1
|
Liu J, He Y, Lwin C, Han M, Guan B, Naik A, Bender C, Moore N, Huryn LA, Sergeev YV, Qian H, Zeng Y, Dong L, Liu P, Lei J, Haugen CJ, Prasov L, Shi R, Dollfus H, Aristodemou P, Laich Y, Németh AH, Taylor J, Downes S, Krawczynski MR, Meunier I, Strassberg M, Tenney J, Gao J, Shear MA, Moore AT, Duncan JL, Menendez B, Hull S, Vincent AL, Siskind CE, Traboulsi EI, Blackstone C, Sisk RA, Miraldi Utz V, Webster AR, Michaelides M, Arno G, Synofzik M, Hufnagel RB. Neuropathy target esterase activity defines phenotypes among PNPLA6 disorders. Brain 2024; 147:2085-2097. [PMID: 38735647 PMCID: PMC11146429 DOI: 10.1093/brain/awae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/08/2024] [Accepted: 01/28/2024] [Indexed: 05/14/2024] Open
Abstract
Biallelic pathogenic variants in the PNPLA6 gene cause a broad spectrum of disorders leading to gait disturbance, visual impairment, anterior hypopituitarism and hair anomalies. PNPLA6 encodes neuropathy target esterase (NTE), yet the role of NTE dysfunction on affected tissues in the large spectrum of associated disease remains unclear. We present a systematic evidence-based review of a novel cohort of 23 new patients along with 95 reported individuals with PNPLA6 variants that implicate missense variants as a driver of disease pathogenesis. Measuring esterase activity of 46 disease-associated and 20 common variants observed across PNPLA6-associated clinical diagnoses unambiguously reclassified 36 variants as pathogenic and 10 variants as likely pathogenic, establishing a robust functional assay for classifying PNPLA6 variants of unknown significance. Estimating the overall NTE activity of affected individuals revealed a striking inverse relationship between NTE activity and the presence of retinopathy and endocrinopathy. This phenomenon was recaptured in vivo in an allelic mouse series, where a similar NTE threshold for retinopathy exists. Thus, PNPLA6 disorders, previously considered allelic, are a continuous spectrum of pleiotropic phenotypes defined by an NTE genotype:activity:phenotype relationship. This relationship, and the generation of a preclinical animal model, pave the way for therapeutic trials, using NTE as a biomarker.
Collapse
Affiliation(s)
- James Liu
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yi He
- Fermentation Facility, Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| | - Cara Lwin
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marina Han
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bin Guan
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amelia Naik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chelsea Bender
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nia Moore
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laryssa A Huryn
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yuri V Sergeev
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Haohua Qian
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yong Zeng
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pinghu Liu
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jingqi Lei
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carl J Haugen
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lev Prasov
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48105, USA
| | - Ruifang Shi
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 100730 Beijing, China
| | - Hélène Dollfus
- Centre de référence pour les Affections Rares Ophtalmologiques CARGO, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, UMRS_1112, Strasbourg 67091, France
| | - Petros Aristodemou
- Cyprus Institute of Neurology and Genetics, Nicosia 1683, Cyprus
- VRMCy Centre, Limassol 3025, Cyprus
| | - Yannik Laich
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- Department of Genetics, Moorfields Eye Hospital NHS Trust, London EC1V 2PD, UK
| | - Andrea H Németh
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, ACE Building, Nuffield Orthopaedic Centre, Oxford OX3 7HE, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - John Taylor
- Oxford Regional Genetics Laboratory, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Susan Downes
- Nuffield Department of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Maciej R Krawczynski
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan 60-512, Poland
| | - Isabelle Meunier
- National Referent Centre for Rare Sensory Diseases, Montpellier University Hospital, Montpellier University, Montpellier 34295, France
| | | | - Jessica Tenney
- Division of Medical Genetics, Department of Pediatrics, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Josephine Gao
- Division of Medical Genetics, Department of Pediatrics, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Matthew A Shear
- Division of Medical Genetics, Department of Pediatrics, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Anthony T Moore
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- Department of Ophthalmology, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Jacque L Duncan
- Department of Ophthalmology, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Beatriz Menendez
- Department of Pediatrics, University of Illinois School of Medicine, Chicago, IL 60612, USA
| | - Sarah Hull
- Department of Ophthalmology, University of Auckland, Auckland 1023, New Zealand
| | - Andrea L Vincent
- Department of Ophthalmology, University of Auckland, Auckland 1023, New Zealand
| | - Carly E Siskind
- Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Elias I Traboulsi
- The Center for Genetic Eye Diseases, The Cleveland Clinic Eye Institute, Cleveland, OH 44106, USA
| | - Craig Blackstone
- Movement Disorders Division, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Robert A Sisk
- Department of Ophthalmology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Virginia Miraldi Utz
- Department of Ophthalmology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Andrew R Webster
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- Department of Genetics, Moorfields Eye Hospital NHS Trust, London EC1V 2PD, UK
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- Department of Genetics, Moorfields Eye Hospital NHS Trust, London EC1V 2PD, UK
| | - Gavin Arno
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- Department of Genetics, Moorfields Eye Hospital NHS Trust, London EC1V 2PD, UK
| | - Matthis Synofzik
- Division Translational Genomics of Neurodegenerative Diseases Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
- German Center of Neurodegenerative Diseases (DZNE), Tübingen 72076, Germany
| | - Robert B Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Genetics and Center for Integrated Healthcare Research, Kaiser Permanente Hawaii Region, Honolulu, HI 98619, USA
| |
Collapse
|
2
|
Scaravilli A, Tranfa M, Pontillo G, Brais B, De Michele G, La Piana R, Saccà F, Santorelli FM, Synofzik M, Brunetti A, Cocozza S. A Review of Brain and Pituitary Gland MRI Findings in Patients with Ataxia and Hypogonadism. CEREBELLUM (LONDON, ENGLAND) 2024; 23:757-774. [PMID: 37155088 DOI: 10.1007/s12311-023-01562-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
The association of cerebellar ataxia and hypogonadism occurs in a heterogeneous group of disorders, caused by different genetic mutations often associated with a recessive inheritance. In these patients, magnetic resonance imaging (MRI) plays a pivotal role in the diagnostic workflow, with a variable involvement of the cerebellar cortex, alone or in combination with other brain structures. Neuroimaging involvement of the pituitary gland is also variable. Here, we provide an overview of the main clinical and conventional brain and pituitary gland MRI imaging findings of the most common genetic mutations associated with the clinical phenotype of ataxia and hypogonadism, with the aim of helping neuroradiologists in the identification of these disorders.
Collapse
Affiliation(s)
- Alessandra Scaravilli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Mario Tranfa
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
- Department of Electrical Engineering and Information Technology (DIETI), University of Naples "Federico II", Naples, Italy
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, Montreal, Canada
| | - Giovanna De Michele
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Roberta La Piana
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, Montreal, Canada
| | - Francesco Saccà
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | | | - Matthis Synofzik
- German Center for Neurodegenerative Diseases (DZNE), Tubingen, Germany
- Division Translational Genomics of Neurodegenerative Diseases, Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Strasse 27, 72076, Tubingen, Germany
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
3
|
Lai ZH, Liu XY, Song YY, Zhou HY, Zeng LL. Case report: Hereditary spastic paraplegia with a novel homozygous mutation in ZFYVE26. Front Neurol 2023; 14:1160110. [PMID: 37681008 PMCID: PMC10482258 DOI: 10.3389/fneur.2023.1160110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/16/2023] [Indexed: 09/09/2023] Open
Abstract
Hereditary spastic paraplegia (HSP) is a group of neurodegenerative diseases with genetic and clinical heterogeneity characterized by spasticity and weakness of the lower limbs. It includes four genetic inheritance forms: autosomal dominant inheritance (AD), autosomal recessive inheritance (AR), X-linked inheritance, and mitochondrial inheritance. To date, more than 82 gene loci have been found to cause HSP, and SPG15 (ZFYVE26) is one of the most common autosomal recessive hereditary spastic paraplegias (ARHSPs) with a thin corpus callosum (TCC), presents with early cognitive impairment and slowly progressive leg weakness. Here, we reported a homozygous pathogenic variant in ZFYVE26. A 19-year-old Chinese girl was admitted to our hospital presenting with a 2-year progressive bilateral leg spasticity and weakness; early cognitive impairment; corpus callosum dysplasia; chronic neurogenic injury of the medulla oblongata supplied muscles; and bilateral upper and lower limbs on electromyogram (EMG). Based on these clinical and electrophysiological features, HSP was suspected. Exome sequencing of the family was performed by high-throughput sequencing, and an analysis of the patient showed a ZFYVE26 NM_015346: c.7111dupA p.(M2371Nfs*51) homozygous mutation. This case reported a new ZFYVE26 pathogenic variant, which was different from the SPG15 gene mutation reported earlier.
Collapse
Affiliation(s)
- Ze-hua Lai
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiao-ying Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan-yue Song
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hai-yan Zhou
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-li Zeng
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Liu J, He Y, Lwin C, Han M, Guan B, Naik A, Bender C, Moore N, Huryn LA, Sergeev Y, Qian H, Zeng Y, Dong L, Liu P, Lei J, Haugen CJ, Prasov L, Shi R, Dollfus H, Aristodemou P, Laich Y, Németh AH, Taylor J, Downes S, Krawczynski M, Meunier I, Strassberg M, Tenney J, Gao J, Shear MA, Moore AT, Duncan JL, Menendez B, Hull S, Vincent A, Siskind CE, Traboulsi EI, Blackstone C, Sisk R, Utz V, Webster AR, Michaelides M, Arno G, Synofzik M, Hufnagel RB. Neuropathy target esterase activity predicts retinopathy among PNPLA6 disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.544373. [PMID: 37333224 PMCID: PMC10274907 DOI: 10.1101/2023.06.09.544373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Biallelic pathogenic variants in the PNPLA6 gene cause a broad spectrum of disorders leading to gait disturbance, visual impairment, anterior hypopituitarism, and hair anomalies. PNPLA6 encodes Neuropathy target esterase (NTE), yet the role of NTE dysfunction on affected tissues in the large spectrum of associated disease remains unclear. We present a clinical meta-analysis of a novel cohort of 23 new patients along with 95 reported individuals with PNPLA6 variants that implicate missense variants as a driver of disease pathogenesis. Measuring esterase activity of 46 disease-associated and 20 common variants observed across PNPLA6 -associated clinical diagnoses unambiguously reclassified 10 variants as likely pathogenic and 36 variants as pathogenic, establishing a robust functional assay for classifying PNPLA6 variants of unknown significance. Estimating the overall NTE activity of affected individuals revealed a striking inverse relationship between NTE activity and the presence of retinopathy and endocrinopathy. This phenomenon was recaptured in vivo in an allelic mouse series, where a similar NTE threshold for retinopathy exists. Thus, PNPLA6 disorders, previously considered allelic, are a continuous spectrum of pleiotropic phenotypes defined by an NTE genotype:activity:phenotype relationship. This relationship and the generation of a preclinical animal model pave the way for therapeutic trials, using NTE as a biomarker.
Collapse
|
5
|
Saffari A, Kellner M, Jordan C, Rosengarten H, Mo A, Zhang B, Strelko O, Neuser S, Davis MY, Yoshikura N, Futamura N, Takeuchi T, Nabatame S, Ishiura H, Tsuji S, Aldeen HS, Cali E, Rocca C, Houlden H, Efthymiou S, Assmann B, Yoon G, Trombetta BA, Kivisäkk P, Eichler F, Nan H, Takiyama Y, Tessa A, Santorelli FM, Sahin M, Blackstone C, Yang E, Schüle R, Ebrahimi-Fakhari D. The clinical and molecular spectrum of ZFYVE26-associated hereditary spastic paraplegia: SPG15. Brain 2023; 146:2003-2015. [PMID: 36315648 PMCID: PMC10411936 DOI: 10.1093/brain/awac391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/14/2022] [Accepted: 10/02/2022] [Indexed: 11/13/2022] Open
Abstract
In the field of hereditary spastic paraplegia (HSP), progress in molecular diagnostics needs to be translated into robust phenotyping studies to understand genetic and phenotypic heterogeneity and to support interventional trials. ZFYVE26-associated hereditary spastic paraplegia (HSP-ZFYVE26, SPG15) is a rare, early-onset complex HSP, characterized by progressive spasticity and a variety of other neurological symptoms. While prior reports, often in populations with high rates of consanguinity, have established a general phenotype, there is a lack of systematic investigations and a limited understanding of age-dependent manifestation of symptoms. Here we delineate the clinical, neuroimaging and molecular features of 44 individuals from 36 families, the largest cohort assembled to date. Median age at last follow-up was 23.8 years covering a wide age range (11-61 years). While symptom onset often occurred in early childhood [median: 24 months, interquartile range (IQR) = 24], a molecular diagnosis was reached at a median age of 18.8 years (IQR = 8), indicating significant diagnostic delay. We demonstrate that most patients present with motor and/or speech delay or learning disabilities. Importantly, these developmental symptoms preceded the onset of motor symptoms by several years. Progressive spasticity in the lower extremities, the hallmark feature of HSP-ZFYVE26, typically presents in adolescence and involves the distal lower limbs before progressing proximally. Spasticity in the upper extremities was seen in 64%. We found a high prevalence of extrapyramidal movement disorders including cerebellar ataxia (64%) and dystonia (11%). Parkinsonism (16%) was present in a subset and showed no sustained response to levodopa. Cognitive decline and neurogenic bladder dysfunction progressed over time in most patients. A systematic analysis of brain MRI features revealed a common diagnostic signature consisting of thinning of the anterior corpus callosum, signal changes of the anterior forceps and non-specific cortical and cerebellar atrophy. The molecular spectrum included 45 distinct variants, distributed across the protein structure without mutational hotspots. Spastic Paraplegia Rating Scale scores, SPATAX Disability Scores and the Four Stage Functional Mobility Score showed moderate strength in representing the proportion of variation between disease duration and motor dysfunction. Plasma neurofilament light chain levels were significantly elevated in all patients (Mann-Whitney U-test, P < 0.0001) and were correlated inversely with age (Spearman's rank correlation coefficient r = -0.65, P = 0.01). In summary, our systematic cross-sectional analysis of HSP-ZFYVE26 patients across a wide age-range, delineates core clinical, neuroimaging and molecular features and identifies markers of disease severity. These results raise awareness to this rare disease, facilitate an early diagnosis and create clinical trial readiness.
Collapse
Affiliation(s)
- Afshin Saffari
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Child Neurology and Inherited Metabolic Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Melanie Kellner
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Catherine Jordan
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Helena Rosengarten
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Alisa Mo
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Bo Zhang
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- ICCTR Biostatistics and Research Design Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Oleksandr Strelko
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sonja Neuser
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Marie Y Davis
- Department of Neurology, University of Washington, Seattle, WA, USA
- Department of Neurology, VA Puget Sound Healthcare System, Seattle, WA, USA
| | - Nobuaki Yoshikura
- Department of Neurology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Naonobu Futamura
- Department of Neurology, National Hospital Organization Hyogo-Chuo National Hospital, Ohara, Sanda, Japan
| | - Tomoya Takeuchi
- Department of Neurology, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, Aichi, Japan
| | - Shin Nabatame
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shoji Tsuji
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Institute of Medical Genomics, International University of Health and Welfare, Chiba, Japan
| | - Huda Shujaa Aldeen
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Elisa Cali
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Clarissa Rocca
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Birgit Assmann
- Division of Child Neurology and Inherited Metabolic Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Grace Yoon
- Divisions of Clinical and Metabolic Genetics and Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Bianca A Trombetta
- Alzheimer's Clinical and Translational Research Unit, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Pia Kivisäkk
- Alzheimer's Clinical and Translational Research Unit, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Florian Eichler
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Haitian Nan
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Yoshihisa Takiyama
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
- Department of Neurology, Fuefuki Central Hospital, Yamanashi, Japan
| | - Alessandra Tessa
- Department of Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Filippo M Santorelli
- Department of Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Mustafa Sahin
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Craig Blackstone
- Movement Disorders Division, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward Yang
- Division of Neuroradiology, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rebecca Schüle
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Darius Ebrahimi-Fakhari
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Movement Disorders Program, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Intellectual and Developmental Disabilities Research Center, Boston Children’s Hospital, Boston, MA, USA
| |
Collapse
|
6
|
Novel phenotype with prominent cerebellar oculomotor dysfunction in spastic paraplegia type 39. J Neurol 2022; 269:6476-6482. [PMID: 35947152 PMCID: PMC9618546 DOI: 10.1007/s00415-022-11313-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022]
Abstract
Objectives The term hereditary spastic paraplegia comprises an ever-expanding array of neurological disorders with distinct aetiologies. Spastic paraplegia gene 39 is one of the many genetically defined types with features of other organs and neurological systems in addition to paraspasticity. We describe a large kindred with a novel clinical phenotype as, in addition to spastic paraplegia, affected subjects suffered from a prominent cerebellar oculomotor dysfunction with two hitherto undescribed mutations of PNPLA6. Methods Three of five genetically tested family members of a large kindred were affected by spastic gait and a unique and prominent cerebellar oculomotor dysfunction. Further clinical, imaging, laboratory and videonystagmographic data were analyzed. Genetic analysis was done using next-generation sequencing. Results The most salient clinical feature, in addition to paraspasticity, in three of five subjects was cerebellar oculomotor dysfunction with an upbeating nystagmus provoked by downward gaze. Genetic analysis revealed two hitherto unknown sequence variants in the PNPLA6 gene, a splice-site variant c.1635 + 3G > T and a missense variant c.3401A > T, p.(Asp1134Val). In addition to cerebellar oculomotor dysfunction, compound-heterozygous siblings presented with paraspasticity and a moderate hypogonadotropic hypogonadism in the female. A paternal uncle being homozygous for the splice-site variant of PNPLA6 presented with increased lower limb reflexes and an unstable gait. Treatment with 4-aminopyridine, a potassium channel blocker, lead to meaningful improvement of clinical symptoms. Conclusions The unique and prominent cerebellar ocular motor disorder in our family broadens the spectrum of clinical phenotypes associated with variations in the PNLA6 gene. The finding of paraspasticity with cerebellar oculomotor dysfunction alongside inconspicuous brainstem imaging may raise suspicion of complex HSP with PNPLA6 mutations. Supplementary Information The online version contains supplementary material available at 10.1007/s00415-022-11313-6.
Collapse
|
7
|
Eriksen KO, Wigers AR, Wedding IM, Erichsen AK, Barøy T, Søberg K, Jørstad ØK. A novel homozygous variant in the SPG7 gene presenting with childhood optic nerve atrophy. Am J Ophthalmol Case Rep 2022; 26:101400. [PMID: 35243150 PMCID: PMC8861420 DOI: 10.1016/j.ajoc.2022.101400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 11/19/2022] Open
Abstract
Purpose To describe a case of hereditary spastic ataxia (HSP) presenting with childhood optic nerve atrophy and report a novel homozygous variant in the SPG7 gene. Observations A 57-year-old man suffering from progressive optic nerve atrophy since childhood eventually underwent genetic testing. A targeted whole exome gene sequencing panel for optic neuropathy identified a novel homozygous variant in the SPG7 gene, c.2T > G, p.(Met?), which likely abolished production of paraplegin, an inner mitochondrial membrane protein. Subsequent neurologic examination revealed subtle signs of spastic paraplegia and ataxia in keeping with the genetic diagnosis of SPG7. Conclusion and importance Spastic paraplegia 7 (SPG7) is an autosomal recessive form of the neurodegenerative disorder HSP. Pure HSP is characterized by spastic paraparesis in the lower limbs, whereas complicated HSP presents additional neurological manifestations. This case report adds to the evidence that SPG7 can present with childhood optic nerve atrophy, preceding the characteristic SPG7 manifestations. SPG7 should be considered in the workup of suspected hereditary optic neuropathy. Spastic paraplegia 7 (SPG7) may present with childhood optic nerve atrophy. In this case we identified a likely pathogenic, homozygous variant in the SPG7 gene: c.2T > G, p.(Met1?). Workup for suspected hereditary optic neuropathy should include testing for SPG7.
Collapse
Affiliation(s)
- Kathrine O. Eriksen
- Department of Ophthalmology, Oslo University Hospital, Norway
- Corresponding author. Department of ophthalmology, Oslo University Hospital, Postboks 4950 Nydalen, 0424, OSLO, Norway.
| | | | | | | | - Tuva Barøy
- Department of Medical Genetics, Oslo University Hospital, Norway
| | | | - Øystein Kalsnes Jørstad
- Department of Ophthalmology, Oslo University Hospital, Norway
- Faculty of Medicine, University of Oslo, Norway
| |
Collapse
|
8
|
Shi Y, Wang A, Chen B, Wang X, Niu S, Li W, Li S, Zhang Z. Clinical Features and Genetic Spectrum of Patients With Clinically Suspected Hereditary Progressive Spastic Paraplegia. Front Neurol 2022; 13:872927. [PMID: 35572931 PMCID: PMC9097539 DOI: 10.3389/fneur.2022.872927] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/28/2022] [Indexed: 12/27/2022] Open
Abstract
Background and Purpose A variety of hereditary diseases overlap with neurological phenotypes or even share genes with hereditary spastic paraplegia (HSP). The aim of this study was to determine the clinical features and genetic spectrum of patients with clinically suspected HSPs. Methods A total of 52 patients with clinically suspected HSPs were enrolled in this study. All the patients underwent next-generation sequencing (NGS) and triplet repeat primed PCR to screen for the dynamic mutations typical of spinocerebellar ataxia (SCA). Multiplex ligation-dependent probe amplification (MLPA) was further conducted in patients with no causative genetic mutations detected to examine for large deletions and duplications in genes of SPAST, ATL1, REEP1, PGN, and SPG11. Clinical characteristics and findings of brain MRI were analyzed in patients with definite diagnoses. Results The mean age of the patients studied was 36.90 ± 14.57 years. 75% (39/52) of patients manifested a phenotype of complex form of HSPs. A genetic diagnosis was made in 51.9% (27/52) of patients, of whom 40.3% (21/52) of patients had mutations in HSPs genes (SPG4/SPG6/SPG8/SPG11/SPG15/SPG78/SPG5A) and 11.5% (6/52) of patients had mutations in SCAs genes (SCA3/SCA17/SCA28). SPG4 and SPG11 were the most common cause of pure form of HSPs (5/6, 83.3%) and complex form of HSPs (5/15, 33.3%), respectively. Gait disturbance was the most common initial symptom in both the patients with HSPs (15/21) and in patients with SCAs (5/6). Dysarthria and cerebellar ataxia were detected in 28.5% (6/21) and 23.8% (5/21) of patients with HSPs, respectively, and were the most common symptoms in addition to progressive weakness and spasticity of the lower limbs. Cerebellar atrophy was seen on the brain MRI of patients with SPG5A, SCA3, and SCA28. Conclusion Causative genetic mutations were identified in 51.9% of patients with clinically suspected HSPs by NGS and triplet repeat primed PCR. A final diagnosis of HSPs or SCAs was made in 40.3% and 11.5% of patients, respectively. The clinical manifestations and neuroimaging findings overlapped between patients with HSPs and patients with SCAs. Dynamic mutations should be screened in patients with clinically suspected HSPs, especially in those with phenotypes of complex form of HSPs.
Collapse
Affiliation(s)
- Yuzhi Shi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - An Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bin Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xingao Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Songtao Niu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei Li
- China National Clinical Research Center for Neurological Diseases, Beijing, China.,Monogenic Disease Research Center for Neurological Disorders & Precision Medicine Research Center for Neurological Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shaowu Li
- Department of Functional Neuroimaging, Beijing Neurosurgical Institute, Beijing, China
| | - Zaiqiang Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Doleckova K, Roth J, Stellmachova J, Gescheidt T, Sigut V, Houska P, Jech R, Zech M, Vyhnalek M, Vyhnalkova E, Seeman P, Meszarosova AU. SPG11: clinical and genetic features of seven Czech patients and literature review. Neurol Res 2022; 44:379-389. [DOI: 10.1080/01616412.2021.1975224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kristyna Doleckova
- Department of Neurology and Center of Clinical Neuroscience First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague
| | - Jan Roth
- Department of Neurology and Center of Clinical Neuroscience First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague
| | - Julia Stellmachova
- Department of Medical Genetics, University Hospital Olomouc, Olomouc, Czechia
| | - Tomas Gescheidt
- Department of Neurology, St. Anne´s University Hospital, Brno, Czechia
| | | | - Pavel Houska
- Department of Neurology, Strakonice Hospital, Strakonice, Czechia
| | - Robert Jech
- Department of Neurology and Center of Clinical Neuroscience First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Martin Vyhnalek
- Department of Neurology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague
| | - Emilie Vyhnalkova
- Department of Biology and Medical Genetics, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague
| | - Pavel Seeman
- Department of Paediatric Neurology, Neurogenetic Laboratory, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague
| | - Anna Uhrova Meszarosova
- Department of Paediatric Neurology, Neurogenetic Laboratory, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague
| |
Collapse
|
10
|
Nanetti L, Di Bella D, Magri S, Fichera M, Sarto E, Castaldo A, Mongelli A, Baratta S, Fenu S, Moscatelli M, Bonati MT, Martinuzzi A, Mariotti C, Taroni F. Multifaceted and Age-Dependent Phenotypes Associated With Biallelic PNPLA6 Gene Variants: Eight Novel Cases and Review of the Literature. Front Neurol 2022; 12:793547. [PMID: 35069422 PMCID: PMC8770815 DOI: 10.3389/fneur.2021.793547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022] Open
Abstract
A wide spectrum of neurodegenerative diseases has been associated with pathogenic variants in the PNPLA6 (patatin-like phospholipase domain-containing protein 6) gene, including spastic paraplegia type 39, Gordon-Holmes, Boucher-Neuhauser, Oliver-Mc Farlane, and Laurence-Moon syndromes. These syndromes present variable and overlapping clinical symptoms, encompassing cerebellar ataxia, hypogonadotropic hypogonadism, chorioretinal dystrophy, spastic paraplegia, muscle wasting, peripheral neuropathy, and cognitive impairment. In the present study, we performed a wide genetic screening in 292 patients presenting with ataxia or spastic paraplegia using a probe-based customized gene panel, covering >200 genes associated with spinocerebellar diseases. We identified six novel and four recurrent PNPLA6 gene variants in eight patients (2.7%). Six patients presented an infantile or juvenile onset (age <18), and two patients had an adult onset. Cerebellar ataxia was observed in seven patients and spastic paraplegia in one patient. Progression of cerebellar symptoms was slow in all patients, who retained ambulation even after a mean disease duration of 15 years. Brain MRI showed cerebellar atrophy in 6/8 patients, more pronounced in superior and dorsal vermis lobules (I to VII). Additional clinical features included hypogonadotropic hypogonadism (5/8), growth hormone deficiency (2/8), peripheral axonal neuropathy (4/8), cognitive impairment (3/8), chorioretinal dystrophy (2/8), and bilateral vestibular areflexia with a reduced visual vestibule-ocular reflex (1/8). In accordance with previous studies, chorioretinal dystrophy was the most frequent presenting symptom in early onset patients, hypogonadotropic hypogonadism in juvenile onset cases, and cerebellar ataxia in adult patients. One patient had an initial clinical presentation compatible with Cerebellar Ataxia with Neuropathy and Vestibular Areflexia Syndrome (CANVAS), but no pathological expansions in the RFC1 gene. In conclusion, patients with PNPLA6 variants present a variable age of onset spanning from infancy to adulthood, and each clinical symptom has an age-dependent manifestation thus requiring a multi-systemic diagnostic approach. The description of patients presenting very late-onset cerebellar ataxia suggests that PNPLA6 genetic screening should also be considered in the diagnostic workout of adult cerebellar ataxia.
Collapse
Affiliation(s)
- Lorenzo Nanetti
- Unit of Medical Genetics and Neurogenetics, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Daniela Di Bella
- Unit of Medical Genetics and Neurogenetics, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stefania Magri
- Unit of Medical Genetics and Neurogenetics, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Mario Fichera
- Unit of Medical Genetics and Neurogenetics, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elisa Sarto
- Unit of Medical Genetics and Neurogenetics, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Anna Castaldo
- Unit of Medical Genetics and Neurogenetics, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alessia Mongelli
- Unit of Medical Genetics and Neurogenetics, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Silvia Baratta
- Unit of Medical Genetics and Neurogenetics, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Silvia Fenu
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marco Moscatelli
- Unit of Neuroradiology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maria Teresa Bonati
- Unit of Medical Genetics, Institute for Maternal and Child Health Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofalo, Trieste, Italy
| | - Andrea Martinuzzi
- Conegliano Research Center, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Eugenio Medea, Conegliano, Italy
| | - Caterina Mariotti
- Unit of Medical Genetics and Neurogenetics, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Franco Taroni
- Unit of Medical Genetics and Neurogenetics, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
11
|
Drosophila Lysophospholipase Gene swiss cheese Is Required for Survival and Reproduction. INSECTS 2021; 13:insects13010014. [PMID: 35055857 PMCID: PMC8781823 DOI: 10.3390/insects13010014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/28/2022]
Abstract
Simple Summary Biological evolution implies fitness of newly evolved organisms that have inherent adaptive traits because of mutations in genes. However, most mutations are detrimental, and they spoil the organism’s life, its survival and its ability to leave progeny. Some genes are extremely vital for an organism, and therefore, they tend to save their structure and do not mutate or do it very composedly. That is the case of the gene encoding PNPLA6 lysophospholipase domain that evolved in bacteria, and evolution obliged it to save its function in higher animals. In mammals, complete dysfunction of such a gene is lethal because of its high importance in placenta for early embryo development. Why is it conserved in other species, for instance insects, that have no placenta? Here we studied the role of the PNPLA6-encoding gene named swiss cheese in Drosophila melanogaster fitness. We have found that its dysfunction results in premature death of specimens and their inability to leave enough progeny. Thus, we provide the first evidence for significance of the gene that encodes the lysophospholipase enzyme in fitness of insects. Abstract Drosophila melanogaster is one of the most famous insects in biological research. It is widely used to analyse functions of different genes. The phosphatidylcholine lysophospholipase gene swiss cheese was initially shown to be important in the fruit fly nervous system. However, the role of this gene in non-nervous cell types has not been elucidated yet, and the evolutional explanation for the conservation of its function remains elusive. In this study, we analyse expression pattern and some aspects of the role of the swiss cheese gene in the fitness of Drosophila melanogaster. We describe the spatiotemporal expression of swiss cheese throughout the fly development and analyse the survival and productivity of swiss cheese mutants. We found swiss cheese to be expressed in salivary glands, midgut, Malpighian tubes, adipocytes, and male reproductive system. Dysfunction of swiss cheese results in severe pupae and imago lethality and decline of fertility, which is impressive in males. The latter is accompanied with abnormalities of male locomotor activity and courtship behaviour, accumulation of lipid droplets in testis cyst cells and decrease in spermatozoa motility. These results suggest that normal swiss cheese is important for Drosophila melanogaster fitness due to its necessity for both specimen survival and their reproductive success.
Collapse
|
12
|
Genetic, clinical and neuroimaging profiles of sporadic and autosomal recessive hereditary spastic paraplegia cases in Chinese. Neurosci Lett 2021; 761:136108. [PMID: 34256108 DOI: 10.1016/j.neulet.2021.136108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 07/07/2021] [Indexed: 11/22/2022]
Abstract
Spastic paraplegias (SPGs) are a group of clinically and genetically heterogeneous neurodegenerative diseases. Mutations in 78 genes have been identified in autosomal dominant hereditary SPG (AD-HSP) and autosomal recessive hereditary SPG (AR-HSP). Compared to familial HSP, much less is known about the genetic and clinical profiles of sporadic SPGs. In this study, we have screened mutations for 18 sporadic SPGs or AR-HSP patients (mainly Northern Chinese) by whole-exome sequencing. We identified 12 mutations in five genes in 9 (50%) patients, including 9 novel ones: SPG5A/CYP7B1 (c.851C > A; c.122 + 2 T > G), SPG11/KIAA1840 (c.1735 + 3_ 1735 + 6del AAGT); SPG7/SPG7 (c.1454G > A; c.1892_ 1906dup GAGGACGGGCCTCGG); SPG39/PNPLA6 (c.1591G > A; c. 2990C > T); SPG15/ ZFYVE26 (c. 4804C > T; c. 4278 G > A). Among all the mutations, 7 were detected in the SPG5A and SPG11. Age at onset was significantly younger in cases with mutations (15.45 ± 6.78 years) than those without mutations (25.56 ± 10.90 years) (P = 0.03). Except for two cases with the SPG5A mutations, all cases presented with complicated SPGs. Three cases carrying mutations in SPG7, SPG15, SPG39 showed symptoms and signs of ataxia. One case carrying the homozygous c.259 + 2 T > C mutation in CYP7B1 showed serum parameters indicating liver impairment. Magnetic resonance imaging showed significantly thinned corpus callosum in cases with SPG11 and SPG15, but not in those with SPG5A, SPG7 or SPG39. In contrast, cerebellar atrophy was prominent in the SPG7 and SPG39 cases. These findings expand the spectrum of genetic, clinical and imaging features of sporadic SPG and AR-HSP, and have important implications in genetic counselling, molecular mechanisms and precise diagnosis of the disease.
Collapse
|
13
|
Erfanian Omidvar M, Torkamandi S, Rezaei S, Alipoor B, Omrani MD, Darvish H, Ghaedi H. Genotype-phenotype associations in hereditary spastic paraplegia: a systematic review and meta-analysis on 13,570 patients. J Neurol 2021; 268:2065-2082. [PMID: 31745725 DOI: 10.1007/s00415-019-09633-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 12/13/2022]
Abstract
AIMS The hereditary spastic paraplegias (HSPs) are a heterogeneous group of inherited neurodegenerative disorders. Although, several genotype-phenotype studies have carried out on HSPs, the association between genotypes and clinical phenotypes remain incomplete since most studies are small in size or restricted to a few genes. Accordingly, this study provides the systematic meta-analysis of genotype-phenotype associations in HSP. METHODS AND RESULTS We retrieved literature on genotype-phenotype associations in patients with HSP and mutated SPAST, REEP1, ATL1, SPG11, SPG15, SPG7, SPG35, SPG54, SPG5. In total, 147 studies with 13,570 HSP patients were included in our meta-analysis. The frequency of mutations in SPAST (25%) was higher than REEP1 (3%), as well as ATL1 (5%) in AD-HSP patients. As for AR-HSP patients, the rates of mutations in SPG11 (18%), SPG15 (7%) and SPG7 (13%) were higher than SPG5 (5%), as well as SPG35 (8%) and SPG54 (7%). The mean age of AD-HSP onset for ATL1 mutation-positive patients was earlier than patients with SPAST, REEP1 mutations. Also, the tendency toward younger age at AR-HSP onset for SPG35 was higher than other mutated genes. It is noteworthy that the mean age at HSP onset ranged from infancy to adulthood. As for the gender distribution, the male proportion in SPG7-HSP (90%) and REEP1-HSP (78%) was markedly high. The frequency of symptoms was varied among patients with different mutated genes. The rates of LL weakness, superficial sensory abnormalities, neuropathy, and deep sensory impairment were noticeably high in REEP1 mutations carriers. Also, in AR-HSP patients with SPG11 mutations, the presentation of symptoms including pes cavus, Neuropathy, and UL spasticity was higher. CONCLUSION Our comprehensive genotype-phenotype assessment of available data displays that the mean age at disease onset and particular sub-phenotypes are associated with specific mutated genes which might be beneficial for a diagnostic procedure and differentiation of the specific mutated genes phenotype among diverse forms of HSP.
Collapse
Affiliation(s)
- Maryam Erfanian Omidvar
- Department of Medical Laboratory Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Torkamandi
- Department of Medical Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Somaye Rezaei
- Department of Neurology, Imam Khomeini Hospital, Urmia University of Medical Sciences, Urmia, Iran
| | - Behnam Alipoor
- Department of Laboratory Sciences, Faculty of Parmedicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Velenjak St., Shahid Chamran Highway, Tehran, IR, Iran
| | - Hossein Darvish
- Department of Medical Genetics, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hamid Ghaedi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Velenjak St., Shahid Chamran Highway, Tehran, IR, Iran.
| |
Collapse
|
14
|
Doğan M, Eröz R, Öztürk E. Chorioretinal dystrophy, hypogonadotropic hypogonadism, and cerebellar ataxia: Boucher-Neuhauser syndrome due to a homozygous (c.3524C>G (p.Ser1175Cys)) variant in PNPLA6 gene. Ophthalmic Genet 2021; 42:276-282. [PMID: 33650466 DOI: 10.1080/13816810.2021.1894461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Purpose: The current study aims to raise awareness of Boucher - Neuhauser syndrome (BNHS) that occurs as a rare phenotype due to biallelic pathogenic variants in the PNPLA6 gene.Methods: Detailed family histories and clinical data were recorded. Whole exome sequencing was performed and co-segregation analysis of the family was done by sanger sequencing. Also, review of 28 molecularly confirmed patients with BNHS from the literature was evaluated.Results: We identified a missense homozygous variant (c.3524 C > G (p.Ser1175Cys)) in the PNPLA6 gene, which explains the phenotype of the patient and neurologic, ophthalmologic, endocrine, and genetic evaluations established a diagnosis of BNHS. Symptoms, ethnicity, clinical and genetic findings of 28 molecularly confirmed patients with BNHS from the literature were also presented.Conclusion: We present the main findings of a Turkish family with BNHS together with detailed clinical and genetic profiles of patients diagnosed as BNHS that have been molecularly confirmed in the literature so far.
Collapse
Affiliation(s)
- Mustafa Doğan
- Department of Medical Genetics, Malatya Turgut Özal University Medical Faculty, Malatya, Turkey
| | - Recep Eröz
- Department of Medical Genetics, Duzce University Medical Faculty, Duzce, Turkey
| | - Emrah Öztürk
- Department of Ophthalmology, Malatya Training and Research Hospital, Malatya, Turkey
| |
Collapse
|
15
|
Genetic and Epidemiological Study of Adult Ataxia and Spastic Paraplegia in Eastern Quebec. Can J Neurol Sci 2021; 48:655-665. [PMID: 33397523 DOI: 10.1017/cjn.2020.277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To estimate the minimum prevalence of adult hereditary ataxias (HA) and spastic paraplegias (HSP) in Eastern Quebec and to evaluate the proportion of associated mutations in identified genes. METHODS We conducted a descriptive cross-sectional study of patients who met clinical criteria for the diagnosis of HA (n = 241) and HSP (n = 115) in the East of the Quebec province between January 2007 and July 2019. The primary outcome was the prevalence per 100,000 persons with a 95% confidence interval (CI). The secondary outcome was the frequency of mutations identified by targeted next-generation sequencing (NGS) approach. Minimum carrier frequency for identified variants was calculated based on allele frequency values and the Hardy-Weinberg (HW) equation. RESULTS The minimum prevalence of HA in Eastern Quebec was estimated at 6.47/100 000 [95% CI; 6.44-6.51]; divided into 3.73/100 000 for autosomal recessive (AR) ataxias and 2.67/100 000 for autosomal dominant (AD) ataxias. The minimum prevalence of HSP was 4.17/100 000 [95% CI; 4.14-4.2]; with 2.05/100 000 for AD-HSP and 2.12/100 000 for AR-HSP. In total, 52.4% of patients had a confirmed genetic diagnosis. AR cerebellar ataxia type 1 (2.67/100 000) and AD spastic paraplegia SPG4 (1.18/100 000) were the most prevalent disorders identified. Mutations were identified in 23 genes and molecular alterations in 7 trinucleotides repeats expansion; the most common mutations were c.15705-12 A > G in SYNE1 and c.1529C > T (p.A510V) in SPG7. CONCLUSIONS We described the minimum prevalence of genetically defined adult HA and HSP in Eastern Quebec. This study provides a framework for international comparisons and service planning.
Collapse
|
16
|
Wu S, Sun Z, Zhu T, Weleber RG, Yang P, Wei X, Pennesi ME, Sui R. Novel variants in PNPLA6 causing syndromic retinal dystrophy. Exp Eye Res 2020; 202:108327. [PMID: 33141049 DOI: 10.1016/j.exer.2020.108327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022]
Abstract
PNPLA6-related disorders include several phenotypes, such as Boucher-Neuhäuser syndrome, Gordon Holmes syndrome, spastic paraplegia, photoreceptor degeneration, Oliver-McFarlane syndrome and Laurence-Moon syndrome. In this study, detailed clinical evaluations and genetic testing were performed in five (4 Chinese and 1 Caucasian/Chinese) syndromic retinal dystrophy patients. Genotype-phenotype correlations were analyzed based on review of the literatures of previously published PNPLA6-related cases. The mean age of patients and at first visit were 20.8 years (11, 12, 25, 28, 28) and 14.2 years (4, 7, 11, 24, 25), respectively. They all presented with severe chorioretinal dystrophy and profoundly decreased vision. The best corrected visual acuity (BCVA) ranged from 20/200 to 20/2000. Systemic manifestations included cerebellar ataxia, hypogonadotropic hypogonadism and hair anomalies. Six novel and three reported pathogenic variants in PNPLA6 (NM_001166111) were identified. The genotypes of the five cases are: c.3134C > T (p.Ser1045Leu) and c.3846+1G > A, c.3547C > T (p.Arg1183Trp) and c.1841+3A > G, c.3436G > A (p.Ala1146Thr) and c.2212-10A > G, c.3436G > A (p.Ala1146Thr) and c.2266C > T (p.Gln756*), c.1238_1239insC (p.Leu414Serfs*28) and c.3130A > G (p.Thr1044Ala). RT-PCR confirmed that the splicing variants indeed led to abnormal splicing. Missense variants p.Thr1044Ala, p.Ser1045Leu, p.Ala1146Thr, p.Arg1183Trp and c.3846+1G > A are located in Patatin-like phospholipase (Pat) domain. In conclusion, we report the phenotypes in five patients with PNPLA6 associated syndromic retinal dystrophy with variable systemic involvement and typical choroideremia-like fundus changes. Ocular manifestations may be the first and the only findings for years. All of our patients carried one severe deleterious variant (stop-gain or splicing variant) and one milder variant (missense variant). Retinal involvement was significantly correlated with severe deleterious variants and variants in Pat domain.
Collapse
Affiliation(s)
- Shijing Wu
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zixi Sun
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Tian Zhu
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Richard G Weleber
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Paul Yang
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Xing Wei
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Mark E Pennesi
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA.
| | - Ruifang Sui
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
17
|
Carrasco Salas P, Martínez Fernández E, Méndez Del Barrio C, Serrano Mira A, Guerrero Moreno N, Royo I, Delgado M, Oropesa JM, Vázquez Rico I. Clinical and molecular characterization of hereditary spastic paraplegia in a spanish southern region. Int J Neurosci 2020; 132:767-777. [PMID: 33059505 DOI: 10.1080/00207454.2020.1838514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Spastic paraplegia (SPG) is a syndrome characterised by lower limb spasticity, occurring alone or in association with other neurological manifestations. Despite of the new molecular technologies, many patients remain yet undiagnosed. The purpose of this study was to describe the clinical presentation and molecular characteristics of a cohort of 27 patients from 18 different families with SPG in the south of Spain. We used a targeted next-generation sequencing (NGS) approach to study a proband from each family. Variants in SPG11 gene were the most common cause of SPG in our area. We made a genetic diagnosis in 52% of cases, identified 3 novel variants and reclassified one uncertain variant in SPG11 gene as pathogenic variant. We identified a patient with two truncanting mutation in SPG11 gene and late onset disease and report another missense mutation outside of motor domain of KIF1A gene in a family with pure SPG. Our study contributes to enhance the scientific knowledge of SPG. It is important to note the large group of cases (48%) that were not genetically diagnosed in our cohort. Therefore NGS approach is an efficient diagnostic tool, but it still large the number of non-diagnosed subjects, suggesting further genetic heterogeneity.
Collapse
Affiliation(s)
- P Carrasco Salas
- Department of Human Genetics, Juan Ramon Jimenez Hospital (Huelva, Spain)
| | | | | | - A Serrano Mira
- Department of Human Genetics, Juan Ramon Jimenez Hospital (Huelva, Spain)
| | - N Guerrero Moreno
- Department of Pediatric Neurology, Juan Ramon Jimenez Hospital (Huelva, Spain)
| | - I Royo
- Department of Molecular Genetics, Reference Laboratory (Barcelona, Spain)
| | - M Delgado
- Department of Pediatric Neurology, Juan Ramon Jimenez Hospital (Huelva, Spain)
| | - J M Oropesa
- Department of Neurology, Juan Ramon Jimenez Hospital (Huelva, Spain)
| | - I Vázquez Rico
- Department of Human Genetics, Juan Ramon Jimenez Hospital (Huelva, Spain)
| |
Collapse
|
18
|
Sen K, Finau M, Ghosh P. Bi-allelic variants in PNPLA6 possibly associated with Parkinsonian features in addition to spastic paraplegia phenotype. J Neurol 2020; 267:2749-2753. [PMID: 32623594 DOI: 10.1007/s00415-020-10028-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 01/28/2023]
Abstract
Variants in the PNPLA6 gene are known to cause 4 distinct phenotypes. One known phenotype is Hereditary Spastic Paraplegia type 39 (HSP 39), a rare neurodegenerative condition characterized by variable onset of lower limb spasticity, weakness and ataxia. Little is known about complications of HSP 39 in adulthood. Here, we report a family of three siblings who presented with bilateral lower limb spasticity in childhood, consistent with HSP, with confirmed bi-allellic PNPLA6 mutations. Two siblings developed parkinsonian features in middle age, a novel finding in this sibship. The proband had a positive dopamine transporter scan, indicating degeneration in dopaminergic neurons, and dopa-responsive extrapyramidal symptoms. Testing for known genetic causes of Parkinsonism was negative. The PNPLA6 gene encodes neuropathy target esterase, an enzyme involved in lipid metabolism that is critical to the stability of cell membranes. We hypothesize that the development of Parkinsonism in these patients may be related to the PNPLA6 mutations, as lipid dysregulation has been implicated in the pathogenesis of Parkinson disease.
Collapse
Affiliation(s)
- Kuntal Sen
- Division of Neurogenetics and Developmental Pediatrics, Children's National Hospital, 111 Michigan Ave, NW, Washington, DC, 20010, USA.
| | - Melesilika Finau
- Parkinson Disease and Movement Disorders Program, Department of Neurology, Medical Faculty Associates, George Washington University, Washington, DC, USA
| | - Pritha Ghosh
- Parkinson Disease and Movement Disorders Program, Department of Neurology, Medical Faculty Associates, George Washington University, Washington, DC, USA
| |
Collapse
|
19
|
Sayad A, Akbari MT, Hesami O, Ghafouri-Fard S, Taheri M. Identification of a Mutation in SPG11 in an Iranian Patient with Spastic Paraplegia and Ears of the Lynx Sign. J Mol Neurosci 2020; 70:959-961. [PMID: 32040826 DOI: 10.1007/s12031-020-01501-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 02/05/2020] [Indexed: 11/28/2022]
Abstract
Hereditary spastic paraplegia (HSP) includes a number of inherited disorders which are characterized by stiffness in the lower extremities and progressive gait disturbance. Mutations in terms of spastic gait genes (SPGs) are responsible for occurrence of different types of HPS with autosomal recessive, X-linked recessive, and autosomal dominant modes of inheritance. In the current case report, we identified a mutation in SPG11 gene in a female patient with progressive stiffness of lower extremities and atrophy of corpus callosum and the "lynx ear" sign in brain MRI. Whole exome sequencing (WES) revealed a homozygote frameshift deletion variant in SPG11 gene (NM001160227: exon 28: c.4746delT, p.N1583Tfs*23). This variant is a null variant classified as a pathogenic variant (PVS1) according to ACMG standards and guidelines. The frequency of this variant in 1000G, ExAC, and Iranome databases was 0. This study shows the role of WES in the identification of disease-causing mutations in a disease such as HSP which can be caused by diverse mutations in several genes.
Collapse
Affiliation(s)
- Arezou Sayad
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Omid Hesami
- Department of Neurology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Characterization of the Interaction of Neuropathy Target Esterase with the Endoplasmic Reticulum and Lipid Droplets. Biomolecules 2019; 9:biom9120848. [PMID: 31835418 PMCID: PMC6995513 DOI: 10.3390/biom9120848] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 12/02/2022] Open
Abstract
Neuropathy target esterase (NTE) is an endoplasmic reticulum (ER)-localized phospholipase that deacylates phosphatidylcholine (PC) and lysophosphatidylcholine (LPC). Loss-of-function mutations in the human NTE gene have been associated with a spectrum of neurodegenerative disorders such as hereditary spastic paraplegia, ataxia and chorioretinal dystrophy. Despite this, little is known about structure–function relationships between NTE protein domains, enzymatic activity and the interaction with cellular organelles. In the current study we show that the C-terminal region of NTE forms a catalytically active domain that exhibits high affinity for lipid droplets (LDs), cellular storage organelles for triacylglycerol (TAG), which have been recently implicated in the progression of neurodegenerative diseases. Ectopic expression of the C domain in cultured cells decreases cellular PC, elevates TAG and induces LD clustering. LD interactions of NTE are inhibited by default by a non-enzymatic regulatory (R) region with three putative nucleotide monophosphate binding sites. Together with a N-terminal TMD the R region promotes proper distribution of the catalytic C-terminal region to the ER network. Taken together, our data indicate that NTE may exhibit dynamic interactions with the ER and LDs depending on the interplay of its functional regions. Mutations that disrupt this interplay may contribute to NTE-associated disorders by affecting NTE positioning.
Collapse
|
21
|
Özdemir TR, Gençpınar P, Arıcan P, Öztekin Ö, Dündar NO, Özyılmaz B. A case of spastic paraplegia-15 with a novel pathogenic variant in ZFYVE26 gene. Int J Neurosci 2019; 129:1198-1202. [PMID: 31385551 DOI: 10.1080/00207454.2019.1653293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Hereditary spastic paraplegia (HSP) is a group of rare neurodegenerative disorder with genetic and clinical heterogeneity. It has autosomal dominant (AD), autosomal recessive (AR) and X-linked forms. HSPs are clinically classified into 'pure' and 'complicated' (complex) forms. SPG11 (KIAA1840) and SPG15 (ZFYVE26) are the most common ARHSPs with thin corpus callosum (TCC). They typically present with early cognitive impairment in childhood followed by gait impairment and spasticity in the second and third decades of life. Here, we present a patient girl, born to a couple who were first cousins, was admitted to the pediatric neurology outpatient clinic at 14 years of age because of walking with help, dysarthria and forgetfulness. Her examination revealed a motor mental retardation, bilateral leg spasticity, increased deep tendon reflexes in lower limbs, bilateral pigmentary retinopathy; TCC and white matter hyperintensities on brain MRI, sensorimotor axonal polyneuropathy findings in lower limbs on electromyography. Based on the clinical features and the imaging studies, the diagnosis of HSP was suspected. Targeted next generation sequencing (NGS) was performed using Inherited NGS Panel that consists of 579 gene associated with Mendelian disorders. Analysis of the patient revealed a c.6398_6401delGGGA(p.Arg2133Asnfs*15)(Exon35) homozygous novel change in ZFYVE26 gene. Genotype-phenotype correlation of HSP is complicated due to heterogeneity. The clinical similarity of HSP types increases the importance of genetic diagnosis. There are few reports about pathogenic variants in ZFYVE26 gene in the literature. This case report is one of the few studies that revealed a novel pathogenic variant in ZFYVE26 gene using NGS.
Collapse
Affiliation(s)
- Taha Reşid Özdemir
- Genetic Diagnostic Center, Health Sciences University, Izmir Tepecik Training and Research Hospital , Izmir , Turkey
| | - Pınar Gençpınar
- Department of Pediatric Neurology, Izmir Katip Celebi University , Izmir , Turkey
| | - Pınar Arıcan
- Department of Pediatric Neurology, Health Sciences University, Izmir Tepecik Training and Research Hospital , Izmir , Turkey
| | - Özgür Öztekin
- Department of Radiology, Health Sciences University, Izmir Tepecik Training and Research Hospital , Izmir , Turkey
| | - Nihal Olgaç Dündar
- Department of Pediatric Neurology, Izmir Katip Celebi University , Izmir , Turkey
| | - Berk Özyılmaz
- Genetic Diagnostic Center, Health Sciences University, Izmir Tepecik Training and Research Hospital , Izmir , Turkey
| |
Collapse
|
22
|
Rudenskaya GE, Kadnikova VA, Ryzhkova OP. [Common forms of hereditary spastic paraplegias]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:94-104. [PMID: 30874534 DOI: 10.17116/jnevro201911902194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A group of hereditary spastic paraplegias includes about 80 spastic paraplegia genes (SPG): forms with identified (almost 70) or only mapped (about 10) genes. Methods of next generation sequencing (NGS), along with new SPG discovering, modify knowledge about earlier delineated SPG. Clinical and genetic characteristics of common autosomal dominant (SPG4, SPG3, SPG31) and autosomal recessive (SPG11, SPG7, SPG15) forms are presented.
Collapse
Affiliation(s)
| | - V A Kadnikova
- Research Centre for Medical Genetics, Moscow, Russia
| | - O P Ryzhkova
- Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|
23
|
Baskin B, Kalia LV, Banwell BL, Ray PN, Yoon G. Complex genomic rearrangement in SPG11 due to a DNA replication-based mechanism. Mov Disord 2017; 32:1792-1794. [PMID: 29082553 DOI: 10.1002/mds.27188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/10/2017] [Indexed: 01/15/2023] Open
Affiliation(s)
- Berivan Baskin
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.,Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lorraine V Kalia
- Morton and Gloria Shulman Movement Disorders Clinic and Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, Toronto, Ontario, Canada.,Department of Medicine, Division of Neurology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Brenda L Banwell
- The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Peter N Ray
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Grace Yoon
- Department of Pediatrics, Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Department of Pediatrics, Division of Neurology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Günther S, Elert-Dobkowska E, Soehn AS, Hinreiner S, Yoon G, Heller R, Hellenbroich Y, Hübner CA, Ray PN, Hehr U, Bauer P, Sulek A, Beetz C. High Frequency of Pathogenic Rearrangements in SPG11 and Extensive Contribution of Mutational Hotspots and Founder Alleles. Hum Mutat 2016; 37:703-9. [PMID: 27071356 DOI: 10.1002/humu.23000] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/11/2016] [Accepted: 03/29/2016] [Indexed: 12/27/2022]
Abstract
Biallelic loss-of-function mutations in SPG11 cause a wide spectrum of recessively inherited, neurodegenerative disorders including hereditary spastic paraplegia (HSP), amyotrophic lateral sclerosis, and Charcot-Marie-Tooth disease. By comprehensive screening of three large cohorts of HSP index patients, we identified 83 alleles with "small" mutations and 13 alleles that carry large genomic rearrangements. Including relevant data from previous studies, we estimate that copy number variants (CNVs) account for ∼19% of pathogenic SPG11 alleles. The breakpoints for all novel and some previously reported CNVs were determined by long-range PCR and sequencing. This revealed several Alu-associated recombination hotspots. We also found evidence for additional mutational mechanisms, including for a two-step event in which an Alu retrotransposition preceded the actual rearrangement. Apparently independent samples with identical breakpoints were analyzed by microsatellite PCRs. The resulting haplotypes suggested the existence of two rearrangement founder alleles. Our findings widen the spectra of mutations and mutational mechanisms in SPG11, underscore the pivotal role played by Alus, and are of high diagnostic relevance for a wide spectrum of clinical phenotypes including the most frequent form of recessive HSP.
Collapse
Affiliation(s)
- Sven Günther
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | | | - Anne S Soehn
- Institute of Medical Genetics and Applied Genomics, University Hospital of Tuebingen, Tuebingen, Germany
| | - Sophie Hinreiner
- Center for Human Genetics, and Department of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Grace Yoon
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Canada
| | - Raoul Heller
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany
| | | | | | - Peter N Ray
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ute Hehr
- Center for Human Genetics, and Department of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Peter Bauer
- Institute of Medical Genetics and Applied Genomics, University Hospital of Tuebingen, Tuebingen, Germany
| | - Anna Sulek
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Christian Beetz
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| |
Collapse
|
25
|
Choquet K, Tétreault M, Yang S, La Piana R, Dicaire MJ, Vanstone MR, Mathieu J, Bouchard JP, Rioux MF, Rouleau GA, Boycott KM, Majewski J, Brais B. SPG7 mutations explain a significant proportion of French Canadian spastic ataxia cases. Eur J Hum Genet 2015; 24:1016-21. [PMID: 26626314 DOI: 10.1038/ejhg.2015.240] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 10/01/2015] [Accepted: 10/14/2015] [Indexed: 12/13/2022] Open
Abstract
Hereditary cerebellar ataxias and hereditary spastic paraplegias are clinically and genetically heterogeneous and often overlapping neurological disorders. Mutations in SPG7 cause the autosomal recessive spastic paraplegia type 7 (SPG7), but recent studies indicate that they are also one of the most common causes of recessive cerebellar ataxia. In Quebec, a significant number of patients affected with cerebellar ataxia and spasticity remain without a molecular diagnosis. We performed whole-exome sequencing in three French Canadian (FC) patients affected with spastic ataxia and uncovered compound heterozygous variants in SPG7 in all three. Sanger sequencing of SPG7 exons and exon/intron boundaries was used to screen additional patients. In total, we identified recessive variants in SPG7 in 22 FC patients belonging to 12 families (38.7% of the families screened), including two novel variants. The p.(Ala510Val) variant was the most common in our cohort. Cerebellar features, including ataxia, were more pronounced than spasticity in this cohort. These results strongly suggest that variants affecting the function of SPG7 are the fourth most common form of recessive ataxia in FC patients. Thus, we propose that SPG7 mutations explain a significant proportion of FC spastic ataxia cases and that this gene should be considered in unresolved patients.
Collapse
Affiliation(s)
- Karine Choquet
- Neurogenetics of Motion Laboratory, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada.,Department of Human Genetics, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Martine Tétreault
- Department of Human Genetics, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada.,McGill University and Genome Quebec Innovation Center, Montreal, Québec, Canada
| | - Sharon Yang
- Neurogenetics of Motion Laboratory, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Roberta La Piana
- Neurogenetics of Motion Laboratory, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Marie-Josée Dicaire
- Neurogenetics of Motion Laboratory, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Megan R Vanstone
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Jean Mathieu
- Complexe Hospitalier de la Sagamie et Faculté de Médecine et des Sciences de la Santé de l'Université de Sherbrooke, Jonquière, Québec, Canada
| | - Jean-Pierre Bouchard
- Hôpital Enfant-Jésus, CHU de Québec et Département des Sciences Neurologiques, Faculté de Médecine de l'Université Laval, Québec, Québec, Canada
| | - Marie-France Rioux
- Centre Hospitalier Universitaire de Sherbrooke - Hôpital Fleurimont, Sherbrooke, Québec, Canada
| | - Guy A Rouleau
- Montreal Neurological Institute and Hospital and Department of Neurology and Neurosurgery, McGill University, Montreal, Québec, Canada
| | | | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Jacek Majewski
- Department of Human Genetics, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada.,McGill University and Genome Quebec Innovation Center, Montreal, Québec, Canada
| | - Bernard Brais
- Neurogenetics of Motion Laboratory, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada.,Department of Human Genetics, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| |
Collapse
|
26
|
Saunders CJ, Moon SH, Liu X, Thiffault I, Coffman K, LePichon JB, Taboada E, Smith LD, Farrow EG, Miller N, Gibson M, Patterson M, Kingsmore SF, Gross RW. Loss of function variants in human PNPLA8 encoding calcium-independent phospholipase A2 γ recapitulate the mitochondriopathy of the homologous null mouse. Hum Mutat 2015; 36:301-6. [PMID: 25512002 DOI: 10.1002/humu.22743] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 12/09/2014] [Indexed: 12/13/2022]
Abstract
Mitochondriopathies are a group of clinically heterogeneous genetic diseases caused by defects in mitochondrial metabolism, bioenergetic efficiency, and/or signaling functions. The large majority of proteins involved in mitochondrial function are encoded by nuclear genes, with many yet to be associated with human disease. We performed exome sequencing on a young girl with a suspected mitochondrial myopathy that manifested as progressive muscle weakness, hypotonia, seizures, poor weight gain, and lactic acidosis. She was compound heterozygous for two frameshift mutations, p.Asn112HisfsX29 and p.Leu659AlafsX4, in the PNPLA8 gene, which encodes mitochondrial calcium-independent phospholipase A2 γ (iPLA2 γ). Western blot analysis of affected muscle displayed the absence of PNPLA8 protein. iPLA2 s are critical mediators of a variety of cellular processes including growth, metabolism, and lipid second messenger generation, exerting their functions through catalyzing the cleavage of the acyl groups in glycerophospholipids. The clinical presentation, muscle histology and the mitochondrial ultrastructural abnormalities of this proband are highly reminiscent of Pnpla8 null mice. Although other iPLA2 -related diseases have been identified, namely, infantile neuroaxonal dystrophy and neutral lipid storage disease with myopathy, this is the first report of PNPLA8-related disease in a human. We suggest PNPLA8 join the increasing list of human genes involved in lipid metabolism associated with neuromuscular diseases due to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Carol J Saunders
- Center for Pediatric Genomic Medicine, Children's Mercy Hospitals, Kansas City, Missouri
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Daoud H, Papadima EM, Ouled Amar Bencheikh B, Katsila T, Dionne-Laporte A, Spiegelman D, Dion PA, Patrinos GP, Orrù S, Rouleau GA. Identification of a novel homozygous SPG7 mutation by whole exome sequencing in a Greek family with a complicated form of hereditary spastic paraplegia. Eur J Med Genet 2015; 58:573-7. [PMID: 26260707 DOI: 10.1016/j.ejmg.2015.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/29/2015] [Accepted: 08/02/2015] [Indexed: 10/23/2022]
Abstract
We report the clinical description and genetic analyses of a Greek family with four individuals affected with a complicated form of hereditary spastic paraplegia (HSP) and a recessive pattern of inheritance. Exome sequencing of all affected individuals led to the identification of a homozygous 25 bp deletion predicted to lead to a frameshift and premature stop codon in the SPG7 gene, encoding paraplegin. This deletion, which is located in the first exon of the SPG7 gene, has not been previously reported and likely lead to the complete absence of the SPG7 protein. Interestingly, this family shows significant phenotypic heterogeneity further highlighting the clinical variability associated with SPG7 mutations. Our findings emphasize the clinical utility of whole exome sequencing for the molecular diagnosis of HSPs.
Collapse
Affiliation(s)
- Hussein Daoud
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Eleni Merkouri Papadima
- University of Patras School of Health Sciences, Department of Pharmacy, University Campus, Patras, Greece
| | - Bouchra Ouled Amar Bencheikh
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Theodora Katsila
- University of Patras School of Health Sciences, Department of Pharmacy, University Campus, Patras, Greece
| | - Alexandre Dionne-Laporte
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Dan Spiegelman
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Patrick A Dion
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - George P Patrinos
- University of Patras School of Health Sciences, Department of Pharmacy, University Campus, Patras, Greece
| | - Sandro Orrù
- Genetica Medica, Dipartimento di Scienze Mediche, Università di Cagliari, Cagliari, Italy
| | - Guy A Rouleau
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
28
|
Kumar KR, Blair NF, Sue CM. An Update on the Hereditary Spastic Paraplegias: New Genes and New Disease Models. Mov Disord Clin Pract 2015; 2:213-223. [PMID: 30838228 DOI: 10.1002/mdc3.12184] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/24/2015] [Accepted: 03/19/2015] [Indexed: 02/07/2023] Open
Abstract
Aims The hereditary spastic paraplegias (HSPs) are a heterogeneous group of disorders characterized by spasticity in the lower limbs. We provide an overview of HSP with an emphasis on recent developments. Methods A PubMed search using the term "hereditary spastic paraplegia" and "hereditary spastic paraparesis" was conducted for a period from January 2012 to January 2015. We discuss and critique the major studies in the field over this 36-month period. Results A total of 346 publications were identified, of which 47 were selected for review. We provide an update of the common forms of HSP and include patient videos. We also discuss how next-generation sequencing (NGS) has led to the accelerated discovery of new HSP genes, including B4GALNT1,DDHD1, C19orf12,GBA2,TECPR2,DDHD2, C12orf65,REEP2, and IBA57. Moreover, a single study alone identified 18 previously unknown putative HSP genes and created a model for the protein interactions of HSP, called the "HSPome." Many of the newly reported genes cause rare, complicated, autosomal recessive forms of HSP. NGS also has important clinical applications by facilitating the molecular diagnosis of HSP. Furthermore, common genetic forms of HSP have been studied using new disease models, such as neurons derived from induced pluripotent stem cells. These models have been used to elucidate important disease mechanisms and have served as platforms to screen for candidate drug compounds. Conclusion The field of HSP research has been progressing at a rapid pace. The challenge remains in translating these advances into new targeted disease therapies.
Collapse
Affiliation(s)
- Kishore R Kumar
- Departments of Neurology and Neurogenetics Kolling Institute of Medical Research and Royal North Shore Hospital University of Sydney Sydney New South Wales Australia
| | - Nicholas F Blair
- Departments of Neurology and Neurogenetics Kolling Institute of Medical Research and Royal North Shore Hospital University of Sydney Sydney New South Wales Australia
| | - Carolyn M Sue
- Departments of Neurology and Neurogenetics Kolling Institute of Medical Research and Royal North Shore Hospital University of Sydney Sydney New South Wales Australia
| |
Collapse
|
29
|
Wijemanne S, Shulman JM, Jimenez-Shahed J, Curry D, Jankovic J. SPG11 Mutations Associated With a Complex Phenotype Resembling Dopa-Responsive Dystonia. Mov Disord Clin Pract 2015; 2:149-154. [PMID: 30363882 DOI: 10.1002/mdc3.12144] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 12/04/2014] [Accepted: 12/08/2014] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The aim of this study was to describe a case of hereditary spastic paraplegia (HSP) resulting from SPG11 mutations, presenting with a complex phenotype of dopa-responsive dystonia (DRD), diagnosed using whole exome sequencing (WES). HSP resulting from SPG11 typically presents with spasticity, cognitive impairment, and radiological evidence of thin corpus callosum. Initial presentation with DRD has not been previously reported on. METHODS This 11-year-old boy with delay in fine motor skills, presented at 8 years of age with progressive, generalized dystonia with diurnal variation, bradykinesia, and stiff gait. There was marked improvement in dystonia with levodopa, but he soon developed wearing-off phenomenon and l-dopa-induced dyskinesia. Family history was unremarkable. RESULTS Brain MRI showed thinning of the anterior corpus callosum with periventricular white matter changes. 123I-ioflupane single-photon emission coupled tomography showed bilateral severe presynaptic dopamine deficiency. WES identified transheterozygous allelic variants in the SPG11 on chromosome 15, including a truncating STOP mutation (p.E1630X) and a second heterozygous coding variant (p.L2300R). Dystonia improved with globus pallidus internus (GPi) DBS surgery. CONCLUSIONS HSP resulting from SPG11 should be considered in the differential diagnosis of a patient presenting with DRD, parkinsonism, and spasticity. This case expands the HSP genotype and phenotype. GPi DBS may be a therapeutic option in selected patients.
Collapse
Affiliation(s)
- Subhashie Wijemanne
- Parkinson's Disease Center and Movement Disorders Clinic Department of Neurology Baylor College of Medicine Houston Texas USA
| | - Joshua M Shulman
- Parkinson's Disease Center and Movement Disorders Clinic Department of Neurology Baylor College of Medicine Houston Texas USA.,Department of Molecular and Human Genetics Baylor College of Medicine Houston Texas USA.,Department of Neuroscience Baylor College of Medicine Houston Texas USA.,Jan and Dan Duncan Neurological Research Institute Texas Children's Hospital Houston Texas USA
| | - Joohi Jimenez-Shahed
- Parkinson's Disease Center and Movement Disorders Clinic Department of Neurology Baylor College of Medicine Houston Texas USA
| | | | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic Department of Neurology Baylor College of Medicine Houston Texas USA
| |
Collapse
|
30
|
Koh K, Kobayashi F, Miwa M, Shindo K, Isozaki E, Ishiura H, Tsuji S, Takiyama Y. Novel mutations in the PNPLA6 gene in Boucher-Neuhäuser syndrome. J Hum Genet 2015; 60:217-20. [PMID: 25631098 DOI: 10.1038/jhg.2015.3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 12/30/2014] [Accepted: 01/06/2015] [Indexed: 01/24/2023]
Abstract
On whole-exome sequencing, a novel compound heterozygous mutation (c.2923A>G/c.3523_3524insTGTCCG, p.T975A/p.1175_1176insVS) and a novel homozygous one (c.3534G>C, p.W1178C) in the PNPLA6 gene were identified in sporadic and familial Japanese patients with Boucher-Neuhäuser syndrome (BNS), respectively. However, we did not find any mutations in the PNPLA6 gene in 88 patients with autosomal recessive hereditary spastic paraplegia (ARHSP). Our study confirmed the earlier report that a PNPLA6 mutation causes BNS. This is the first report on PNPLA6 mutations in non-Caucasian patients. Meanwhile, PNPLA6 mutations might be extremely rare in Japanese ARHSP patients. Moreover, we first found hypersegmented neutrophils in two BNS patients with PNPLA6 mutations.
Collapse
Affiliation(s)
- Kishin Koh
- Department of Neurology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | - Fumikazu Kobayashi
- Department of Neurology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | - Michiaki Miwa
- Department of Neurology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | - Kazumasa Shindo
- Department of Neurology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | - Eiji Isozaki
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shoji Tsuji
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihisa Takiyama
- Department of Neurology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
31
|
Hufnagel RB, Arno G, Hein ND, Hersheson J, Prasad M, Anderson Y, Krueger LA, Gregory LC, Stoetzel C, Jaworek TJ, Hull S, Li A, Plagnol V, Willen CM, Morgan TM, Prows CA, Hegde RS, Riazuddin S, Grabowski GA, Richardson RJ, Dieterich K, Huang T, Revesz T, Martinez-Barbera JP, Sisk RA, Jefferies C, Houlden H, Dattani MT, Fink JK, Dollfus H, Moore AT, Ahmed ZM. Neuropathy target esterase impairments cause Oliver-McFarlane and Laurence-Moon syndromes. J Med Genet 2014; 52:85-94. [PMID: 25480986 DOI: 10.1136/jmedgenet-2014-102856] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Oliver-McFarlane syndrome is characterised by trichomegaly, congenital hypopituitarism and retinal degeneration with choroidal atrophy. Laurence-Moon syndrome presents similarly, though with progressive spinocerebellar ataxia and spastic paraplegia and without trichomegaly. Both recessively inherited disorders have no known genetic cause. METHODS Whole-exome sequencing was performed to identify the genetic causes of these disorders. Mutations were functionally validated in zebrafish pnpla6 morphants. Embryonic expression was evaluated via in situ hybridisation in human embryonic sections. Human neurohistopathology was performed to characterise cerebellar degeneration. Enzymatic activities were measured in patient-derived fibroblast cell lines. RESULTS Eight mutations in six families with Oliver-McFarlane or Laurence-Moon syndrome were identified in the PNPLA6 gene, which encodes neuropathy target esterase (NTE). PNPLA6 expression was found in the developing human eye, pituitary and brain. In zebrafish, the pnpla6 curly-tailed morphant phenotype was fully rescued by wild-type human PNPLA6 mRNA and not by mutation-harbouring mRNAs. NTE enzymatic activity was significantly reduced in fibroblast cells derived from individuals with Oliver-McFarlane syndrome. Intriguingly, adult brain histology from a patient with highly overlapping features of Oliver-McFarlane and Laurence-Moon syndromes revealed extensive cerebellar degeneration and atrophy. CONCLUSIONS Previously, PNPLA6 mutations have been associated with spastic paraplegia type 39, Gordon-Holmes syndrome and Boucher-Neuhäuser syndromes. Discovery of these additional PNPLA6-opathies further elucidates a spectrum of neurodevelopmental and neurodegenerative disorders associated with NTE impairment and suggests a unifying mechanism with diagnostic and prognostic importance.
Collapse
Affiliation(s)
- Robert B Hufnagel
- Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Gavin Arno
- UCL Institute of Ophthalmology and Moorfields Eye Hospital, London, UK
| | - Nichole D Hein
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Joshua Hersheson
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Megana Prasad
- Laboratoire de génétique Médicale, Université de Strasbourg, FMTS, Strasbourg, France
| | - Yvonne Anderson
- Department of Paediatrics, Taranaki Base Hospital, New Plymouth, New Zealand Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Laura A Krueger
- Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Louise C Gregory
- Developmental Endocrinology Research Group, Genetics and Epigenetics in Health and Disease Section, Genetics and Genomic Medicine Programme, University College London Institute of Child Health, London, UK
| | - Corinne Stoetzel
- Laboratoire de génétique Médicale, Université de Strasbourg, FMTS, Strasbourg, France
| | - Thomas J Jaworek
- Department of Otorhinolaryngology, University of Maryland, Baltimore, Maryland, USA
| | - Sarah Hull
- UCL Institute of Ophthalmology and Moorfields Eye Hospital, London, UK
| | - Abi Li
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Vincent Plagnol
- Department of Statistical Genetics, University College London, London, UK
| | - Christi M Willen
- Department of Pediatric Ophthalmology, University of Kentucky, Lexington, Kentucky, USA
| | - Thomas M Morgan
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee, USA
| | - Cynthia A Prows
- Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Rashmi S Hegde
- Developmental Biology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Saima Riazuddin
- Department of Otorhinolaryngology, University of Maryland, Baltimore, Maryland, USA
| | - Gregory A Grabowski
- Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Rudy J Richardson
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Klaus Dieterich
- Département de Génétique et Procréation, Hôpital Couple Enfant, CHU Grenoble and Grenoble Institut des Neurosciences, Equipe Muscle et Pathologie, Grenoble, France
| | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Tamas Revesz
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - J P Martinez-Barbera
- Developmental Endocrinology Research Group, Genetics and Epigenetics in Health and Disease Section, Genetics and Genomic Medicine Programme, University College London Institute of Child Health, London, UK
| | - Robert A Sisk
- Division of Pediatric Ophthalmology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA Cincinnati Eye Institute, Cincinnati, Ohio, USA
| | - Craig Jefferies
- Department of Paediatric Endocrinology, Starship Children's Hospital, Auckland, New Zealand
| | - Henry Houlden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Mehul T Dattani
- Developmental Endocrinology Research Group, Genetics and Epigenetics in Health and Disease Section, Genetics and Genomic Medicine Programme, University College London Institute of Child Health, London, UK
| | - John K Fink
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Helene Dollfus
- Laboratoire de génétique Médicale, Université de Strasbourg, FMTS, Strasbourg, France Centre de référence pour les Affections Rares Ophtalmologiques CARGO, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Anthony T Moore
- UCL Institute of Ophthalmology and Moorfields Eye Hospital, London, UK
| | - Zubair M Ahmed
- Department of Otorhinolaryngology, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
32
|
Patten SA, Armstrong GAB, Lissouba A, Kabashi E, Parker JA, Drapeau P. Fishing for causes and cures of motor neuron disorders. Dis Model Mech 2014; 7:799-809. [PMID: 24973750 PMCID: PMC4073270 DOI: 10.1242/dmm.015719] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Motor neuron disorders (MNDs) are a clinically heterogeneous group of neurological diseases characterized by progressive degeneration of motor neurons, and share some common pathological pathways. Despite remarkable advances in our understanding of these diseases, no curative treatment for MNDs exists. To better understand the pathogenesis of MNDs and to help develop new treatments, the establishment of animal models that can be studied efficiently and thoroughly is paramount. The zebrafish (Danio rerio) is increasingly becoming a valuable model for studying human diseases and in screening for potential therapeutics. In this Review, we highlight recent progress in using zebrafish to study the pathology of the most common MNDs: spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS) and hereditary spastic paraplegia (HSP). These studies indicate the power of zebrafish as a model to study the consequences of disease-related genes, because zebrafish homologues of human genes have conserved functions with respect to the aetiology of MNDs. Zebrafish also complement other animal models for the study of pathological mechanisms of MNDs and are particularly advantageous for the screening of compounds with therapeutic potential. We present an overview of their potential usefulness in MND drug discovery, which is just beginning and holds much promise for future therapeutic development.
Collapse
Affiliation(s)
- Shunmoogum A Patten
- Department of Neuroscience, FRQS Groupe de Recherche sur le Système Nerveux Central and CRCHUM, University of Montréal, Montréal, QC H3A 2B4, Canada
| | - Gary A B Armstrong
- Department of Neuroscience, FRQS Groupe de Recherche sur le Système Nerveux Central and CRCHUM, University of Montréal, Montréal, QC H3A 2B4, Canada
| | - Alexandra Lissouba
- Department of Neuroscience, FRQS Groupe de Recherche sur le Système Nerveux Central and CRCHUM, University of Montréal, Montréal, QC H3A 2B4, Canada
| | - Edor Kabashi
- Institut du Cerveau et de la Moelle Épinière, Centre de Recherche, CHU Pitié-Salpétrière, 75013 Paris, France
| | - J Alex Parker
- Department of Neuroscience, FRQS Groupe de Recherche sur le Système Nerveux Central and CRCHUM, University of Montréal, Montréal, QC H3A 2B4, Canada
| | - Pierre Drapeau
- Department of Neuroscience, FRQS Groupe de Recherche sur le Système Nerveux Central and CRCHUM, University of Montréal, Montréal, QC H3A 2B4, Canada.
| |
Collapse
|