1
|
Zhi Y, Shi Y, Lu D, Xu D. Neurodevelopmental Implications Underpinning Hereditary Spastic Paraplegia. CNS Neurosci Ther 2025; 31:e70260. [PMID: 39932116 PMCID: PMC11811889 DOI: 10.1111/cns.70260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/25/2024] [Accepted: 01/28/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Hereditary spastic paraplegia (HSP) is a group of rare genetic neurodegenerative disorders characterized by corticospinal tract abnormalities. But frequently, abnormalities of proteins implicated in HSP have been identified in brain disorders of childhood, raising the possibility that early brain developmental mechanism underlying HSP. RESULTS AND CONCLUSIONS Here we summarized the clinical features of 89 HSP subtypes and found most have onset of symptoms earliest reported in infancy or early childhood. Importantly, HSP patients showed early brain developmental related phenotypes such as microcephaly, ventricular enlargement, and corpus callosum dysplasia. In addition, the expression trajectories analysis showed HSP genes were diffusely expressed across all human prenatal cortical regions and most genes enriched from post-conception weeks 8-24, periods characterized by neuro progenitor proliferation and neurogenesis. Furthermore, studies utilizing patient derived induced pluripotent stem cells (iPSCs)/organoids and mouse models have suggested that most HSP proteins play either direct or indirect roles in the development of the central nervous system. Therefore, HSP possesses a neurodevelopmental aspect and is not merely a degenerative disease, which may aid in better understanding the pathogenesis of this disease.
Collapse
Affiliation(s)
- Yiqiang Zhi
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, School of Basic Medical SciencesFujian Medical UniversityFuzhouChina
| | - Yan Shi
- Fujian Key Laboratory of Molecular Neurology, Institute of NeuroscienceFujian Medical UniversityFuzhouChina
| | - Danping Lu
- College of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Dan Xu
- Fujian Key Laboratory of Molecular Neurology, Institute of NeuroscienceFujian Medical UniversityFuzhouChina
| |
Collapse
|
2
|
Toupenet Marchesi L, Stockholm D, Esteves T, Leblanc M, Auger N, Branchu J, El Hachimi KH, Stevanin G. Transcriptomic analysis reinforces the implication of spatacsin in neuroinflammation and neurodevelopment. Sci Rep 2025; 15:2370. [PMID: 39827309 PMCID: PMC11743199 DOI: 10.1038/s41598-025-86337-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
Hereditary spastic paraplegia (HSP) encompasses a group of rare genetic diseases primarily affecting motor neurons. Among these, spastic paraplegia type 11 (SPG11) represents a complex form of HSP caused by deleterious variants in the SPG11 gene, which encodes the spatacsin protein. Previous studies have described several potential roles for spatacsin, including its involvement in lysosome and autophagy mechanisms, neuronal and neurites development or mitochondria function. Despite these findings, the precise function of the spatacsin protein remains elusive. To elucidate its function, we conducted an extensive RNA sequencing (RNAseq) experiment and transcriptomic analysis in three distinct neural structures (cerebellum, cortex and hippocampus) and at three different ages (6 weeks, 4 months and 8 months) in both wild type and Spg11-/- mice. Our functional analysis of differentially expressed genes (DEGs) and Gene Set Enrichment Analysis (GSEA) revealed dysregulation in pathways related to inflammation, RNA metabolism and neuronal and neurite development, factors frequently implicated in neurodegenerative disorders. Notably, we also observed early deregulation in cellular pathways related to cell proliferation. Our results represent a significant step towards a better understanding of the functions of spatacsin in the cell and the underlying cellular mechanisms disrupted by its absence.
Collapse
Affiliation(s)
- Liriopé Toupenet Marchesi
- Paris Brain Institute (ICM), Sorbonne University, INSERM, CNRS, APHP, Paris, France
- PSL Research University, EPHE, Paris, France
| | - Daniel Stockholm
- PSL Research University, EPHE, Paris, France
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Typhaine Esteves
- Paris Brain Institute (ICM), Sorbonne University, INSERM, CNRS, APHP, Paris, France
- PSL Research University, EPHE, Paris, France
| | - Marion Leblanc
- Paris Brain Institute (ICM), Sorbonne University, INSERM, CNRS, APHP, Paris, France
- PSL Research University, EPHE, Paris, France
| | - Nicolas Auger
- Paris Brain Institute (ICM), Sorbonne University, INSERM, CNRS, APHP, Paris, France
- PSL Research University, EPHE, Paris, France
| | - Julien Branchu
- Paris Brain Institute (ICM), Sorbonne University, INSERM, CNRS, APHP, Paris, France
| | - Khalid Hamid El Hachimi
- Paris Brain Institute (ICM), Sorbonne University, INSERM, CNRS, APHP, Paris, France
- PSL Research University, EPHE, Paris, France
| | - Giovanni Stevanin
- PSL Research University, EPHE, Paris, France.
- Institut des Neurosciences cognitives et intégratives d'Aquitaine (INCIA), Bordeaux University, CNRS, Bordeaux, France.
| |
Collapse
|
3
|
Azeem A, Ahmed AN, Khan N, Voutsina N, Ullah I, Ubeyratna N, Yasin M, Baple EL, Crosby AH, Rawlins LE, Saleha S. Investigating the genetic basis of hereditary spastic paraplegia and cerebellar Ataxia in Pakistani families. BMC Neurol 2024; 24:354. [PMID: 39304850 DOI: 10.1186/s12883-024-03855-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Hereditary Spastic Paraplegias (HSPs) and Hereditary Cerebellar Ataxias (HCAs) are progressive neurodegenerative disorders encompassing a spectrum of neurogenetic conditions with significant overlaps of clinical features. Spastic ataxias are a group of conditions that have features of both cerebellar ataxia and spasticity, and these conditions are frequently clinically challenging to distinguish. Accurate genetic diagnosis is crucial but challenging, particularly in resource-limited settings. This study aims to investigate the genetic basis of HSPs and HCAs in Pakistani families. METHODS Families from Khyber Pakhtunkhwa with at least two members showing HSP or HCA phenotypes, and who had not previously been analyzed genetically, were included. Families were referred for genetic analysis by local neurologists based on the proband's clinical features and signs of a potential genetic neurodegenerative disorder. Whole Exome Sequencing (WES) and Sanger sequencing were then used to identify and validate genetic variants, and to analyze variant segregation within families to determine inheritance patterns. The mean age of onset and standard deviation were calculated to assess variability among affected individuals, and the success rate was compared with literature reports using differences in proportions and Cohen's h. RESULTS Pathogenic variants associated with these conditions were identified in five of eight families, segregating according to autosomal recessive inheritance. These variants included previously reported SACS c.2182 C > T, p.(Arg728*), FA2H c.159_176del, p.(Arg53_Ile58del) and SPG11 c.2146 C > T, p.(Gln716*) variants, and two previously unreported variants in SACS c.2229del, p.(Phe743Leufs*8) and ZFYVE26 c.1926_1941del, p.(Tyr643Metfs*2). Additionally, FA2H and SPG11 variants were found to have recurrent occurrences, suggesting a potential founder effect within the Pakistani population. Onset age among affected individuals ranged from 1 to 14 years (M = 6.23, SD = 3.96). The diagnostic success rate was 62.5%, with moderate effect sizes compared to previous studies. CONCLUSIONS The findings of this study expand the genotypic and phenotypic spectrum of HSPs and HCAs in Pakistan and emphasize the importance of utilizing exome/genome sequencing for accurate diagnosis or support accurate differential diagnosis. This approach can improve genetic counseling and clinical management, addressing the challenges of diagnosing neurodegenerative disorders in resource-limited settings.
Collapse
Affiliation(s)
- Arfa Azeem
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Asif Naveed Ahmed
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Niamat Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Nikol Voutsina
- 2Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Irfan Ullah
- Department of Neurology, Khyber Teaching Hospital, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan
| | - Nishanka Ubeyratna
- 2Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Muhammad Yasin
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Emma L Baple
- 2Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Andrew H Crosby
- 2Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Lettie E Rawlins
- 2Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK.
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital (Heavitree), Exeter, UK.
| | - Shamim Saleha
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
4
|
Garg V, Geurten BRH. Diving deep: zebrafish models in motor neuron degeneration research. Front Neurosci 2024; 18:1424025. [PMID: 38966756 PMCID: PMC11222423 DOI: 10.3389/fnins.2024.1424025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024] Open
Abstract
In the dynamic landscape of biomedical science, the pursuit of effective treatments for motor neuron disorders like hereditary spastic paraplegia (HSP), amyotrophic lateral sclerosis (ALS), and spinal muscular atrophy (SMA) remains a key priority. Central to this endeavor is the development of robust animal models, with the zebrafish emerging as a prime candidate. Exhibiting embryonic transparency, a swift life cycle, and significant genetic and neuroanatomical congruencies with humans, zebrafish offer substantial potential for research. Despite the difference in locomotion-zebrafish undulate while humans use limbs, the zebrafish presents relevant phenotypic parallels to human motor control disorders, providing valuable insights into neurodegenerative diseases. This review explores the zebrafish's inherent traits and how they facilitate profound insights into the complex behavioral and cellular phenotypes associated with these disorders. Furthermore, we examine recent advancements in high-throughput drug screening using the zebrafish model, a promising avenue for identifying therapeutically potent compounds.
Collapse
Affiliation(s)
- Vranda Garg
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Lower Saxony, Germany
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
- Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
| | | |
Collapse
|
5
|
Damiani D, Baggiani M, Della Vecchia S, Naef V, Santorelli FM. Pluripotent Stem Cells as a Preclinical Cellular Model for Studying Hereditary Spastic Paraplegias. Int J Mol Sci 2024; 25:2615. [PMID: 38473862 DOI: 10.3390/ijms25052615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Hereditary spastic paraplegias (HSPs) comprise a family of degenerative diseases mostly hitting descending axons of corticospinal neurons. Depending on the gene and mutation involved, the disease could present as a pure form with limb spasticity, or a complex form associated with cerebellar and/or cortical signs such as ataxia, dysarthria, epilepsy, and intellectual disability. The progressive nature of HSPs invariably leads patients to require walking canes or wheelchairs over time. Despite several attempts to ameliorate the life quality of patients that have been tested, current therapeutical approaches are just symptomatic, as no cure is available. Progress in research in the last two decades has identified a vast number of genes involved in HSP etiology, using cellular and animal models generated on purpose. Although unanimously considered invaluable tools for basic research, those systems are rarely predictive for the establishment of a therapeutic approach. The advent of induced pluripotent stem (iPS) cells allowed instead the direct study of morphological and molecular properties of the patient's affected neurons generated upon in vitro differentiation. In this review, we revisited all the present literature recently published regarding the use of iPS cells to differentiate HSP patient-specific neurons. Most studies have defined patient-derived neurons as a reliable model to faithfully mimic HSP in vitro, discovering original findings through immunological and -omics approaches, and providing a platform to screen novel or repurposed drugs. Thereby, one of the biggest hopes of current HSP research regards the use of patient-derived iPS cells to expand basic knowledge on the disease, while simultaneously establishing new therapeutic treatments for both generalized and personalized approaches in daily medical practice.
Collapse
Affiliation(s)
- Devid Damiani
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
| | - Matteo Baggiani
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
| | - Stefania Della Vecchia
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Valentina Naef
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
| | - Filippo Maria Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
| |
Collapse
|
6
|
Chai E, Chen Z, Mou Y, Thakur G, Zhan W, Li XJ. Liver-X-receptor agonists rescue axonal degeneration in SPG11-deficient neurons via regulating cholesterol trafficking. Neurobiol Dis 2023; 187:106293. [PMID: 37709208 PMCID: PMC10655618 DOI: 10.1016/j.nbd.2023.106293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 07/22/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023] Open
Abstract
Spastic paraplegia type 11 (SPG11) is a common autosomal recessive form of hereditary spastic paraplegia (HSP) characterized by the degeneration of cortical motor neuron axons, leading to muscle spasticity and weakness. Impaired lipid trafficking is an emerging pathology in neurodegenerative diseases including SPG11, though its role in axonal degeneration of human SPG11 neurons remains unknown. Here, we established a pluripotent stem cell-based SPG11 model by knocking down the SPG11 gene in human embryonic stem cells (hESCs). These stem cells were then differentiated into cortical projection neurons (PNs), the cell types affected in HSP patients, to examine axonal defects and cholesterol distributions. Our data revealed that SPG11 deficiency led to reduced axonal outgrowth, impaired axonal transport, and accumulated swellings, recapitulating disease-specific phenotypes. In SPG11-knockdown neurons, cholesterol was accumulated in lysosome and reduced in plasma membrane, revealing impairments in cholesterol trafficking. Strikingly, the liver-X-receptor (LXR) agonists restored cholesterol homeostasis, leading to the rescue of subsequent axonal defects in SPG11-deficient cortical PNs. To further determine the implication of impaired cholesterol homeostasis in SPG11, we examined the cholesterol distribution in cortical PNs generated from SPG11 disease-mutation knock-in hESCs, and observed a similar cholesterol trafficking impairment. Moreover, LXR agonists rescued the aberrant cholesterol distribution and mitigated the degeneration of SPG11 disease-mutated neurons. Taken together, our data demonstrate impaired cholesterol trafficking underlying axonal degeneration of SPG11 human neurons, and highlight the therapeutic potential of LXR agonists for SPG11 through restoring cholesterol homeostasis.
Collapse
Affiliation(s)
- Eric Chai
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL 61107, USA
| | - Zhenyu Chen
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL 61107, USA.; Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yongchao Mou
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL 61107, USA.; Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Gitika Thakur
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL 61107, USA
| | - Weihai Zhan
- Office of Research, University of Illinois College of Medicine Rockford, Rockford, IL 61107, USA
| | - Xue-Jun Li
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL 61107, USA.; Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA..
| |
Collapse
|
7
|
Pozner T, Regensburger M, Engelhorn T, Winkler J, Winner B. Janus-faced spatacsin (SPG11): involvement in neurodevelopment and multisystem neurodegeneration. Brain 2020; 143:2369-2379. [PMID: 32355960 PMCID: PMC7447516 DOI: 10.1093/brain/awaa099] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/12/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) is a heterogeneous group of rare motor neuron disorders characterized by progressive weakness and spasticity of the lower limbs. HSP type 11 (SPG11-HSP) is linked to pathogenic variants in the SPG11 gene and it represents the most frequent form of complex autosomal recessive HSP. The majority of SPG11-HSP patients exhibit additional neurological symptoms such as cognitive decline, thin corpus callosum, and peripheral neuropathy. Yet, the mechanisms of SPG11-linked spectrum diseases are largely unknown. Recent findings indicate that spatacsin, the 280 kDa protein encoded by SPG11, may impact the autophagy-lysosomal machinery. In this update, we summarize the current knowledge of SPG11-HSP. In addition to clinical symptoms and differential diagnosis, our work aims to link the different clinical manifestations with the respective structural abnormalities and cellular in vitro phenotypes. Moreover, we describe the impact of localization and function of spatacsin in different neuronal systems. Ultimately, we propose a model in which spatacsin bridges between neurodevelopmental and neurodegenerative phenotypes of SPG11-linked disorders.
Collapse
Affiliation(s)
- Tatyana Pozner
- Department of Stem Cell Biology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Regensburger
- Department of Stem Cell Biology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany.,Department of Neurology, FAU Erlangen-Nürnberg, Erlangen, Germany.,Department of Molecular Neurology, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Tobias Engelhorn
- Department of Neuroradiology, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany.,Center of Rare Diseases Erlangen (ZSEER), FAU Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
8
|
D'Amore A, Tessa A, Naef V, Bassi MT, Citterio A, Romaniello R, Fichi G, Galatolo D, Mero S, Battini R, Bertocci G, Baldacci J, Sicca F, Gemignani F, Ricca I, Rubegni A, Hirst J, Marchese M, Sahin M, Ebrahimi-Fakhari D, Santorelli FM. Loss of ap4s1 in zebrafish leads to neurodevelopmental defects resembling spastic paraplegia 52. Ann Clin Transl Neurol 2020; 7:584-589. [PMID: 32216065 PMCID: PMC7187712 DOI: 10.1002/acn3.51018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 11/30/2022] Open
Abstract
Autosomal recessive spastic paraplegia 52 is caused by biallelic mutations in AP4S1 which encodes a subunit of the adaptor protein complex 4 (AP‐4). Using next‐generation sequencing, we identified three novel unrelated SPG52 patients from a cohort of patients with cerebral palsy. The discovered variants in AP4S1 lead to reduced AP‐4 complex formation in patient‐derived fibroblasts. To further understand the role of AP4S1 in neuronal development and homeostasis, we engineered the first zebrafish model of AP‐4 deficiency using morpholino‐mediated knockdown of ap4s1. In this model, we discovered several phenotypes mimicking SPG52, including altered CNS development, locomotor deficits, and abnormal neuronal excitability.
Collapse
Affiliation(s)
- Angelica D'Amore
- Department of Molecular Medicine, IRCCS Stella Maris Foundation, Pisa, Italy.,Department of Biology, University of Pisa, Pisa, Italy.,Department of Neurology & The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Alessandra Tessa
- Department of Molecular Medicine, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Valentina Naef
- Department of Molecular Medicine, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Maria Teresa Bassi
- Laboratory of Molecular Biology, Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Andrea Citterio
- Laboratory of Molecular Biology, Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Romina Romaniello
- Neuropsychiatry and Neurorehabilitation Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| | - Gianluca Fichi
- Department of Molecular Medicine, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Daniele Galatolo
- Department of Molecular Medicine, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Serena Mero
- Department of Molecular Medicine, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Giulia Bertocci
- Department of Molecular Medicine, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Jacopo Baldacci
- Department of Molecular Medicine, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Federico Sicca
- Department of Molecular Medicine, IRCCS Stella Maris Foundation, Pisa, Italy.,Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
| | | | - Ivana Ricca
- Department of Molecular Medicine, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Anna Rubegni
- Department of Molecular Medicine, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Jennifer Hirst
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Maria Marchese
- Department of Molecular Medicine, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Mustafa Sahin
- Department of Neurology & The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Darius Ebrahimi-Fakhari
- Department of Neurology & The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | | |
Collapse
|
9
|
Sayad A, Akbari MT, Hesami O, Ghafouri-Fard S, Taheri M. Identification of a Mutation in SPG11 in an Iranian Patient with Spastic Paraplegia and Ears of the Lynx Sign. J Mol Neurosci 2020; 70:959-961. [PMID: 32040826 DOI: 10.1007/s12031-020-01501-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 02/05/2020] [Indexed: 11/28/2022]
Abstract
Hereditary spastic paraplegia (HSP) includes a number of inherited disorders which are characterized by stiffness in the lower extremities and progressive gait disturbance. Mutations in terms of spastic gait genes (SPGs) are responsible for occurrence of different types of HPS with autosomal recessive, X-linked recessive, and autosomal dominant modes of inheritance. In the current case report, we identified a mutation in SPG11 gene in a female patient with progressive stiffness of lower extremities and atrophy of corpus callosum and the "lynx ear" sign in brain MRI. Whole exome sequencing (WES) revealed a homozygote frameshift deletion variant in SPG11 gene (NM001160227: exon 28: c.4746delT, p.N1583Tfs*23). This variant is a null variant classified as a pathogenic variant (PVS1) according to ACMG standards and guidelines. The frequency of this variant in 1000G, ExAC, and Iranome databases was 0. This study shows the role of WES in the identification of disease-causing mutations in a disease such as HSP which can be caused by diverse mutations in several genes.
Collapse
Affiliation(s)
- Arezou Sayad
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Omid Hesami
- Department of Neurology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Naef V, Mero S, Fichi G, D'Amore A, Ogi A, Gemignani F, Santorelli FM, Marchese M. Swimming in Deep Water: Zebrafish Modeling of Complicated Forms of Hereditary Spastic Paraplegia and Spastic Ataxia. Front Neurosci 2019; 13:1311. [PMID: 31920481 PMCID: PMC6914767 DOI: 10.3389/fnins.2019.01311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) and hereditary ataxia (HA) are two groups of disorders characterized, respectively, by progressive dysfunction or degeneration of the pyramidal tracts (HSP) and of the Purkinje cells and spinocerebellar tracts (HA). Although HSP and HA are generally shown to have distinct clinical-genetic profiles, in several cases the clinical presentation, the causative genes, and the cellular pathways and mechanisms involved overlap between the two forms. Genetic analyses in humans in combination with in vitro and in vivo studies using model systems have greatly expanded our knowledge of spinocerebellar degenerative disorders. In this review, we focus on the zebrafish (Danio rerio), a vertebrate model widely used in biomedical research since its overall nervous system organization is similar to that of humans. A critical analysis of the literature suggests that zebrafish could serve as a powerful experimental tool for molecular and genetic dissection of both HA and HSP. The zebrafish, found to be very useful for demonstrating the causal relationship between defect and mutation, also offers a useful platform to exploit for the development of therapies.
Collapse
Affiliation(s)
- Valentina Naef
- Neurobiology and Molecular Medicine, IRCCS Stella Maris, Pisa, Italy
| | - Serena Mero
- Neurobiology and Molecular Medicine, IRCCS Stella Maris, Pisa, Italy.,Department of Biology, University of Pisa, Pisa, Italy
| | - Gianluca Fichi
- Neurobiology and Molecular Medicine, IRCCS Stella Maris, Pisa, Italy.,Struttura Complessa Toscana Sud (Sede Grosseto), Istituto Zooprofilattico Sperimentale del Lazio e Toscana M. Aleandri, Grosseto, Italy
| | - Angelica D'Amore
- Neurobiology and Molecular Medicine, IRCCS Stella Maris, Pisa, Italy.,Department of Biology, University of Pisa, Pisa, Italy.,Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Asahi Ogi
- Neurobiology and Molecular Medicine, IRCCS Stella Maris, Pisa, Italy.,Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | | | | | - Maria Marchese
- Neurobiology and Molecular Medicine, IRCCS Stella Maris, Pisa, Italy
| |
Collapse
|
11
|
Faber I, Martinez ARM, de Rezende TJR, Martins CR, Martins MP, Lourenço CM, Marques W, Montecchiani C, Orlacchio A, Pedroso JL, Barsottini OGP, Lopes-Cendes Í, França MC. SPG11 mutations cause widespread white matter and basal ganglia abnormalities, but restricted cortical damage. Neuroimage Clin 2018; 19:848-857. [PMID: 29946510 PMCID: PMC6008284 DOI: 10.1016/j.nicl.2018.05.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022]
Abstract
SPG11 mutations are the major cause of autosomal recessive Hereditary Spastic Paraplegia. The disease has a wide phenotypic variability indicating many regions of the nervous system besides the corticospinal tract are affected. Despite this, anatomical and phenotypic characterization is restricted. In the present study, we investigate the anatomical abnormalities related to SPG11 mutations and how they relate to clinical and cognitive measures. Moreover, we aim to depict how the disease course influences the regions affected, unraveling different susceptibility of specific neuronal populations. We performed clinical and paraclinical studies encompassing neuropsychological, neuroimaging, and neurophysiological tools in a cohort of twenty-five patients and age matched controls. We assessed cortical thickness (FreeSurfer software), deep grey matter volumes (T1-MultiAtlas tool), white matter microstructural damage (DTI-MultiAtlas) and spinal cord morphometry (Spineseg software) on a 3 T MRI scan. Mean age and disease duration were 29 and 13.2 years respectively. Sixty-four percent of the patients were wheelchair bound while 84% were demented. We were able to unfold a diffuse pattern of white matter integrity loss as well as basal ganglia and spinal cord atrophy. Such findings contrasted with a restricted pattern of cortical thinning (motor, limbic and parietal cortices). Electromyography revealed motor neuronopathy affecting 96% of the probands. Correlations with disease duration pointed towards a progressive degeneration of multiple grey matter structures and spinal cord, but not of the white matter. SPG11-related hereditary spastic paraplegia is characterized by selective neuronal vulnerability, in which a precocious and widespread white matter involvement is later followed by a restricted but clearly progressive grey matter degeneration.
Collapse
Key Words
- ACE-R, Addenbrooke's Cognitive Examination Revised
- ALS, amyotrophic lateral sclerosis
- CA, cord area
- CE, cord eccentricity
- CMAP, compound muscle action potential
- CST, corticospinal tract
- Complicated hereditary spastic paraplegia
- DTI, diffusion tensor imaging
- FA, fractional anisotropy
- GM, grey matter
- Grey matter
- HSP, hereditary spastic paraplegia
- LH, left hemisphere
- MD, mean diffusivity
- MOCA, Montreal cognitive assessment
- Motor neuron disorder
- NPI, neuropsychiatric inventory
- PNP, sensory-motor polyneuropathy
- PNS, peripheral nervous system
- RH, right hemisphere
- ROI, region of interest
- SC, spinal cord
- SNAP, sensory nerve action potential
- SPG11
- SPRS, Spastic Paraplegia Rating Scale
- STS, cortex adjacent to the superior temporal sulcus
- Spinal cord
- Thinning of the corpus callosum
- WES, whole exome sequencing
- WM, white matter
- White matter
Collapse
Affiliation(s)
- Ingrid Faber
- Department of Neurology, University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | | | | | | | - Wilson Marques
- Department of Neurology, University of São Paulo (USP-RP), Ribeirão Preto, Brazil
| | - Celeste Montecchiani
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC) - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy
| | - Antonio Orlacchio
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC) - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy; Dipartimento di Scienze Chirurgiche e Biomediche, Università di Perugia, Perugia, Italy
| | - Jose Luiz Pedroso
- Department of Neurology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Íscia Lopes-Cendes
- Department of Medical Genetics, University of Campinas (UNICAMP), Campinas, Brazil
| | | |
Collapse
|
12
|
Manole A, Chelban V, Haridy NA, Hamed SA, Berardo A, Reilly MM, Houlden H. Severe axonal neuropathy is a late manifestation of SPG11. J Neurol 2016; 263:2278-2286. [PMID: 27544499 PMCID: PMC5065903 DOI: 10.1007/s00415-016-8254-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/01/2016] [Accepted: 08/01/2016] [Indexed: 01/22/2023]
Abstract
Complex hereditary spastic paraplegia (HSP) is a clinically heterogeneous group of disorders usually inherited in an autosomal recessive manner. In the past, complex recessive spastic paraplegias have been frequently associated with SPG11 mutations but also with defects in SPG15, SPG7 and a handful of other rare genes. Pleiotropy exists in HSP genes, exemplified in the recent association of SPG11 mutations with CMT2. In this study, we performed whole exome sequence analysis and identified two siblings with novel compound heterozygous frameshift SPG11 mutations. The mutations segregated with disease were not present in control databases and analysis of skin fibroblast derived mRNA indicated that the SPG11 truncated mRNA species were not degraded significantly by non-sense mediated mRNA decay. These siblings had severe early-onset spastic paraplegia but later in their disease developed severe axonal neuropathy, neuropathic pain and blue/black foot discolouration likely caused by a combination of the severe neuropathy with autonomic dysfunction and peripheral oedema. We also identified a similar late-onset axonal neuropathy in a Cypriot SPG11 family. Although neuropathy is occasionally present in SPG11, in our SPG11 patients reported here it was particularly severe, highlighting the association of axonal neuropathy with SPG11 and the late manifestation of axonal peripheral nerve damage.
Collapse
Affiliation(s)
- Andreea Manole
- Department of Molecular Neuroscience and Neurogenetics Laboratory, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Viorica Chelban
- Department of Molecular Neuroscience and Neurogenetics Laboratory, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Department of Neurology, Medical University N. Testemitanu, Chisinau, Republic of Moldova
| | - Nourelhoda A Haridy
- Department of Molecular Neuroscience and Neurogenetics Laboratory, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Sherifa A Hamed
- Department of Neurology and Psychiatry, Faculty of Medicine, Assiut University Hospital, Assiut, Egypt
| | - Andrés Berardo
- Instituto de Neurociencias Conci Carpinella, Laboratorio de Neurobiologìa, Instituto de Investigaciónes Medicas "Mercedes y Martín Ferreyra", INIMEC-CONICET-UNC, Córdoba, Argentina
| | - Mary M Reilly
- Department of Molecular Neuroscience and Neurogenetics Laboratory, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Henry Houlden
- Department of Molecular Neuroscience and Neurogenetics Laboratory, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
13
|
Kara E, Tucci A, Manzoni C, Lynch DS, Elpidorou M, Bettencourt C, Chelban V, Manole A, Hamed SA, Haridy NA, Federoff M, Preza E, Hughes D, Pittman A, Jaunmuktane Z, Brandner S, Xiromerisiou G, Wiethoff S, Schottlaender L, Proukakis C, Morris H, Warner T, Bhatia KP, Korlipara LVP, Singleton AB, Hardy J, Wood NW, Lewis PA, Houlden H. Genetic and phenotypic characterization of complex hereditary spastic paraplegia. Brain 2016; 139:1904-1918. [PMID: 27217339 PMCID: PMC4939695 DOI: 10.1093/brain/aww111] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 03/30/2016] [Accepted: 03/30/2016] [Indexed: 12/12/2022] Open
Abstract
The hereditary spastic paraplegias are a heterogeneous group of degenerative disorders that are clinically classified as either pure with predominant lower limb spasticity, or complex where spastic paraplegia is complicated with additional neurological features, and are inherited in autosomal dominant, autosomal recessive or X-linked patterns. Genetic defects have been identified in over 40 different genes, with more than 70 loci in total. Complex recessive spastic paraplegias have in the past been frequently associated with mutations in SPG11 (spatacsin), ZFYVE26/SPG15, SPG7 (paraplegin) and a handful of other rare genes, but many cases remain genetically undefined. The overlap with other neurodegenerative disorders has been implied in a small number of reports, but not in larger disease series. This deficiency has been largely due to the lack of suitable high throughput techniques to investigate the genetic basis of disease, but the recent availability of next generation sequencing can facilitate the identification of disease-causing mutations even in extremely heterogeneous disorders. We investigated a series of 97 index cases with complex spastic paraplegia referred to a tertiary referral neurology centre in London for diagnosis or management. The mean age of onset was 16 years (range 3 to 39). The SPG11 gene was first analysed, revealing homozygous or compound heterozygous mutations in 30/97 (30.9%) of probands, the largest SPG11 series reported to date, and by far the most common cause of complex spastic paraplegia in the UK, with severe and progressive clinical features and other neurological manifestations, linked with magnetic resonance imaging defects. Given the high frequency of SPG11 mutations, we studied the autophagic response to starvation in eight affected SPG11 cases and control fibroblast cell lines, but in our restricted study we did not observe correlations between disease status and autophagic or lysosomal markers. In the remaining cases, next generation sequencing was carried out revealing variants in a number of other known complex spastic paraplegia genes, including five in SPG7 (5/97), four in FA2H (also known as SPG35) (4/97) and two in ZFYVE26/SPG15 Variants were identified in genes usually associated with pure spastic paraplegia and also in the Parkinson's disease-associated gene ATP13A2, neuronal ceroid lipofuscinosis gene TPP1 and the hereditary motor and sensory neuropathy DNMT1 gene, highlighting the genetic heterogeneity of spastic paraplegia. No plausible genetic cause was identified in 51% of probands, likely indicating the existence of as yet unidentified genes.
Collapse
Affiliation(s)
- Eleanna Kara
- 1 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK 2 Alzheimer's Disease Research Centre, Department of Neurology, Harvard Medical School and Massachusetts General Hospital, 114 16th Street, Charlestown, MA 02129, USA
| | - Arianna Tucci
- 1 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK 3 Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano, Italy
| | - Claudia Manzoni
- 1 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK 4 School of Pharmacy, University of Reading, Reading RG6 6AP, UK
| | - David S Lynch
- 1 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Marilena Elpidorou
- 1 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Conceicao Bettencourt
- 1 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Viorica Chelban
- 1 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Andreea Manole
- 1 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Sherifa A Hamed
- 5 Department of Neurology and Psychiatry, Assiut University Hospital, Faculty of Medicine, Assiut, Egypt
| | - Nourelhoda A Haridy
- 1 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK 5 Department of Neurology and Psychiatry, Assiut University Hospital, Faculty of Medicine, Assiut, Egypt
| | - Monica Federoff
- 6 Laboratory of Neurogenetics, NIH/NIA, Bethesda, MD 20892, USA
| | - Elisavet Preza
- 1 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Deborah Hughes
- 1 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Alan Pittman
- 1 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Zane Jaunmuktane
- 7 Division of Neuropathology and Department of Neurodegenerative Disease, The National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Sebastian Brandner
- 7 Division of Neuropathology and Department of Neurodegenerative Disease, The National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Georgia Xiromerisiou
- 1 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK 8 Department of Neurology, Papageorgiou Hospital, Thessaloniki, Greece
| | - Sarah Wiethoff
- 1 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Lucia Schottlaender
- 1 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Christos Proukakis
- 9 Department of Clinical Neuroscience, Royal Free Campus, UCL Institute of Neurology, London, UK
| | - Huw Morris
- 1 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK 9 Department of Clinical Neuroscience, Royal Free Campus, UCL Institute of Neurology, London, UK
| | - Tom Warner
- 1 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK 10 Reta Lila Weston Institute of Neurological Studies and Queen Square Brain Bank for Neurological Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Kailash P Bhatia
- 11 Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - L V Prasad Korlipara
- 11 Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | | | - John Hardy
- 1 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Nicholas W Wood
- 1 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK 12 Neurogenetics Laboratory, The National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Patrick A Lewis
- 1 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK 4 School of Pharmacy, University of Reading, Reading RG6 6AP, UK
| | - Henry Houlden
- 1 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK 2 Alzheimer's Disease Research Centre, Department of Neurology, Harvard Medical School and Massachusetts General Hospital, 114 16th Street, Charlestown, MA 02129, USA
| |
Collapse
|
14
|
Fraidakis MJ, Brunetti M, Blackstone C, Filippi M, Chiò A. Novel Compound Heterozygous Spatacsin Mutations in a Greek Kindred with Hereditary Spastic Paraplegia SPG11 and Dementia. NEURODEGENER DIS 2016; 16:373-81. [PMID: 27318863 DOI: 10.1159/000444715] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/16/2016] [Indexed: 11/19/2022] Open
Abstract
SPG11 belongs to the autosomal recessive hereditary spastic paraplegias (HSP) and presents during childhood or puberty with a complex clinical phenotype encompassing learning difficulties, ataxia, peripheral neuropathy, amyotrophy, and mental retardation. We hereby present the case of a 30-year-old female patient with complex autosomal recessive HSP with thinning of the corpus callosum (TCC) and dementia that was compound heterozygous with two novel mutations in the SPG11 gene. Sequence analysis of the SPG11 gene revealed two novel mutations in a compound heterozygous state in the index patient (c.2431C>T/p.Gln811Ter and c.6755_6756insT/p.Glu2252Aspfs*88). MRI showed abnormal TCC, white matter (WM) hyperintensities periventricularly, and the 'ears of the lynx' sign. Diffusion tensor imaging showed a mild-to-moderate decrease in fractional anisotropy and an increase in mean diffusivity in WM compared to age-matched controls, while magnetic resonance spectroscopy showed abnormal findings in affected WM with a decrease in N-acetyl-aspartate in WM regions of interest. This is the first SPG11 kindred from the Greek population to be reported in the medical literature.
Collapse
Affiliation(s)
- Matthew J Fraidakis
- NEURORARE Centre for Rare and Genetic Neurological and Neuromuscular Diseases and Neurogenetics, Athens, Greece
| | | | | | | | | |
Collapse
|
15
|
Denora PS, Smets K, Zolfanelli F, Ceuterick-de Groote C, Casali C, Deconinck T, Sieben A, Gonzales M, Zuchner S, Darios F, Peeters D, Brice A, Malandrini A, De Jonghe P, Santorelli FM, Stevanin G, Martin JJ, El Hachimi KH. Motor neuron degeneration in spastic paraplegia 11 mimics amyotrophic lateral sclerosis lesions. Brain 2016; 139:1723-34. [PMID: 27016404 PMCID: PMC5839621 DOI: 10.1093/brain/aww061] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/31/2016] [Indexed: 12/12/2022] Open
Abstract
The most common form of autosomal recessive hereditary spastic paraplegia is caused by
mutations in the SPG11/KIAA1840 gene on chromosome 15q.
The nature of the vast majority of SPG11 mutations found to date suggests
a loss-of-function mechanism of the encoded protein, spatacsin. The SPG11 phenotype is, in
most cases, characterized by a progressive spasticity with neuropathy, cognitive
impairment and a thin corpus callosum on brain MRI. Full neuropathological
characterization has not been reported to date despite the description of >100
SPG11 mutations. We describe here the clinical and pathological
features observed in two unrelated females, members of genetically ascertained SPG11
families originating from Belgium and Italy, respectively. We confirm the presence of
lesions of motor tracts in medulla oblongata and spinal cord associated with other lesions
of the central nervous system. Interestingly, we report for the first time pathological
hallmarks of SPG11 in neurons that include intracytoplasmic granular lysosome-like
structures mainly in supratentorial areas, and others in subtentorial areas that are
partially reminiscent of those observed in amyotrophic lateral sclerosis, such as
ubiquitin and p62 aggregates, except that they are never labelled with anti-TDP-43 or
anti-cystatin C. The neuropathological overlap with amyotrophic lateral sclerosis,
associated with some shared clinical manifestations, opens up new fields of investigation
in the physiopathological continuum of motor neuron degeneration.
Collapse
Affiliation(s)
- Paola S Denora
- 1 Ecole Pratique des Hautes Etudes, EPHE, PSL université, laboratoire de neurogénétique, F-75013, Paris, France 2 Inserm, U1127, F-75013, Paris, France 3 CNRS, UMR7225, F-75013, Paris, France 4 Sorbonne Universités, UPMC Univ Paris 06, UMR_S1127, Institut du Cerveau et de la Moelle épinière - ICM, Pitié-Salpêtrière Hospital, F-75013, Paris, France 5 Department of Genetics and Rare Diseases, IRCCS Bambino Gesu' Children Hospital, Rome, Italy
| | - Katrien Smets
- 6 Neurogenetics Group, VIB-Department of Molecular Genetics, University of Antwerp, Belgium 7 Laboratories of Neurogenetics, Institute Born-Bunge, University of Antwerp, Belgium 8 Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | | | | | - Carlo Casali
- 11 Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University, Polo Pontino Rome, Italy
| | - Tine Deconinck
- 6 Neurogenetics Group, VIB-Department of Molecular Genetics, University of Antwerp, Belgium 7 Laboratories of Neurogenetics, Institute Born-Bunge, University of Antwerp, Belgium
| | - Anne Sieben
- 10 Institute Born-Bunge, University of Antwerp, Belgium 12 Department of Neurology, University Hospital Gent, Belgium
| | - Michael Gonzales
- 13 Department of Human Genetics and Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Stephan Zuchner
- 13 Department of Human Genetics and Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Frédéric Darios
- 2 Inserm, U1127, F-75013, Paris, France 3 CNRS, UMR7225, F-75013, Paris, France 4 Sorbonne Universités, UPMC Univ Paris 06, UMR_S1127, Institut du Cerveau et de la Moelle épinière - ICM, Pitié-Salpêtrière Hospital, F-75013, Paris, France
| | - Dirk Peeters
- 14 Department of Neurology, AZ Groeninge, Kortrijk, Belgium
| | - Alexis Brice
- 2 Inserm, U1127, F-75013, Paris, France 3 CNRS, UMR7225, F-75013, Paris, France 4 Sorbonne Universités, UPMC Univ Paris 06, UMR_S1127, Institut du Cerveau et de la Moelle épinière - ICM, Pitié-Salpêtrière Hospital, F-75013, Paris, France 15 APHP, Département de Génétique, Pitié-Salpêtrière Hospital, F-75013, Paris, France
| | - Alessandro Malandrini
- 16 Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Peter De Jonghe
- 6 Neurogenetics Group, VIB-Department of Molecular Genetics, University of Antwerp, Belgium 7 Laboratories of Neurogenetics, Institute Born-Bunge, University of Antwerp, Belgium 8 Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Filippo M Santorelli
- 17 Molecular Medicine Laboratory, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - Giovanni Stevanin
- 1 Ecole Pratique des Hautes Etudes, EPHE, PSL université, laboratoire de neurogénétique, F-75013, Paris, France 2 Inserm, U1127, F-75013, Paris, France 3 CNRS, UMR7225, F-75013, Paris, France 4 Sorbonne Universités, UPMC Univ Paris 06, UMR_S1127, Institut du Cerveau et de la Moelle épinière - ICM, Pitié-Salpêtrière Hospital, F-75013, Paris, France 15 APHP, Département de Génétique, Pitié-Salpêtrière Hospital, F-75013, Paris, France
| | | | - Khalid H El Hachimi
- 1 Ecole Pratique des Hautes Etudes, EPHE, PSL université, laboratoire de neurogénétique, F-75013, Paris, France 2 Inserm, U1127, F-75013, Paris, France 3 CNRS, UMR7225, F-75013, Paris, France 4 Sorbonne Universités, UPMC Univ Paris 06, UMR_S1127, Institut du Cerveau et de la Moelle épinière - ICM, Pitié-Salpêtrière Hospital, F-75013, Paris, France
| |
Collapse
|
16
|
Hooper AJ, Akinci B, Davis MR, Burnett JR. SPG11 mutation in a Turkish familial hypobetalipoproteinemia family with hereditary spastic paraplegia. Clin Chim Acta 2015; 445:1. [PMID: 25769290 DOI: 10.1016/j.cca.2015.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/02/2015] [Indexed: 11/25/2022]
Affiliation(s)
- Amanda J Hooper
- Department of Clinical Biochemistry, PathWest Laboratory Medicine WA, Royal Perth Hospital; University of Western Australia, Perth, Australia
| | - Baris Akinci
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Dokuz Eylul, Izmir, Turkey
| | - Mark R Davis
- Neurogenetics Laboratory, Department of Diagnostic Genomics, PathWest Laboratory Medicine WA, Perth Australia
| | - John R Burnett
- Department of Clinical Biochemistry, PathWest Laboratory Medicine WA, Royal Perth Hospital; University of Western Australia, Perth, Australia.
| |
Collapse
|
17
|
|
18
|
Lo Giudice T, Lombardi F, Santorelli FM, Kawarai T, Orlacchio A. Hereditary spastic paraplegia: clinical-genetic characteristics and evolving molecular mechanisms. Exp Neurol 2014; 261:518-39. [PMID: 24954637 DOI: 10.1016/j.expneurol.2014.06.011] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 06/07/2014] [Accepted: 06/12/2014] [Indexed: 12/12/2022]
Abstract
Hereditary spastic paraplegia (HSP) is a group of clinically and genetically heterogeneous neurological disorders characterized by pathophysiologic hallmark of length-dependent distal axonal degeneration of the corticospinal tracts. The prominent features of this pathological condition are progressive spasticity and weakness of the lower limbs. To date, 72 spastic gait disease-loci and 55 spastic paraplegia genes (SPGs) have been identified. All modes of inheritance (autosomal dominant, autosomal recessive, and X-linked) have been described. Recently, a late onset spastic gait disorder with maternal trait of inheritance has been reported, as well as mutations in genes not yet classified as spastic gait disease. Several cellular processes are involved in its pathogenesis, such as membrane and axonal transport, endoplasmic reticulum membrane modeling and shaping, mitochondrial function, DNA repair, autophagy, and abnormalities in lipid metabolism and myelination processes. Moreover, recent evidences have been found about the impairment of endosome membrane trafficking in vesicle formation and about the involvement of oxidative stress and mtDNA polymorphisms in the onset of the disease. Interactome networks have been postulated by bioinformatics and biological analyses of spastic paraplegia genes, which would contribute to the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Temistocle Lo Giudice
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC) - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy; Dipartimento di Medicina dei Sistemi, Università di Roma "Tor Vergata", Rome, Italy
| | - Federica Lombardi
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC) - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy
| | - Filippo Maria Santorelli
- Unità Operativa Complessa di Medicina Molecolare, Neurogenetica e Malattie Neurodegenerative, IRCCS Stella Maris, Pisa, Italy
| | - Toshitaka Kawarai
- Department of Clinical Neuroscience, Institute of Health Biosciences, Graduate School of Medicine, University of Tokushima, Tokushima, Japan
| | - Antonio Orlacchio
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC) - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy; Dipartimento di Medicina dei Sistemi, Università di Roma "Tor Vergata", Rome, Italy.
| |
Collapse
|
19
|
Pérez-Brangulí F, Mishra HK, Prots I, Havlicek S, Kohl Z, Saul D, Rummel C, Dorca-Arevalo J, Regensburger M, Graef D, Sock E, Blasi J, Groemer TW, Schlötzer-Schrehardt U, Winkler J, Winner B. Dysfunction of spatacsin leads to axonal pathology in SPG11-linked hereditary spastic paraplegia. Hum Mol Genet 2014; 23:4859-74. [PMID: 24794856 PMCID: PMC4140466 DOI: 10.1093/hmg/ddu200] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Hereditary spastic paraplegias are a group of inherited motor neuron diseases characterized by progressive paraparesis and spasticity. Mutations in the spastic paraplegia gene SPG11, encoding spatacsin, cause an autosomal-recessive disease trait; however, the precise knowledge about the role of spatacsin in neurons is very limited. We for the first time analyzed the expression and function of spatacsin in human forebrain neurons derived from human pluripotent stem cells including lines from two SPG11 patients and two controls. SPG11 patients'-derived neurons exhibited downregulation of specific axonal-related genes, decreased neurite complexity and accumulation of membranous bodies within axonal processes. Altogether, these data point towards axonal pathologies in human neurons with SPG11 mutations. To further corroborate spatacsin function, we investigated human pluripotent stem cell-derived neurons and mouse cortical neurons. In these cells, spatacsin was located in axons and dendrites. It colocalized with cytoskeletal and synaptic vesicle (SV) markers and was present in synaptosomes. Knockdown of spatacsin in mouse cortical neurons evidenced that the loss of function of spatacsin leads to axonal instability by downregulation of acetylated tubulin. Finally, time-lapse assays performed in SPG11 patients'-derived neurons and spatacsin-silenced mouse neurons highlighted a reduction in the anterograde vesicle trafficking indicative of impaired axonal transport. By employing SPG11 patient-derived forebrain neurons and mouse cortical neurons, this study provides the first evidence that SPG11 is implicated in axonal maintenance and cargo trafficking. Understanding the cellular functions of spatacsin will allow deciphering mechanisms of motor cortex dysfunction in autosomal-recessive hereditary spastic paraplegia.
Collapse
Affiliation(s)
- Francesc Pérez-Brangulí
- IZKF Junior Research Group and BMBF Research Group Neuroscience, IZKF, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Glueckstrasse 6, Erlangen 91054, Germany
| | - Himanshu K Mishra
- IZKF Junior Research Group and BMBF Research Group Neuroscience, IZKF, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Glueckstrasse 6, Erlangen 91054, Germany
| | - Iryna Prots
- IZKF Junior Research Group and BMBF Research Group Neuroscience, IZKF, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Glueckstrasse 6, Erlangen 91054, Germany
| | - Steven Havlicek
- IZKF Junior Research Group and BMBF Research Group Neuroscience, IZKF, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Glueckstrasse 6, Erlangen 91054, Germany
| | | | - Domenica Saul
- IZKF Junior Research Group and BMBF Research Group Neuroscience, IZKF, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Glueckstrasse 6, Erlangen 91054, Germany
| | - Christine Rummel
- IZKF Junior Research Group and BMBF Research Group Neuroscience, IZKF, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Glueckstrasse 6, Erlangen 91054, Germany
| | - Jonatan Dorca-Arevalo
- Department of Pathology and Experimental Therapeutics, Universitat de Barcelona (UB)-Campus Bellvitge, Feixa Llarga s/n, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Martin Regensburger
- IZKF Junior Research Group and BMBF Research Group Neuroscience, IZKF, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Glueckstrasse 6, Erlangen 91054, Germany
| | - Daniela Graef
- IZKF Junior Research Group and BMBF Research Group Neuroscience, IZKF, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Glueckstrasse 6, Erlangen 91054, Germany
| | - Elisabeth Sock
- Institute of Biochemistry Emil-Fischer Zentrum, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Fahrstrasse 17, Erlangen 91054, Germany
| | - Juan Blasi
- Department of Pathology and Experimental Therapeutics, Universitat de Barcelona (UB)-Campus Bellvitge, Feixa Llarga s/n, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | | | - Ursula Schlötzer-Schrehardt
- Department of Ophthalmology, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Schwabachanlage 6, Erlangen 91054, Germany
| | | | - Beate Winner
- IZKF Junior Research Group and BMBF Research Group Neuroscience, IZKF, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Glueckstrasse 6, Erlangen 91054, Germany
| |
Collapse
|
20
|
Babin PJ, Goizet C, Raldúa D. Zebrafish models of human motor neuron diseases: advantages and limitations. Prog Neurobiol 2014; 118:36-58. [PMID: 24705136 DOI: 10.1016/j.pneurobio.2014.03.001] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/11/2014] [Accepted: 03/14/2014] [Indexed: 01/08/2023]
Abstract
Motor neuron diseases (MNDs) are an etiologically heterogeneous group of disorders of neurodegenerative origin, which result in degeneration of lower (LMNs) and/or upper motor neurons (UMNs). Neurodegenerative MNDs include pure hereditary spastic paraplegia (HSP), which involves specific degeneration of UMNs, leading to progressive spasticity of the lower limbs. In contrast, spinal muscular atrophy (SMA) involves the specific degeneration of LMNs, with symmetrical muscle weakness and atrophy. Amyotrophic lateral sclerosis (ALS), the most common adult-onset MND, is characterized by the degeneration of both UMNs and LMNs, leading to progressive muscle weakness, atrophy, and spasticity. A review of the comparative neuroanatomy of the human and zebrafish motor systems showed that, while the zebrafish was a homologous model for LMN disorders, such as SMA, it was only partially relevant in the case of UMN disorders, due to the absence of corticospinal and rubrospinal tracts in its central nervous system. Even considering the limitation of this model to fully reproduce the human UMN disorders, zebrafish offer an excellent alternative vertebrate model for the molecular and genetic dissection of MND mechanisms. Its advantages include the conservation of genome and physiological processes and applicable in vivo tools, including easy imaging, loss or gain of function methods, behavioral tests to examine changes in motor activity, and the ease of simultaneous chemical/drug testing on large numbers of animals. This facilitates the assessment of the environmental origin of MNDs, alone or in combination with genetic traits and putative modifier genes. Positive hits obtained by phenotype-based small-molecule screening using zebrafish may potentially be effective drugs for treatment of human MNDs.
Collapse
Affiliation(s)
- Patrick J Babin
- Univ. Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), EA 4576, Talence, France.
| | - Cyril Goizet
- Univ. Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), EA 4576, Talence, France; CHU Bordeaux, Hôpital Pellegrin, Service de Génétique Médicale, Bordeaux, France
| | | |
Collapse
|
21
|
Kuru S, Yoshida M, Tatsumi S, Mimuro M. Immunohistochemical localization of spatacsin in α-synucleinopathies. Neuropathology 2013; 34:135-9. [PMID: 24112408 DOI: 10.1111/neup.12069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/19/2013] [Indexed: 12/01/2022]
Abstract
Spatacsin (SPG11) is a major mutated gene in autosomal recessive spastic paraplegia with thin corpus callosum (ARHSP-TCC) and is responsible for juvenile Parkinsonism. To elucidate the role of spatacsin in the pathogenesis of α-synucleinopathies, an immunohistochemical investigation was performed on the brain of patients with Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA) using anti-spatacsin antibody. In PD, Lewy bodies (LBs) in the brain stem were positive for spatacsin. These LBs showed intense staining in their peripheral portions and occasionally in the central cores. Lewy neurites were also spatacsin-positive. In DLB, cortical LBs were immunolabeled by spatacsin. In MSA, glial cytoplasmic inclusions (GCI) and a small fraction of neuronal cytoplasmic inclusions (NCI) were positive for spatacsin. The widespread accumulation of spatacsin observed in pathologic α-synuclein-containing inclusions suggests that spatacsin may be involved in the pathogenesis of α-synucleinopathies.
Collapse
Affiliation(s)
- Satoshi Kuru
- Department of Neurology, National Organization Suzuka Hospital, Suzuka, Japan
| | | | | | | |
Collapse
|
22
|
Autosomal recessive hereditary spastic paraplegia—clinical and genetic characteristics of a well-defined cohort. Neurogenetics 2013; 14:181-8. [DOI: 10.1007/s10048-013-0366-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/21/2013] [Indexed: 10/26/2022]
|
23
|
Martin E, Schüle R, Smets K, Rastetter A, Boukhris A, Loureiro JL, Gonzalez MA, Mundwiller E, Deconinck T, Wessner M, Jornea L, Oteyza AC, Durr A, Martin JJ, Schöls L, Mhiri C, Lamari F, Züchner S, De Jonghe P, Kabashi E, Brice A, Stevanin G. Loss of function of glucocerebrosidase GBA2 is responsible for motor neuron defects in hereditary spastic paraplegia. Am J Hum Genet 2013; 92:238-44. [PMID: 23332916 DOI: 10.1016/j.ajhg.2012.11.021] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/15/2012] [Accepted: 11/30/2012] [Indexed: 01/30/2023] Open
Abstract
Spastic paraplegia 46 refers to a locus mapped to chromosome 9 that accounts for a complicated autosomal-recessive form of hereditary spastic paraplegia (HSP). With next-generation sequencing in three independent families, we identified four different mutations in GBA2 (three truncating variants and one missense variant), which were found to cosegregate with the disease and were absent in controls. GBA2 encodes a microsomal nonlysosomal glucosylceramidase that catalyzes the conversion of glucosylceramide to free glucose and ceramide and the hydrolysis of bile acid 3-O-glucosides. The missense variant was also found at the homozygous state in a simplex subject in whom no residual glucocerebrosidase activity of GBA2 could be evidenced in blood cells, opening the way to a possible measurement of this enzyme activity in clinical practice. The overall phenotype was a complex HSP with mental impairment, cataract, and hypogonadism in males associated with various degrees of corpus callosum and cerebellar atrophy on brain imaging. Antisense morpholino oligonucleotides targeting the zebrafish GBA2 orthologous gene led to abnormal motor behavior and axonal shortening/branching of motoneurons that were rescued by the human wild-type mRNA but not by applying the same mRNA containing the missense mutation. This study highlights the role of ceramide metabolism in HSP pathology.
Collapse
Affiliation(s)
- Elodie Martin
- Unité Mixte de Recherche S975, Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, Pitie-Salpêtrière Hospital, Université Pierre et Marie Curie (Paris 6), Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Cozzolino M, Pesaresi MG, Gerbino V, Grosskreutz J, Carrì MT. Amyotrophic lateral sclerosis: new insights into underlying molecular mechanisms and opportunities for therapeutic intervention. Antioxid Redox Signal 2012; 17:1277-330. [PMID: 22413952 DOI: 10.1089/ars.2011.4328] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent years have witnessed a renewed interest in the pathogenic mechanisms of amyotrophic lateral sclerosis (ALS), a late-onset progressive degeneration of motor neurons. The discovery of new genes associated with the familial form of the disease, along with a deeper insight into pathways already described for this disease, has led scientists to reconsider previous postulates. While protein misfolding, mitochondrial dysfunction, oxidative damage, defective axonal transport, and excitotoxicity have not been dismissed, they need to be re-examined as contributors to the onset or progression of ALS in the light of the current knowledge that the mutations of proteins involved in RNA processing, apparently unrelated to the previous "old partners," are causative of the same phenotype. Thus, newly envisaged models and tools may offer unforeseen clues on the etiology of this disease and hopefully provide the key to treatment.
Collapse
|
25
|
Analysis of candidate colitis genes in the Gdac1 locus of mice deficient in glutathione peroxidase-1 and -2. PLoS One 2012; 7:e44262. [PMID: 22970191 PMCID: PMC3435402 DOI: 10.1371/journal.pone.0044262] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Accepted: 07/31/2012] [Indexed: 12/21/2022] Open
Abstract
Background Mice that are deficient for glutathione peroxidases 1 and 2 (GPX) show large variations in the penetrance and severity of colitis in C57BL/6J and 129S1/SvImJ backgrounds. We mapped a locus contributing to this difference to distal chromosome 2 (∼119–133 mbp) and named it glutathione peroxidase-deficiency-associated colitis 1 (Gdac1). The aim of this study was to identify the best gene candidates within the Gdac1 locus contributing to the murine colitis phenotype. Method/Principal Findings We refined the boundaries of Gdac1 to 118–125 mbp (95% confidence interval) by increasing sample size and marker density across the interval. The narrowed region contains 128 well-annotated protein coding genes but it excludes Fermt1, a human inflammatory bowel disease candidate that was within the original boundaries of Gdac1. The locus we identified may be the Cdcs3 locus mapped by others studying IL10-knockout mice. Using in silico analysis of the 128 genes, based on published colon expression data, the relevance of pathways to colitis, gene mutations, presence of non-synonymous-single-nucleotide polymorphisms (nsSNPs) and whether the nsSNPs are predicted to have an impact on protein function or expression, we excluded 42 genes. Based on a similar analysis, twenty-five genes from the remaining 86 genes were analyzed for expression-quantitative-trait loci, and another 15 genes were excluded. Conclusion/Significance Among the remaining 10 genes, we identified Pla2g4f and Duox2 as the most likely colitis gene candidates, because GPX metabolizes PLA2G4F and DUOX2 products. Pla2g4f is a phospholipase A2 that has three potentially significant nsSNP variants and showed expression differences across mouse strains. PLA2G4F produces arachidonic acid, which is a substrate for lipoxygenases and, in turn, for GPXs. DUOX2 produces H2O2 and may control microbial populations. DUOX-1 and -2 control microbial populations in mammalian lung and in the gut of several insects and zebrafish. Dysbiosis is a phenotype that differentiates 129S1/SvImJ from C57BL/6J and may be due to strain differences in DUOX2 activity.
Collapse
|
26
|
Martin E, Yanicostas C, Rastetter A, Alavi Naini SM, Maouedj A, Kabashi E, Rivaud-Péchoux S, Brice A, Stevanin G, Soussi-Yanicostas N. Spatacsin and spastizin act in the same pathway required for proper spinal motor neuron axon outgrowth in zebrafish. Neurobiol Dis 2012; 48:299-308. [PMID: 22801083 DOI: 10.1016/j.nbd.2012.07.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 07/01/2012] [Accepted: 07/05/2012] [Indexed: 12/12/2022] Open
Abstract
Hereditary spastic paraplegias (HSPs) are rare neurological conditions caused by degeneration of the long axons of the cerebrospinal tracts, leading to locomotor impairment and additional neurological symptoms. There are more than 40 different causative genes, 24 of which have been identified, including SPG11 and SPG15 mutated in complex clinical forms. Since the vast majority of the causative mutations lead to loss of function of the corresponding proteins, we made use of morpholino-oligonucleotide (MO)-mediated gene knock-down to generate zebrafish models of both SPG11 and SPG15 and determine how invalidation of the causative genes (zspg11 and zspg15) during development might contribute to the disease. Micro-injection of MOs targeting each gene caused locomotor impairment and abnormal branching of spinal cord motor neurons at the neuromuscular junction. More severe phenotypes with abnormal tail developments were also seen. Moreover, partial depletion of both proteins at sub-phenotypic levels resulted in the same phenotypes, suggesting for the first time, in vivo, a genetic interaction between these genes. In conclusion, the zebrafish orthologues of the SPG11 and SPG15 genes are important for proper development of the axons of spinal motor neurons and likely act in a common pathway to promote their proper path finding towards the neuromuscular junction.
Collapse
|
27
|
Conceição Pereira M, Loureiro JL, Pinto-Basto J, Brandão E, Margarida Lopes A, Neves G, Dias P, Geraldes R, Martins IP, Cruz VT, Kamsteeg EJ, Brunner HG, Coutinho P, Sequeiros J, Alonso I. Alu elements mediate large SPG11 gene rearrangements: further spatacsin mutations. Genet Med 2012; 14:143-51. [PMID: 22237444 DOI: 10.1038/gim.2011.7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Hereditary spastic paraplegias compose a group of neurodegenerative disorders with a large clinical and genetic heterogeneity. Among the autosomal recessive forms, spastic paraplegia type 11 is the most common. METHODS To better understand the spastic paraplegia type 11 mutation spectrum, we studied a group of 54 patients with hereditary spastic paraplegia. Mutation screening was performed by PCR amplification of SPG11 coding regions and intron boundaries, followed by sequencing. For the detection of large gene rearrangements, we performed multiplex ligation-dependent probe amplification. RESULTS We report 13 families with spastic paraplegia type 11 carrying either novel or previously identified mutations. We describe a complex entire SPG11 rearrangement and show that large gene rearrangements are frequent among patients with spastic paraplegia type 11. Moreover, we mapped the deletion breakpoints of three different large SPG11 deletions and provide evidence for Alu microhomology-mediated exon deletion. CONCLUSION Our analysis shows that the high number of repeated elements in SPG11 together with the presence of recombination hotspots and the high intrinsic instability of the 15q locus all contribute toward making this genomic region more prone to large gene rearrangements. These findings enlarge the amount of data relating repeated elements with neurodegenerative disorders and highlight their importance in human disease and genome evolution.
Collapse
|
28
|
Daoud H, Zhou S, Noreau A, Sabbagh M, Belzil V, Dionne-Laporte A, Tranchant C, Dion P, Rouleau GA. Exome sequencing reveals SPG11 mutations causing juvenile ALS. Neurobiol Aging 2011; 33:839.e5-9. [PMID: 22154821 DOI: 10.1016/j.neurobiolaging.2011.11.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 10/24/2011] [Accepted: 11/07/2011] [Indexed: 12/12/2022]
Abstract
We report here the description of a nonconsanguineous family with 2 affected individuals with a recessively inherited juvenile motor neuron disease. Exome sequencing of these 2 affected individuals led us to identify 2 compound heterozygous deletions leading to a frameshift and a premature stop codon in the SPG11 gene. One of these deletions, c.5199delA in exon 30, has not been previously reported. Interestingly, these deletions are associated with an intrafamilial phenotypic heterogeneity as one affected has atypical juvenile amyotrophic lateral sclerosis (ALS) and the other has classical hereditary spastic paraplegia with thin corpus callosum. Our findings confirm SPG11 as a genetic cause of juvenile amyotrophic lateral sclerosis and indicate that SPG11 mutations could be associated with 2 different clinical phenotypes within the same family.
Collapse
Affiliation(s)
- Hussein Daoud
- Centre of Excellence in Neuroscience of Université de Montréal, CHUM Research Center and the Department of Medicine, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|