Myanmar
| | - Fumihiko Kawamoto
- Faculty of Medicine, Institute of Scientific Research, Oita University, Oita, Japan
| |
Collapse
|
18
|
Jalloh A, Tantular IS, Pusarawati S, Kawilarang AP, Kerong H, Lin K, Ferreira MU, Matsuoka H, Arai M, Kita K, Kawamoto F. Rapid epidemiologic assessment of glucose-6-phosphate dehydrogenase deficiency in malaria-endemic areas in Southeast Asia using a novel diagnostic kit. Trop Med Int Health 2004; 9:615-23. [PMID: 15117307 DOI: 10.1111/j.1365-3156.2004.01237.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We recently reported a new rapid screening method for glucose-6-phosphate dehydrogenase (G6PD) deficiency. This method incorporates a new formazan substrate (WST-8) and is capable of detecting heterozygous females both qualitatively and quantitatively. Here, we report its evaluation during field surveys at three malaria centres and in malaria-endemic villages of Myanmar and Indonesia, either alone or in combination with a rapid on-site diagnosis of malaria. A total of 57 severe (45 males and 12 females) and 34 mild (five males and 29 females) cases of G6PD deficiency were detected among 855 subjects in Myanmar whilst 30 severe (25 males and five females) and 23 mild (six males and 17 females) cases were found among 1286 subjects in Indonesia. In all cases, severe deficiency was confirmed with another formazan method but due to limitations in its detection threshold, mild cases were misdiagnosed as G6PD-normal by this latter method. Our results indicate that the novel method can qualitatively detect both severely deficient subjects as well as heterozygous females in the field. The antimalarial drug, primaquine, was safely prescribed to Plasmodium vivax-infected patients in Myanmar. Our new, rapid screening method may be essential for the diagnosis of G6PD deficiency particularly in rural areas without electricity, and can be recommended for use in malaria control programmes.
Collapse
Affiliation(s)
- A Jalloh
- Department of International Health, Nagoya University Graduate School of Medicine, Showa, Nagoya, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|