1
|
Jos S, Kambaru A, Prasad TK, Parthasarathi S, Kamariah N, Nath S, Padmanabhan B, Padavattan S. Structural and functional insights into the nuclear role of Parkinson's disease-associated α-synuclein as a histone chaperone. Commun Biol 2025; 8:712. [PMID: 40341765 PMCID: PMC12062221 DOI: 10.1038/s42003-025-08138-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/28/2025] [Indexed: 05/11/2025] Open
Abstract
α-Synuclein (αSyn) plays a critical role in the pathogenesis of 'Synucleinopathies'. Although increased nuclear αSyn localization induces neurotoxicity, its definitive physiological role remains elusive. Previous studies on nuclear αSyn are limited to its interactions with individual histones and dsDNA, leaving a significant gap in understanding its interactions with assembled histone H2a-H2b dimer and (H3-H4)2 tetramer, as well as its role in chromatin regulation. Here, we demonstrate that αSyn binds specifically to both H2a-H2b and (H3-H4)2 with high affinity. Truncation studies reveal that αSyn(1-103) region interacts with (H3-H4)2, while the acidic (121-140) C-terminal end is crucial for H2a-H2b binding and contains a conserved DEF/YxP motif present in other dimer-binding histone chaperones. High-resolution structure of αSyn(121-140) with H2a-H2b complex reveals that αSyn adopts two binding modes (BM-1 and BM-2). Nonetheless, the αSyn C-terminal end in both modes overlap but runs in opposite orientations, specifically interacting with the H2a-L2 and H2b-L1 loop regions of the dimer and cap the H2a-R78 residue. Mutational analysis confirms that αSyn-Y136 and P138 residues, part of the DEF/YxP motif, together with H2a-R78, are critical for αSyn-(H2a-H2b) interaction. The chaperoning assay supports αSyn's function as a histone chaperone, suggesting the potential role of αSyn in the nucleosome assembly/disassembly process.
Collapse
Affiliation(s)
- Sneha Jos
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India
| | - Archanalakshmi Kambaru
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India
| | - Thazhe Kootteri Prasad
- Center for Chemical Biology & Therapeutics, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
| | - Shylaja Parthasarathi
- Manipal Institute of Regenerative Medicine, Bengaluru, Manipal Academy of Higher Education, Manipal, India
| | - Neelagandan Kamariah
- Center for Chemical Biology & Therapeutics, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
| | - Sangeeta Nath
- Manipal Institute of Regenerative Medicine, Bengaluru, Manipal Academy of Higher Education, Manipal, India
| | - Balasundaram Padmanabhan
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India
| | - Sivaraman Padavattan
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India.
| |
Collapse
|
2
|
Aden D, Zaheer S, Sureka N, Trisal M, Chaurasia JK, Zaheer S. Exploring immune checkpoint inhibitors: Focus on PD-1/PD-L1 axis and beyond. Pathol Res Pract 2025; 269:155864. [PMID: 40068282 DOI: 10.1016/j.prp.2025.155864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/20/2025] [Accepted: 02/25/2025] [Indexed: 04/19/2025]
Abstract
Immunotherapy emerges as a promising approach, marked by recent substantial progress in elucidating how the host immune response impacts tumor development and its sensitivity to various treatments. Immune checkpoint inhibitors have revolutionized cancer therapy by unleashing the power of the immune system to recognize and eradicate tumor cells. Among these, inhibitors targeting the programmed cell death protein 1 (PD-1) and its ligand (PD-L1) have garnered significant attention due to their remarkable clinical efficacy across various malignancies. This review delves into the mechanisms of action, clinical applications, and emerging therapeutic strategies surrounding PD-1/PD-L1 blockade. We explore the intricate interactions between PD-1/PD-L1 and other immune checkpoints, shedding light on combinatorial approaches to enhance treatment outcomes and overcome resistance mechanisms. Furthermore, we discuss the expanding landscape of immune checkpoint inhibitors beyond PD-1/PD-L1, including novel targets such as CTLA-4, LAG-3, TIM-3, and TIGIT. Through a comprehensive analysis of preclinical and clinical studies, we highlight the promise and challenges of immune checkpoint blockade in cancer immunotherapy, paving the way for future advancements in the field.
Collapse
Affiliation(s)
- Durre Aden
- Department of Pathology, Hamdard Institute of Medical science and research, Jamia Hamdard, New Delhi, India.
| | - Samreen Zaheer
- Department of Radiotherapy, Jawaharlal Nehru Medical College, AMU, Aligarh, India.
| | - Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.
| | - Monal Trisal
- Department of Pathology, Hamdard Institute of Medical science and research, Jamia Hamdard, New Delhi, India.
| | | | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.
| |
Collapse
|
3
|
Chung DEC, Deng X, Yalamanchili HK, Revelli JP, Han AL, Tadros B, Richman R, Dias M, Naini FA, Boeynaems S, Hyman BT, Zoghbi HY. The big tau splice isoform resists Alzheimer's-related pathological changes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605685. [PMID: 39211086 PMCID: PMC11360890 DOI: 10.1101/2024.07.30.605685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
In Alzheimer's disease (AD), the microtubule-binding protein tau becomes abnormally hyperphosphorylated and aggregated in selective brain regions such as the cortex and hippocampus 1-3 . However, other brain regions like the cerebellum and brain stem remain largely intact despite the universal expression of tau throughout the brain. Here, we found that an understudied splice isoform of tau termed "big tau" is significantly more abundant in the brain regions less vulnerable to tau pathology compared to tau pathology-vulnerable regions. We used various cellular and animal models to demonstrate that big tau possesses multiple properties that can resist AD-related pathological changes. Importantly, human AD patients show a higher expression level of pathology-resisting big tau in the cerebellum, the brain region spared from tau pathology. Our study examines the unique properties of big tau, expanding our current understanding of tau pathophysiology. Altogether, our data suggest that alternative splicing to favor big tau is a viable strategy to modulate tau pathology.
Collapse
|
4
|
Lei J, Aimaier G, Aisha Z, Zhang Y, Ma J. eEF1A1 regulates the expression and alternative splicing of genes associated with Parkinson's disease in U251 cells. Genes Genomics 2024; 46:817-829. [PMID: 38776049 DOI: 10.1007/s13258-024-01516-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/12/2023] [Indexed: 06/27/2024]
Abstract
BACKGROUND Eukaryotic elongation factor 1A1 (eEF1A1) is an RNA-binding protein that is associated with PARK2 activity in cells, suggesting a possible role in Parkinson's disease (PD). OBJECTIVE To clear whether eEF1A1 plays a role in PD through transcriptional or posttranscriptional regulation. METHODS The GSE68719 dataset was downloaded from the GEO database, and the RNA-seq data of all brain tissue autopsies were obtained from 29 PD patients and 44 neurologically normal control subjects. To inhibit eEF1A1 from being expressed in U251 cells, siRNA was transfected into those cells, and RNA-seq high-throughput sequencing was used to determine the differentially expressed genes (DEGs) and differentially alternative splicing events (ASEs) resulting from eEF1A1 knockdown. RESULTS eEF1A1 was significantly overexpressed in PD brain tissue in the BA9 area. GO and KEGG enrichment analyses revealed that eEF1A1 knockdown significantly upregulated the expression of the genes CXCL10, NGF, PTX3, IL6, ST6GALNAC3, NUPR1, TNFRSF21, and CXCL2 and upregulated the alternative splicing of the genes ACOT7, DDX10, SHMT2, MYEF2, and NDUFAF5. These genes were enriched in pathways related to PD pathogenesis, such as apoptosis, inflammatory response, and mitochondrial dysfunction. CONCLUSION The results suggesting that eEF1A1 involved in the development of PD by regulating the differential expression and alternative splicing of genes, providing a theoretical basis for subsequent research.
Collapse
Affiliation(s)
- Jing Lei
- Department of Neurology, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Xinshi District, Urumqi, Xinjiang, 830054, P.R. China
| | - Guliqiemu Aimaier
- Department of Neurology, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Xinshi District, Urumqi, Xinjiang, 830054, P.R. China
| | - Zaolaguli Aisha
- Department of Neurology, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Xinshi District, Urumqi, Xinjiang, 830054, P.R. China
| | - Yan Zhang
- Department of Neurology, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Xinshi District, Urumqi, Xinjiang, 830054, P.R. China
| | - Jianhua Ma
- Department of Neurology, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Xinshi District, Urumqi, Xinjiang, 830054, P.R. China.
- Xinjiang Medical University, Urumqi, Xinjiang, 830054, China.
| |
Collapse
|
5
|
Khalenkow D, Brandsma CA, Timens W, Choy DF, Grimbaldeston MA, Rosenberger CM, Slebos DJ, Kerstjens HAM, Faiz A, Koppelman GH, Nawijn MC, van den Berge M, Guryev V. Alternative Splicing Is a Major Factor Shaping Transcriptome Diversity in Mild and Severe Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol 2024; 70:414-423. [PMID: 38315810 DOI: 10.1165/rcmb.2023-0296oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/05/2024] [Indexed: 02/07/2024] Open
Abstract
The role of alternative splicing in chronic obstructive pulmonary disease (COPD) is still largely unknown. We aimed to investigate the differences in alternatively splicing events between patients with mild-to-moderate and severe COPD compared with non-COPD control subjects and to identify splicing factors associated with aberrant alternative splicing in COPD. For this purpose, we performed genome-wide RNA-sequencing analysis of bronchial brushings from 23 patients with mild-to-moderate COPD, 121 with severe COPD, and 23 non-COPD control subjects. We found a significant difference in the frequency of alternative splicing events in patients with mild-to-moderate and severe COPD compared with non-COPD control subjects. There were from two to eight times (depending on event type) more differential alternative splicing events in the severe than in the mild-to-moderate stage. The severe COPD samples showed less intron retention and more exon skipping. It is interesting that the transcript levels of the top 10 differentially expressed splicing factors were significantly correlated with the percentage of many alternatively spliced transcripts in severe COPD. The aberrant alternative splicing in severe COPD was predicted to increase the overall protein-coding capacity of gene products. In conclusion, we observed large and significant differences in alternative splicing between bronchial samples of patients with COPD and control subjects, with more events observed in severe than in mild-to-moderate COPD. The changes in the expression of several splicing factors correlated with prevalence of alternative splicing in severe COPD. Alternative splicing can indirectly impact gene expression by changing the relative abundance of protein-coding isoforms potentially influencing pathophysiological changes. The results provide a better understanding of COPD-related alternative splicing changes.
Collapse
Affiliation(s)
- Dmitry Khalenkow
- European Research Institute for the Biology of Ageing
- Groningen Research Institute for Asthma and COPD
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital
| | - Corry-Anke Brandsma
- Groningen Research Institute for Asthma and COPD
- Department of Pathology and Medical Biology
| | - Wim Timens
- Groningen Research Institute for Asthma and COPD
- Department of Pathology and Medical Biology
| | - David F Choy
- Genentech, Inc., South San Francisco, California; and
| | | | | | | | - Huib A M Kerstjens
- Department of Pulmonology and Tuberculosis, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Alen Faiz
- Faculty of Science, Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, Australia
| | - Gerard H Koppelman
- Groningen Research Institute for Asthma and COPD
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital
| | - Martijn C Nawijn
- Groningen Research Institute for Asthma and COPD
- Department of Pathology and Medical Biology
| | - Maarten van den Berge
- Groningen Research Institute for Asthma and COPD
- Department of Pulmonary Diseases, and
| | - Victor Guryev
- European Research Institute for the Biology of Ageing
| |
Collapse
|
6
|
Shadkam R, Saadat P, Azadmehr A, Chehrazi M, Daraei A. Key Non-coding Variants in Three Neuroapoptosis and Neuroinflammation-Related LncRNAs Are Protectively Associated with Susceptibility to Parkinson's Disease and Some of Its Clinical Features. Mol Neurobiol 2024; 61:2854-2865. [PMID: 37946005 DOI: 10.1007/s12035-023-03708-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023]
Abstract
Research findings show that genetic susceptibility to sporadic Parkinson's disease (PD), a common neurodegenerative disorder, is determined through gene variation of loci involved in its development and pathogenesis. A growing body of strong evidence has revealed that dysfunction of long non-coding RNAs (lncRNAs) plays key roles in the pathogenesis and progression of PD through impairing neuronal signaling pathways, but little is known about the relationship between their variants and PD susceptibility. In this research, we intended to study the relationship between functional SNPs rs12826786C>T, rs3200401C>T, and rs6931097G>A in the key lncRNAs stimulating neuroapoptosis and neuroinflammation in PD, including HOTAIR, MALAT1, and lincRNA-P21, respectively, with susceptibility to PD as well as its clinical symptoms.The population of this study consisted of 240 individuals, including 120 controls and 120 cases, and the sample taken from them was peripheral blood. Genotyping of the target SNPs was done using PCR-RFLP. We found that the healthy individuals carry more T allele of MALAT1-rs3200401C>T compared to the patients (P= 0.019). Furthermore, it was observed that in the dominant genetic model, subjects with genotypes carrying the T allele have a lower risk of PD (OR= 0.530; CI= 0.296-0.950; P= 0.033). Regarding the lincRNA-P21-rs6931097G>A, we observed a significant protective relationship between its GA (OR= 0.144; CI= 0.030-0.680; P= 0.014) and AA (OR= 0.195; CI= 00.047-0.799; P= 0.023) genotypes with the manifestation of tremor and bradykinesia symptoms, respectively. Furthermore, the findings indicated that the minor TT genotype of HOTAIR-rs12826786C>T was significantly associated with a reduced risk of bradykinesia symptoms (OR= 0.147; CI= 0.039-0.555; P= 0.005). Collectively, these findings suggest that MALAT1-rs3200401C>T may be an important lncRNA SNP against the development of PD, while the other two SNPs show protective effects on the clinical manifestations of PD in a way that lincRNA-P21-rs6931097G>A has a protective effect against the occurrence of tremor and bradykinesia symptoms in PD patients, and HOTAIR -rs12826786C>T indicates a protective effect against the display of bradykinesia feature. Therefore, they can have valuable potential as biomarkers for clinical evaluations of this disease.
Collapse
Affiliation(s)
- Roshanak Shadkam
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Payam Saadat
- Mobility Impairment Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Abbas Azadmehr
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Chehrazi
- Department of Biostatistics and Epidemiology, School of Public Health, Babol University of Medical Sciences, Babol, Iran
| | - Abdolreza Daraei
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
7
|
Liu ST, Horng JL, Lin LY, Chou MY. Fenpropathrin causes alterations in locomotion and social behaviors in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106756. [PMID: 37952273 DOI: 10.1016/j.aquatox.2023.106756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
Fenpropathrin is one of the widely used pyrethroid pesticides in agriculture and is frequently detected in the environment, groundwater, and food. While fenpropathrin was found to have neurotoxic effects in mammals, it remains unclear whether it has similar effects on fish. Here, we used adult zebrafish to investigate the impacts of fenpropathrin on fish social behaviors and neural activity. Exposure of adult zebrafish to 500 ppb of fenpropathrin for 72 h increased anxiety levels but decreased physical fitness, as measured by a novel tank diving test and swimming tunnel test. Fish exposed to fenpropathrin appeared to spend more time in the conspecific zone of the tank, possibly seeking greater comfort from their companions. Although learning, memory, and aggressive behavior did not change, fish exposed to fenpropathrin appeared to have shorter fighting durations. The immunocytochemical results showed the tyrosine hydroxylase antibody-labeled dopaminergic neurons in the teleost posterior tuberculum decreased in the zebrafish brain. According to a quantitative polymerase chain reaction (qPCR) analysis of the brain, exposure to fenpropathrin resulted in a decrease in the messenger (m)RNA expression of monoamine oxidase (mao), an enzyme that facilitates the deamination of dopamine. In contrast, the mRNA expression of the sncga gene, which may trigger Parkinson's disease, was found to have increased. There were no changes observed in expressions of genes related to antioxidants and apoptosis between the control and fenpropathrin-exposed groups. We provide evidence to demonstrate the defect of the neurotoxicity of fenpropathrin toward dopaminergic neurons in adult zebrafish.
Collapse
Affiliation(s)
- Sian-Tai Liu
- Department of Life Science, National Taiwan University, Taipei City, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Li-Yih Lin
- Department of Life Science, School of Life Sciences, National Taiwan Normal University, Taipei City, Taiwan
| | - Ming-Yi Chou
- Department of Life Science, National Taiwan University, Taipei City, Taiwan.
| |
Collapse
|
8
|
Li H, Sun C, Li Y, Sun H. Analysis of alternative splicing in chicken macrophages transfected with overexpression/knockdown of RIP2 gene. Anim Biotechnol 2023; 34:3855-3866. [PMID: 37466384 DOI: 10.1080/10495398.2023.2233012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Receptor-interacting protein 2 (RIP2) plays a critical role in the transduction of many signaling pathways and is associated with many diseases. Alternative splicing (AS) is an essential and ubiquitous regulatory mechanism of gene expression that contributes to distinct transcript variants and many different kinds of proteins. In this present study, we characterized genome-wide AS events in wild-type chicken macrophages (WT) and RIP2 overexpression/knockdown chicken macrophages (oeRIP2/shRIP2) by high-throughput RNA sequencing technology. A total of 1901, 2061, and 817 differentially expressed (DE) AS genes were identified in the comparison of oeRIP2 vs. WT, oeRIP2 vs. shRIP2, and shRIP2 vs. WT, respectively. These DE AS genes participated in many important KEGG pathways, including regulation of autophagy, Wnt signaling pathway, Ubiquitin mediated proteolysis, MAPK signaling pathway, and Focal adhesion, etc. In conclusion, this research provided a broad atlas of the genome-wide scale of the AS event landscape in RIP2 overexpression/knockdown and wild-type chicken macrophages. This research also provides the theoretical basis of the gene network related to RIP2.
Collapse
Affiliation(s)
- Huan Li
- School of Biological and Chemical Engineering, Yangzhou Polytechnic College, Yangzhou, China
- Yangzhou Engineering Research Center of Agricultural Products Intelligent Measurement and Control & Cleaner Production, Yangzhou Polytechnic College, Yangzhou, China
| | - Changhua Sun
- School of Biological and Chemical Engineering, Yangzhou Polytechnic College, Yangzhou, China
- Yangzhou Engineering Research Center of Agricultural Products Intelligent Measurement and Control & Cleaner Production, Yangzhou Polytechnic College, Yangzhou, China
| | - Yunlong Li
- School of Biological and Chemical Engineering, Yangzhou Polytechnic College, Yangzhou, China
- Yangzhou Engineering Research Center of Agricultural Products Intelligent Measurement and Control & Cleaner Production, Yangzhou Polytechnic College, Yangzhou, China
| | - Hongyan Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
9
|
Necarsulmer JC, Simon JM, Evangelista BA, Chen Y, Tian X, Nafees S, Marquez AB, Jiang H, Wang P, Ajit D, Nikolova VD, Harper KM, Ezzell JA, Lin FC, Beltran AS, Moy SS, Cohen TJ. RNA-binding deficient TDP-43 drives cognitive decline in a mouse model of TDP-43 proteinopathy. eLife 2023; 12:RP85921. [PMID: 37819053 PMCID: PMC10567115 DOI: 10.7554/elife.85921] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
TDP-43 proteinopathies including frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) are neurodegenerative disorders characterized by aggregation and mislocalization of the nucleic acid-binding protein TDP-43 and subsequent neuronal dysfunction. Here, we developed endogenous models of sporadic TDP-43 proteinopathy based on the principle that disease-associated TDP-43 acetylation at lysine 145 (K145) alters TDP-43 conformation, impairs RNA-binding capacity, and induces downstream mis-regulation of target genes. Expression of acetylation-mimic TDP-43K145Q resulted in stress-induced nuclear TDP-43 foci and loss of TDP-43 function in primary mouse and human-induced pluripotent stem cell (hiPSC)-derived cortical neurons. Mice harboring the TDP-43K145Q mutation recapitulated key hallmarks of FTLD, including progressive TDP-43 phosphorylation and insolubility, TDP-43 mis-localization, transcriptomic and splicing alterations, and cognitive dysfunction. Our study supports a model in which TDP-43 acetylation drives neuronal dysfunction and cognitive decline through aberrant splicing and transcription of critical genes that regulate synaptic plasticity and stress response signaling. The neurodegenerative cascade initiated by TDP-43 acetylation recapitulates many aspects of human FTLD and provides a new paradigm to further interrogate TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Julie C Necarsulmer
- Department of Cell Biology and Physiology, University of North CarolinaChapel HillUnited States
- Department of Neurology, University of North CarolinaChapel HillUnited States
| | - Jeremy M Simon
- UNC Neuroscience Center, University of North CarolinaChapel HillUnited States
- Carolina Institute for Developmental Disabilities, University of North CarolinaChapel HillUnited States
- Department of Genetics, University of North CarolinaChapel HillUnited States
| | - Baggio A Evangelista
- Department of Cell Biology and Physiology, University of North CarolinaChapel HillUnited States
- Department of Neurology, University of North CarolinaChapel HillUnited States
| | - Youjun Chen
- Department of Neurology, University of North CarolinaChapel HillUnited States
| | - Xu Tian
- Department of Neurology, University of North CarolinaChapel HillUnited States
| | - Sara Nafees
- Department of Neurology, University of North CarolinaChapel HillUnited States
| | - Ariana B Marquez
- Human Pluripotent Stem Cell Core, University of North CarolinaChapel HillUnited States
| | - Huijun Jiang
- Department of Biostatistics, University of North CarolinaChapel HillUnited States
| | - Ping Wang
- Department of Neurology, University of North CarolinaChapel HillUnited States
| | - Deepa Ajit
- Department of Neurology, University of North CarolinaChapel HillUnited States
| | - Viktoriya D Nikolova
- Carolina Institute for Developmental Disabilities, University of North CarolinaChapel HillUnited States
- Department of Psychiatry, The University of North CarolinaChapel HillUnited States
| | - Kathryn M Harper
- Carolina Institute for Developmental Disabilities, University of North CarolinaChapel HillUnited States
- Department of Psychiatry, The University of North CarolinaChapel HillUnited States
| | - J Ashley Ezzell
- Department of Cell Biology & Physiology, Histology Research Core Facility, University of North CarolinaChapel HillUnited States
| | - Feng-Chang Lin
- Department of Biostatistics, University of North CarolinaChapel HillUnited States
| | - Adriana S Beltran
- Department of Genetics, University of North CarolinaChapel HillUnited States
- Human Pluripotent Stem Cell Core, University of North CarolinaChapel HillUnited States
- Department of Pharmacology, University of North CarolinaChapel HillUnited States
| | - Sheryl S Moy
- Carolina Institute for Developmental Disabilities, University of North CarolinaChapel HillUnited States
- Department of Psychiatry, The University of North CarolinaChapel HillUnited States
| | - Todd J Cohen
- Department of Cell Biology and Physiology, University of North CarolinaChapel HillUnited States
- Department of Neurology, University of North CarolinaChapel HillUnited States
- UNC Neuroscience Center, University of North CarolinaChapel HillUnited States
- Department of Biochemistry and Biophysics, University of North CarolinaChapel HillUnited States
| |
Collapse
|
10
|
Varesi A, Campagnoli LIM, Barbieri A, Rossi L, Ricevuti G, Esposito C, Chirumbolo S, Marchesi N, Pascale A. RNA binding proteins in senescence: A potential common linker for age-related diseases? Ageing Res Rev 2023; 88:101958. [PMID: 37211318 DOI: 10.1016/j.arr.2023.101958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
Aging represents the major risk factor for the onset and/or progression of various disorders including neurodegenerative diseases, metabolic disorders, and bone-related defects. As the average age of the population is predicted to exponentially increase in the coming years, understanding the molecular mechanisms underlying the development of aging-related diseases and the discovery of new therapeutic approaches remain pivotal. Well-reported hallmarks of aging are cellular senescence, genome instability, autophagy impairment, mitochondria dysfunction, dysbiosis, telomere attrition, metabolic dysregulation, epigenetic alterations, low-grade chronic inflammation, stem cell exhaustion, altered cell-to-cell communication and impaired proteostasis. With few exceptions, however, many of the molecular players implicated within these processes as well as their role in disease development remain largely unknown. RNA binding proteins (RBPs) are known to regulate gene expression by dictating at post-transcriptional level the fate of nascent transcripts. Their activity ranges from directing primary mRNA maturation and trafficking to modulation of transcript stability and/or translation. Accumulating evidence has shown that RBPs are emerging as key regulators of aging and aging-related diseases, with the potential to become new diagnostic and therapeutic tools to prevent or delay aging processes. In this review, we summarize the role of RBPs in promoting cellular senescence and we highlight their dysregulation in the pathogenesis and progression of the main aging-related diseases, with the aim of encouraging further investigations that will help to better disclose this novel and captivating molecular scenario.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| | | | - Annalisa Barbieri
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Lorenzo Rossi
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | | | - Ciro Esposito
- Department of Internal Medicine and Therapeutics, University of Pavia, Italy; Nephrology and dialysis unit, ICS S. Maugeri SPA SB Hospital, Pavia, Italy; High School in Geriatrics, University of Pavia, Italy
| | | | - Nicoletta Marchesi
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy.
| |
Collapse
|
11
|
Sandoval-Castellanos AM, Bhargava A, Zhao M, Xu J, Ning K. Serine and arginine rich splicing factor 1: a potential target for neuroprotection and other diseases. Neural Regen Res 2023; 18:1411-1416. [PMID: 36571335 PMCID: PMC10075106 DOI: 10.4103/1673-5374.360243] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Alternative splicing is the process of producing variably spliced mRNAs by choosing distinct combinations of splice sites within a messenger RNA precursor. This splicing enables mRNA from a single gene to synthesize different proteins, which have different cellular properties and functions and yet arise from the same single gene. A family of splicing factors, Serine-arginine rich proteins, are needed to initiate the assembly and activation of the spliceosome. Serine and arginine rich splicing factor 1, part of the arginine/serine-rich splicing factor protein family, can either activate or inhibit the splicing of mRNAs, depending on the phosphorylation status of the protein and its interaction partners. Considering that serine and arginine rich splicing factor 1 is either an activator or an inhibitor, this protein has been studied widely to identify its various roles in different diseases. Research has found that serine and arginine rich splicing factor 1 is a key target for neuroprotection, showing its promising potential use in therapeutics for neurodegenerative disorders. Furthermore, serine and arginine rich splicing factor 1 might be used to regulate cancer development and autoimmune diseases. In this review, we highlight how serine and arginine rich splicing factor 1 has been studied concerning neuroprotection. In addition, we draw attention to how serine and arginine rich splicing factor 1 is being studied in cancer and immunological disorders, as well as how serine and arginine rich splicing factor 1 acts outside the central or peripheral nervous system.
Collapse
Affiliation(s)
- Ana M Sandoval-Castellanos
- Sheffield Institute of Translational Neuroscience, SITraN, The University of Sheffield, Sheffield, UK; Department of Ophthalmology & Vision Science, and Department of Dermatology, Institute for Regenerative Cures, University of California at Davis, School of Medicine, Sacramento, CA, USA
| | - Anushka Bhargava
- Sheffield Institute of Translational Neuroscience, SITraN, The University of Sheffield, Sheffield, UK
| | - Min Zhao
- Department of Ophthalmology & Vision Science, and Department of Dermatology, Institute for Regenerative Cures, University of California at Davis, School of Medicine, Sacramento, CA, USA
| | - Jun Xu
- East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ke Ning
- Sheffield Institute of Translational Neuroscience, SITraN, The University of Sheffield, Sheffield, UK; East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Tassinari V, La Rosa P, Guida E, Colopi A, Caratelli S, De Paolis F, Gallo A, Cenciarelli C, Sconocchia G, Dolci S, Cesarini V. Contribution of A-to-I RNA editing, M6A RNA Methylation, and Alternative Splicing to physiological brain aging and neurodegenerative diseases. Mech Ageing Dev 2023; 212:111807. [PMID: 37023929 DOI: 10.1016/j.mad.2023.111807] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Aging is a physiological and progressive phenomenon in all organisms' life cycle, characterized by the accumulation of degenerative processes triggered by several alterations within molecular pathways. These changes compromise cell fate, resulting in the loss of functions in tissues throughout the body, including the brain. Physiological brain aging has been linked to structural and functional alterations, as well as to an increased risk of neurodegenerative diseases. Post-transcriptional RNA modifications modulate mRNA coding properties, stability, translatability, expanding the coding capacity of the genome, and are involved in all cellular processes. Among mRNA post-transcriptional modifications, the A-to-I RNA editing, m6A RNA Methylation and Alternative Splicing play a critical role in all the phases of a neuronal cell life cycle and alterations in their mechanisms of action significantly contribute to aging and neurodegeneration. Here we review our current understanding of the contribution of A-to-I RNA editing, m6A RNA Methylation, and Alternative Splicing to physiological brain aging process and neurodegenerative diseases.
Collapse
Affiliation(s)
- Valentina Tassinari
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy; Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, Rome, Italy; European Center for Brain Research, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Eugenia Guida
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Ambra Colopi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Sara Caratelli
- Department of Biomedicine, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| | - Francesca De Paolis
- Department of Biomedicine, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| | - Angela Gallo
- RNA Editing Lab., Oncohaematology Department, Cellular and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Carlo Cenciarelli
- Department of Biomedicine, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| | - Giuseppe Sconocchia
- Department of Biomedicine, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| | - Susanna Dolci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Valeriana Cesarini
- Department of Biomedicine, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy.
| |
Collapse
|
13
|
A novel splicing variant of DJ-1 in Parkinson's disease induces mitochondrial dysfunction. Heliyon 2023; 9:e14039. [PMID: 36915530 PMCID: PMC10006478 DOI: 10.1016/j.heliyon.2023.e14039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023] Open
Abstract
Several studies have identified mutations in neuroprotective genes in a few cases of Parkinson's disease (PD); however, the role of alternative splicing changes in PD remains unelucidated. Based on the transcriptome analysis of substantia nigra (SN) tissues obtained from PD cases and age-matched healthy controls, we identified a novel alternative splicing variant of DJ-1, lacking exon 6 (DJ-1 ΔE6), frequently detected in the SN of patients with PD. We found that the exon 6 skipping of DJ-1 induces mitochondrial dysfunction and impaired antioxidant capability. According to an in silico modeling study, the exon 6 skipping of DJ-1 disrupts the structural state suitable for the oxidation of the cysteine 106 residue that is a prerequisite for activating its neuroprotective roles. Our results suggest that change in DJ-1 alternative splicing may contribute to PD progression and provide an insight for studying PD etiology and its potential therapeutic targets.
Collapse
|
14
|
Jang Y, Pletnikova O, Troncoso JC, Pantelyat AY, Dawson TM, Rosenthal LS, Na CH. Mass Spectrometry-Based Proteomics Analysis of Human Substantia Nigra From Parkinson's Disease Patients Identifies Multiple Pathways Potentially Involved in the Disease. Mol Cell Proteomics 2023; 22:100452. [PMID: 36423813 PMCID: PMC9792365 DOI: 10.1016/j.mcpro.2022.100452] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 10/26/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra (SN) of the brain. Despite decades of studies, the precise pathogenic mechanism of PD is still elusive. An unbiased proteomic analysis of PD patient's brain allows the identification of critical proteins and molecular pathways that lead to dopamine cell death and α-synuclein deposition and the resulting devastating clinical symptoms. In this study, we conducted an in-depth proteome analysis of human SN tissues from 15 PD patients and 15 healthy control individuals combining Orbitrap mass spectrometry with the isobaric tandem mass tag-based multiplexing technology. We identified 10,040 proteins with 1140 differentially expressed proteins in the SN of PD patients. Pathway analysis showed that the ribosome pathway was the most enriched one, followed by gamma-aminobutyric acidergic synapse, retrograde endocannabinoid signaling, cell adhesion molecules, morphine addiction, Prion disease, and PD pathways. Strikingly, the majority of the proteins enriched in the ribosome pathway were mitochondrial ribosomal proteins (mitoribosomes). The subsequent protein-protein interaction analysis and the weighted gene coexpression network analysis confirmed that the mitoribosome is the most enriched protein cluster. Furthermore, the mitoribosome was also identified in our analysis of a replication set of ten PD and nine healthy control SN tissues. This study provides potential disease pathways involved in PD and paves the way to study further the pathogenic mechanism of PD.
Collapse
Affiliation(s)
- Yura Jang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Olga Pletnikova
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Juan C Troncoso
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alexander Y Pantelyat
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana, USA; Diana Helis Henry Medical Research Foundation, New Orleans, Louisiana, USA.
| | - Liana S Rosenthal
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Chan Hyun Na
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
15
|
Thonda S, Vinnakota RL, Kona SV, Kalivendi SV. Identification of RBMX as a splicing regulator in Parkinsonian mimetic induced alternative splicing of α-synuclein. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194825. [PMID: 35577270 DOI: 10.1016/j.bbagrm.2022.194825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
α-Synuclein (α-syn) plays a precipitating role in Parkinson's disease (PD) due to its tendency to form oligomers and fibrils. The presence of smaller isoforms of α-syn was widely noticed in the affected brain regions of PD patients. 112-synuclein (112-syn) which lacks exon-5, possess enhanced aggregation propensity and forms intracellular inclusions. However, the factors responsible for the skipping of exon-5 are not completely understood. In this context, we aimed to identity the cis & trans-acting elements governing alternative splicing (AS) events by the Parkinsonian agent (MPP+) using minigene constructs. Minigene-I and -II were constructed by pruning the intron-4 and -5 regions respectively without altering the branch point adenosine to preserve splicing machinery. Also, chimeric minigenes were engineered by replacing either 5' (Mini-III) or 3' (Mini-IV) flanking intronic regions of exon-5 with other intronic regions (intron-3 and -2) that are not responsive to MPP+ induced splicing. While all the above minigenes exhibited MPP+-induced skipping of exon-5, Minigene-III did not generate the spliced product indicating that the 5' flanking intronic region (316 bp) of exon-5 possess cis-acting elements responsible for oxidant-induced alternative splicing. RNA-Binding Protein Database (RBDP) analysis revealed the presence of four putative RNA binding proteins (RBPs), namely, RBMX, MBNL1, KHDRBS3 and SFRS1 that may bind to the 316 bp region of intron-4and their expression was substantially reduced following MPP+ treatment. Further, overexpression of RBMX mitigated MPP+-induced generation of 112-syn and also reduced intracellular α-syn aggregates. Overall, our study identified the pivotal role of the splicing regulator, RBMX, in the pathophysiology of PD.
Collapse
Affiliation(s)
- Swaroop Thonda
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ravali L Vinnakota
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Swathi V Kona
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shasi V Kalivendi
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
16
|
D’Anca M, Buccellato FR, Fenoglio C, Galimberti D. Circular RNAs: Emblematic Players of Neurogenesis and Neurodegeneration. Int J Mol Sci 2022; 23:ijms23084134. [PMID: 35456950 PMCID: PMC9032451 DOI: 10.3390/ijms23084134] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/06/2022] [Indexed: 12/13/2022] Open
Abstract
In the fascinating landscape of non-coding RNAs (ncRNAs), circular RNAs (circRNAs) are peeping out as a new promising and appreciated class of molecules with great potential as diagnostic and prognostic biomarkers. They come from circularization of single-stranded RNA molecules covalently closed and generated through alternative mRNA splicing. Dismissed for many years, similar to aberrant splicing by-products, nowadays, their role has been regained. They are able to regulate the expression of linear mRNA transcripts at different levels acting as miRNA sponges, interacting with ribonucleoproteins or exerting a control on gene expression. On the other hand, being extremely conserved across phyla and stable, cell and tissue specific, mostly abundant than the linear RNAs, it is not surprising that they should have critical biological functions. Curiously, circRNAs are particularly expressed in brain and they build up during aging and age-related diseases. These extraordinary peculiarities make circRNAs potentially suitable as promising molecular biomarkers, especially of aging and neurodegenerative diseases. This review aims to explore new evidence on circRNAs, emphasizing their role in aging and pathogenesis of major neurodegenerative disorders, Alzheimer's disease, frontotemporal dementia, and Parkinson's diseases with a look toward their potential usefulness in biomarker searching.
Collapse
Affiliation(s)
- Marianna D’Anca
- Foundation IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.R.B.); or (C.F.); or (D.G.)
- Correspondence:
| | - Francesca R. Buccellato
- Foundation IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.R.B.); or (C.F.); or (D.G.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Chiara Fenoglio
- Foundation IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.R.B.); or (C.F.); or (D.G.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Daniela Galimberti
- Foundation IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.R.B.); or (C.F.); or (D.G.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| |
Collapse
|
17
|
Trophoblast glycoprotein is a new candidate gene for Parkinson’s disease. NPJ Parkinsons Dis 2021; 7:110. [PMID: 34876581 PMCID: PMC8651753 DOI: 10.1038/s41531-021-00252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 11/04/2021] [Indexed: 11/08/2022] Open
Abstract
AbstractParkinson’s disease (PD) is a movement disorder caused by progressive degeneration of the midbrain dopaminergic (mDA) neurons in the substantia nigra pars compacta (SNc). Despite intense research efforts over the past decades, the etiology of PD remains largely unknown. Here, we discovered the involvement of trophoblast glycoprotein (Tpbg) in the development of PD-like phenotypes in mice. Tpbg expression was detected in the ventral midbrain during embryonic development and in mDA neurons in adulthood. Genetic ablation of Tpbg resulted in mild degeneration of mDA neurons in aged mice (12–14 months) with behavioral deficits reminiscent of PD symptoms. Through in silico analysis, we predicted potential TPBG-interacting partners whose functions were relevant to PD pathogenesis; this result was substantiated by transcriptomic analysis of the SNc of aged Tpbg knockout mice. These findings suggest that Tpbg is a new candidate gene associated with PD and provide a new insight into PD pathogenesis.
Collapse
|
18
|
Feleke R, Reynolds RH, Smith AM, Tilley B, Taliun SAG, Hardy J, Matthews PM, Gentleman S, Owen DR, Johnson MR, Srivastava PK, Ryten M. Cross-platform transcriptional profiling identifies common and distinct molecular pathologies in Lewy body diseases. Acta Neuropathol 2021; 142:449-474. [PMID: 34309761 PMCID: PMC8357687 DOI: 10.1007/s00401-021-02343-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/22/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD), Parkinson's disease with dementia (PDD) and dementia with Lewy bodies (DLB) are three clinically, genetically and neuropathologically overlapping neurodegenerative diseases collectively known as the Lewy body diseases (LBDs). A variety of molecular mechanisms have been implicated in PD pathogenesis, but the mechanisms underlying PDD and DLB remain largely unknown, a knowledge gap that presents an impediment to the discovery of disease-modifying therapies. Transcriptomic profiling can contribute to addressing this gap, but remains limited in the LBDs. Here, we applied paired bulk-tissue and single-nucleus RNA-sequencing to anterior cingulate cortex samples derived from 28 individuals, including healthy controls, PD, PDD and DLB cases (n = 7 per group), to transcriptomically profile the LBDs. Using this approach, we (i) found transcriptional alterations in multiple cell types across the LBDs; (ii) discovered evidence for widespread dysregulation of RNA splicing, particularly in PDD and DLB; (iii) identified potential splicing factors, with links to other dementia-related neurodegenerative diseases, coordinating this dysregulation; and (iv) identified transcriptomic commonalities and distinctions between the LBDs that inform understanding of the relationships between these three clinical disorders. Together, these findings have important implications for the design of RNA-targeted therapies for these diseases and highlight a potential molecular "window" of therapeutic opportunity between the initial onset of PD and subsequent development of Lewy body dementia.
Collapse
Affiliation(s)
- Rahel Feleke
- Department of Brain Sciences, Imperial College London, London, UK
| | - Regina H Reynolds
- Department of Neurodegenerative Disease, University College London, London, UK
- Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, University College London, London, UK
| | - Amy M Smith
- Dementia Research Institute at Imperial College London, London, UK
| | - Bension Tilley
- Department of Brain Sciences, Imperial College London, London, UK
| | - Sarah A Gagliano Taliun
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
- Montréal Heart Institute, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - John Hardy
- Department of Neurodegenerative Disease, University College London, London, UK
- UK Dementia Research Institute at University College London, London, UK
| | - Paul M Matthews
- Department of Brain Sciences, Imperial College London, London, UK
- Dementia Research Institute at Imperial College London, London, UK
| | - Steve Gentleman
- Department of Brain Sciences, Imperial College London, London, UK
- Dementia Research Institute at Imperial College London, London, UK
| | - David R Owen
- Department of Brain Sciences, Imperial College London, London, UK
| | | | - Prashant K Srivastava
- Dementia Research Institute at Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Mina Ryten
- Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, University College London, London, UK.
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK.
| |
Collapse
|
19
|
Jakubauskienė E, Kanopka A. Alternative Splicing and Hypoxia Puzzle in Alzheimer's and Parkinson's Diseases. Genes (Basel) 2021; 12:genes12081272. [PMID: 34440445 PMCID: PMC8394294 DOI: 10.3390/genes12081272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 01/08/2023] Open
Abstract
Alternative pre-mRNA splicing plays a very important role in expanding protein diversity as it generates numerous transcripts from a single protein-coding gene. Therefore, alterations lead this process to neurological human disorders, including Alzheimer’s and Parkinson’s diseases. Moreover, accumulating evidence indicates that the splicing machinery highly contributes to the cells’ ability to adapt to different altered cellular microenvironments, such as hypoxia. Hypoxia is known to have an effect on the expression of proteins involved in a multiple of biological processes, such as erythropoiesis, angiogenesis, and neurogenesis, and is one of the important risk factors in neuropathogenesis. In this review, we discuss the current knowledge of alternatively spliced genes, which, as it is reported, are associated with Alzheimer’s and Parkinson’s diseases. Additionally, we highlight the possible influence of cellular hypoxic microenvironment for the formation of mRNA isoforms contributing to the development of these neurodegenerative diseases.
Collapse
|
20
|
Boussaad I, Obermaier CD, Hanss Z, Bobbili DR, Bolognin S, Glaab E, Wołyńska K, Weisschuh N, De Conti L, May C, Giesert F, Grossmann D, Lambert A, Kirchen S, Biryukov M, Burbulla LF, Massart F, Bohler J, Cruciani G, Schmid B, Kurz-Drexler A, May P, Duga S, Klein C, Schwamborn JC, Marcus K, Woitalla D, Vogt Weisenhorn DM, Wurst W, Baralle M, Krainc D, Gasser T, Wissinger B, Krüger R. A patient-based model of RNA mis-splicing uncovers treatment targets in Parkinson's disease. Sci Transl Med 2021; 12:12/560/eaau3960. [PMID: 32908004 DOI: 10.1126/scitranslmed.aau3960] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 01/24/2020] [Accepted: 06/22/2020] [Indexed: 12/18/2022]
Abstract
Parkinson's disease (PD) is a heterogeneous neurodegenerative disorder with monogenic forms representing prototypes of the underlying molecular pathology and reproducing to variable degrees the sporadic forms of the disease. Using a patient-based in vitro model of PARK7-linked PD, we identified a U1-dependent splicing defect causing a drastic reduction in DJ-1 protein and, consequently, mitochondrial dysfunction. Targeting defective exon skipping with genetically engineered U1-snRNA recovered DJ-1 protein expression in neuronal precursor cells and differentiated neurons. After prioritization of candidate drugs, we identified and validated a combinatorial treatment with the small-molecule compounds rectifier of aberrant splicing (RECTAS) and phenylbutyric acid, which restored DJ-1 protein and mitochondrial dysfunction in patient-derived fibroblasts as well as dopaminergic neuronal cell loss in mutant midbrain organoids. Our analysis of a large number of exomes revealed that U1 splice-site mutations were enriched in sporadic PD patients. Therefore, our study suggests an alternative strategy to restore cellular abnormalities in in vitro models of PD and provides a proof of concept for neuroprotection based on precision medicine strategies in PD.
Collapse
Affiliation(s)
- Ibrahim Boussaad
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg
| | - Carolin D Obermaier
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg.,Department of Neurodegenerative Diseases and Hertie-Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | - Zoé Hanss
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg
| | - Dheeraj R Bobbili
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg
| | - Silvia Bolognin
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg
| | - Enrico Glaab
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg
| | - Katarzyna Wołyńska
- Department of Medical Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Nicole Weisschuh
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, University Clinics Tübingen, 72076 Tübingen, Germany
| | - Laura De Conti
- ICGEB-International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - Caroline May
- Medizinisches Proteom-Center, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Florian Giesert
- Helmholtz Zentrum München, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Site Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany.,Technische Universität München-Weihenstephan, Developmental Genetics, c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Dajana Grossmann
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg
| | - Annika Lambert
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg
| | - Susanne Kirchen
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg
| | - Maria Biryukov
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg
| | - Lena F Burbulla
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Francois Massart
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg
| | - Jill Bohler
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg
| | - Gérald Cruciani
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg
| | - Benjamin Schmid
- Department of Neurodegenerative Diseases and Hertie-Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | | | - Patrick May
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg
| | - Stefano Duga
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, 20089 Rozzano, Milan, Italy.,Humanitas Clinical and Research center, IRCCS, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, 23562 Luebeck, Germany
| | - Jens C Schwamborn
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg
| | - Katrin Marcus
- Medizinisches Proteom-Center, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Dirk Woitalla
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Daniela M Vogt Weisenhorn
- Helmholtz Zentrum München, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany.,Technische Universität München-Weihenstephan, Developmental Genetics, c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Wolfgang Wurst
- Helmholtz Zentrum München, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Site Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany.,Technische Universität München-Weihenstephan, Developmental Genetics, c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.,Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Marco Baralle
- ICGEB-International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Thomas Gasser
- Department of Neurodegenerative Diseases and Hertie-Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Bernd Wissinger
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, University Clinics Tübingen, 72076 Tübingen, Germany
| | - Rejko Krüger
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-Sur-Alzette, Luxembourg. .,Department of Neurodegenerative Diseases and Hertie-Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany.,Department of Neurology and Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), 1210 Luxembourg, Luxembourg.,Transversal Translational Medicine, Luxembourg Institute of Health (LIH), 1445 Strassen, Luxembourg
| |
Collapse
|
21
|
Li D, McIntosh CS, Mastaglia FL, Wilton SD, Aung-Htut MT. Neurodegenerative diseases: a hotbed for splicing defects and the potential therapies. Transl Neurodegener 2021; 10:16. [PMID: 34016162 PMCID: PMC8136212 DOI: 10.1186/s40035-021-00240-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
Precursor messenger RNA (pre-mRNA) splicing is a fundamental step in eukaryotic gene expression that systematically removes non-coding regions (introns) and ligates coding regions (exons) into a continuous message (mature mRNA). This process is highly regulated and can be highly flexible through a process known as alternative splicing, which allows for several transcripts to arise from a single gene, thereby greatly increasing genetic plasticity and the diversity of proteome. Alternative splicing is particularly prevalent in neuronal cells, where the splicing patterns are continuously changing to maintain cellular homeostasis and promote neurogenesis, migration and synaptic function. The continuous changes in splicing patterns and a high demand on many cis- and trans-splicing factors contribute to the susceptibility of neuronal tissues to splicing defects. The resultant neurodegenerative diseases are a large group of disorders defined by a gradual loss of neurons and a progressive impairment in neuronal function. Several of the most common neurodegenerative diseases involve some form of splicing defect(s), such as Alzheimer's disease, Parkinson's disease and spinal muscular atrophy. Our growing understanding of RNA splicing has led to the explosion of research in the field of splice-switching antisense oligonucleotide therapeutics. Here we review our current understanding of the effects alternative splicing has on neuronal differentiation, neuronal migration, synaptic maturation and regulation, as well as the impact on neurodegenerative diseases. We will also review the current landscape of splice-switching antisense oligonucleotides as a therapeutic strategy for a number of common neurodegenerative disorders.
Collapse
Affiliation(s)
- Dunhui Li
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - Craig Stewart McIntosh
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - Frank Louis Mastaglia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - Steve Donald Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - May Thandar Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia. .,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
22
|
Petyuk VA, Yu L, Olson HM, Yu F, Clair G, Qian WJ, Shulman JM, Bennett DA. Proteomic Profiling of the Substantia Nigra to Identify Determinants of Lewy Body Pathology and Dopaminergic Neuronal Loss. J Proteome Res 2021; 20:2266-2282. [PMID: 33900085 PMCID: PMC9190253 DOI: 10.1021/acs.jproteome.0c00747] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteinaceous aggregates containing α-synuclein protein called Lewy bodies in the substantia nigra is a hallmark of Parkinson's disease. The molecular mechanisms of Lewy body formation and associated neuronal loss remain largely unknown. To gain insights into proteins and pathways associated with Lewy body pathology, we performed quantitative profiling of the proteome. We analyzed substantia nigra tissue from 51 subjects arranged into three groups: cases with Lewy body pathology, Lewy body-negative controls with matching neuronal loss, and controls with no neuronal loss. Using a label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach, we characterized the proteome both in terms of protein abundances and peptide modifications. Statistical testing for differential abundance of the most abundant 2963 proteins, followed by pathway enrichment and Bayesian learning of the causal network structure, was performed to identify likely drivers of Lewy body formation and dopaminergic neuronal loss. The identified pathways include (1) Arp2/3 complex-mediated actin nucleation; (2) synaptic function; (3) poly(A) RNA binding; (4) basement membrane and endothelium; and (5) hydrogen peroxide metabolic process. According to the data, the endothelial/basement membrane pathway is tightly connected with both pathologies and likely to be one of the drivers of neuronal loss. The poly(A) RNA-binding proteins, including the ones relevant to other neurodegenerative disorders (e.g., TDP-43 and FUS), have a strong inverse correlation with Lewy bodies and may reflect an alternative mechanism of nigral neurodegeneration.
Collapse
Affiliation(s)
- Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN: K8-98, Richland, Washington 99352, United States
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois 60612, United States
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Heather M Olson
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Geremy Clair
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN: K8-98, Richland, Washington 99352, United States
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN: K8-98, Richland, Washington 99352, United States
| | - Joshua M Shulman
- Departments of Neurology, Molecular & Human Genetics, and Neuroscience, Baylor College of Medicine, Houston, Texas 77030, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, United States
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois 60612, United States
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois 60612, United States
| |
Collapse
|
23
|
The contribution of CNVs to the most common aging-related neurodegenerative diseases. Aging Clin Exp Res 2021; 33:1187-1195. [PMID: 32026430 DOI: 10.1007/s40520-020-01485-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/17/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer and Parkinson's diseases are neurodegenerative aging-related pathological conditions, mainly caused by the interplay of genetic and non-genetic factors and whose incidence rate is going to drastically increase given the growing life expectancy. To address these complex multifactorial traits, a systems biology strategy is needed to highlight genotype-phenotype correlations as well as overlapping gene signatures. Copy number variants (CNVs) are structural chromosomal imbalances that can have pathogenic nature causing or contributing to the disease onset or progression. Moreover, neurons affected by CNVs have been found to decline in number depending on age in healthy controls and may be selectively vulnerable to aging-related cell-death. In this review, we aim to update the reader on the role of these variations in the pathogenesis of Alzheimer and Parkinson diseases. To widen the comprehension of pathogenic mechanisms underlying them, we discuss variations detected from blood or brain specimens, as well as overlapped signatures between the two pathologies.
Collapse
|
24
|
iPSCs: A Preclinical Drug Research Tool for Neurological Disorders. Int J Mol Sci 2021; 22:ijms22094596. [PMID: 33925625 PMCID: PMC8123805 DOI: 10.3390/ijms22094596] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/24/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023] Open
Abstract
The development and commercialization of new drugs is an articulated, lengthy, and very expensive process that proceeds through several steps, starting from target identification, screening new leading compounds for testing in preclinical studies, and subsequently in clinical trials to reach the final approval for therapeutic use. Preclinical studies are usually performed using both cell cultures and animal models, although they do not completely resume the complexity of human diseases, in particular neurodegenerative conditions. To this regard, stem cells represent a powerful tool in all steps of drug discovery. The recent advancement in induced Pluripotent Stem Cells (iPSCs) technology has opened the possibility to obtain patient-specific disease models for drug screening and development. Here, we report the use of iPSCs as a disease model for drug development in the contest of neurological disorders, including Alzheimer’s (AD) and Parkinson’s disease (PD), Amyotrophic lateral Sclerosis (ALS), and Fragile X syndrome (FRAX).
Collapse
|
25
|
Kumar B, Pandey M, Pottoo FH, Fayaz F, Sharma A, Sahoo PK. Liposomes: Novel Drug Delivery Approach for Targeting Parkinson's Disease. Curr Pharm Des 2021; 26:4721-4737. [PMID: 32003666 DOI: 10.2174/1381612826666200128145124] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/18/2019] [Indexed: 11/22/2022]
Abstract
Parkinson's disease is one of the most severe progressive neurodegenerative disorders, having a mortifying effect on the health of millions of people around the globe. The neural cells producing dopamine in the substantia nigra of the brain die out. This leads to symptoms like hypokinesia, rigidity, bradykinesia, and rest tremor. Parkinsonism cannot be cured, but the symptoms can be reduced with the intervention of medicinal drugs, surgical treatments, and physical therapies. Delivering drugs to the brain for treating Parkinson's disease is very challenging. The blood-brain barrier acts as a highly selective semi-permeable barrier, which refrains the drug from reaching the brain. Conventional drug delivery systems used for Parkinson's disease do not readily cross the blood barrier and further lead to several side-effects. Recent advancements in drug delivery technologies have facilitated drug delivery to the brain without flooding the bloodstream and by directly targeting the neurons. In the era of Nanotherapeutics, liposomes are an efficient drug delivery option for brain targeting. Liposomes facilitate the passage of drugs across the blood-brain barrier, enhances the efficacy of the drugs, and minimize the side effects related to it. The review aims at providing a broad updated view of the liposomes, which can be used for targeting Parkinson's disease.
Collapse
Affiliation(s)
- Bhumika Kumar
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, Delhi, 110017, India
| | - Mukesh Pandey
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, Delhi, 110017, India
| | - Faheem H Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. BOX 1982, Dammam 31441, Saudi Arabia
| | - Faizana Fayaz
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, Delhi, 110017, India
| | - Anjali Sharma
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, Delhi, 110017, India
| | - P K Sahoo
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, Delhi, 110017, India
| |
Collapse
|
26
|
Effect of Expression of Human Glucosylceramidase 2 Isoforms on Lipid Profiles in COS-7 Cells. Metabolites 2020; 10:metabo10120488. [PMID: 33261081 PMCID: PMC7761373 DOI: 10.3390/metabo10120488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 02/08/2023] Open
Abstract
Glucosylceramide (GlcCer) is a major membrane lipid and the precursor of gangliosides. GlcCer is mainly degraded by two enzymes, lysosomal acid β-glucosidase (GBA) and nonlysosomal β-glucosidase (GBA2), which may have different isoforms because of alternative splicing. To understand which GBA2 isoforms are active and how they affect glycosphingolipid levels in cells, we expressed nine human GBA2 isoforms in COS-7 cells, confirmed their expression by qRT-PCR and Western blotting, and assayed their activity to hydrolyze 4-methylumbelliferyl-β-D-glucopyranoside (4MUG) in cell extracts. Human GBA2 isoform 1 showed high activity, while the other isoforms had activity similar to the background. Comparison of sphingolipid levels by ultra-high resolution/accurate mass spectrometry (UHRAMS) analysis showed that isoform 1 overexpression increased ceramide and decreased hexosylceramide levels. Comparison of ratios of glucosylceramides to the corresponding ceramides in the extracts indicated that GBA2 isoform 1 has broad specificity for the lipid component of glucosylceramide, suggesting that only one GBA2 isoform 1 is active and affects sphingolipid levels in the cell. Our study provides new insights into how increased breakdown of GlcCer affects cellular lipid metabolic networks.
Collapse
|
27
|
Fazeli S, Motovali-Bashi M, Peymani M, Hashemi MS, Etemadifar M, Nasr-Esfahani MH, Ghaedi K. A compound downregulation of SRRM2 and miR-27a-3p with upregulation of miR-27b-3p in PBMCs of Parkinson's patients is associated with the early stage onset of disease. PLoS One 2020; 15:e0240855. [PMID: 33171483 PMCID: PMC7654768 DOI: 10.1371/journal.pone.0240855] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/03/2020] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease (PD) is diagnosed when motor symptoms emerges, which almost 70% of dopamine neurons are lost. Therefore, early diagnosis of PD is crucial to prevent the progress of disease. Blood-based biomarkers, which are minimally invasive, potentially used for diagnosis of PD, including miRNAs. The aim of this study was to assess whether SRRM2 and miR-27a/b-3p could act as early diagnostic biomarkers for PD. Total RNAs from PBMCs of 30 PD’s patients and 14 healthy age and gender matched subjects was extracted. The expression levels of respective genes were assessed. Data were presented applying a two-tailed unpaired t-test and one-way ANOVA. We observed significant down-regulation of SRRM2 (p = 0.0002) and miR-27a-3p (p = 0.0001), and up-regulation of miR-27b-3p (p = 0.02) in PBMCs of Parkinson's patients. Down-regulation of miR-27a-3p is associated with increasing disease severity, whereas the up-regulation of miR-27b-3p was observed mostly at HY-1 and disease duration between 3–5 years. There was a negative correlation between SRRM2 and miR-27b-3p expressions, and miR-27a-3p positively was correlated with miR-27b-3p. Based on functional enrichment analysis, SRRM2 and miR-27a/b-3p acted on common functional pathways. miR-27a/b-3p could potentially predict the progression and severity of PD. Although both miRs had no similarity on expression, a positive correlation between both miRs was identified, supporting their potential role as biomarkers in clinical PD stages. Of note that SRRM2 and miR-27a-3p were able to distinguish PD patients from healthy individuals. Functional analysis of the similarity between genes associated with SRRM2 and miR-27a/b-3p indicates common functional pathways and their dysfunction correlates with molecular etiopathology mechanisms of PD onset.
Collapse
Affiliation(s)
- Soudabeh Fazeli
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Majid Motovali-Bashi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
- * E-mail: (MMB); , (KG); (MP)
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University, Shahrekord, Iran
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
- * E-mail: (MMB); , (KG); (MP)
| | - Motahare-Sadat Hashemi
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Masoud Etemadifar
- Department of Neurology and Isfahan Neurosurgery Research Center, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
- * E-mail: (MMB); , (KG); (MP)
| |
Collapse
|
28
|
Larsen K, Bæk R, Sahin C, Kjær L, Christiansen G, Nielsen J, Farajzadeh L, Otzen DE. Molecular characteristics of porcine alpha-synuclein splicing variants. Biochimie 2020; 180:121-133. [PMID: 33152422 DOI: 10.1016/j.biochi.2020.10.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/05/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022]
Abstract
Alpha-synuclein (α-syn) is a 140 amino acid, intrinsically disordered protein with a potential role in neurotransmitter vesicle release. The protein is natively unfolded under physiological conditions, and is expressed predominantly in neural tissue. α-syn is associated with neuropathological conditions in Parkinson's disease, where the protein misfolds into oligomers and fibrils resulting in aggregates in Lewy bodies. Here we report the molecular cloning of SNCA cDNA encoding porcine α-syn and transcript variants hereof. Six transcripts coding for porcine α-syn are presented in the report, of which three result from exon skipping, generating in-frame splicing of coding exons 3 and 5. The splicing pattern of these alternative spliced variants is conserved between human and pig. All the observed in-frame deletions yield significantly shorter α-syn proteins compared with the 140 amino acid full-length protein. Expression analysis performed by real-time quantitative RT-PCR revealed a differential expression of the six transcript splicing variants in different pig organs and tissues. Common for all splicing variants, a very high transcript expression was detected in brain tissues and in spinal cord and very low or no expression outside the central nervous system. The porcine α-syn protein demonstrated markedly different biophysical characteristics compared with its human counterpart. No fibrillation of porcine α-syn was observed with the pig wild-type α-syn and A30P α-syn, and both variants show significantly reduced ability to bind to lipid vesicles. Overexpression of mutated porcine α-syn might recapitulate the human PD pathogenesis and lead to the identification of genetic modifiers of the disease.
Collapse
Affiliation(s)
- Knud Larsen
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, DK-8000, Aarhus C, Denmark.
| | - Rikke Bæk
- Department of Clinical Immunology, Aalborg University Hospital, Urbansgade 32, DK-9000, Aalborg, Denmark.
| | - Cagla Sahin
- Interdisciplinary Nanoscience Center and Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, DK-8000, Aarhus C, Denmark.
| | - Lars Kjær
- Interdisciplinary Nanoscience Center and Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, DK-8000, Aarhus C, Denmark.
| | - Gunna Christiansen
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000, Aarhus C, Denmark.
| | - Janni Nielsen
- Interdisciplinary Nanoscience Center and Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, DK-8000, Aarhus C, Denmark.
| | - Leila Farajzadeh
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, DK-8000, Aarhus C, Denmark.
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center and Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, DK-8000, Aarhus C, Denmark.
| |
Collapse
|
29
|
Dick F, Nido GS, Alves GW, Tysnes OB, Nilsen GH, Dölle C, Tzoulis C. Differential transcript usage in the Parkinson's disease brain. PLoS Genet 2020; 16:e1009182. [PMID: 33137089 PMCID: PMC7660910 DOI: 10.1371/journal.pgen.1009182] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/12/2020] [Accepted: 10/08/2020] [Indexed: 11/18/2022] Open
Abstract
Studies of differential gene expression have identified several molecular signatures and pathways associated with Parkinson's disease (PD). The role of isoform switches and differential transcript usage (DTU) remains, however, unexplored. Here, we report the first genome-wide study of DTU in PD. We performed RNA sequencing following ribosomal RNA depletion in prefrontal cortex samples of 49 individuals from two independent case-control cohorts. DTU was assessed using two transcript-count based approaches, implemented in the DRIMSeq and DEXSeq tools. Multiple PD-associated DTU events were detected in each cohort, of which 23 DTU events in 19 genes replicated across both patient cohorts. For several of these, including THEM5, SLC16A1 and BCHE, DTU was predicted to have substantial functional consequences, such as altered subcellular localization or switching to non-protein coding isoforms. Furthermore, genes with PD-associated DTU were enriched in functional pathways previously linked to PD, including reactive oxygen species generation and protein homeostasis. Importantly, the vast majority of genes exhibiting DTU were not differentially expressed at the gene-level and were therefore not identified by conventional differential gene expression analysis. Our findings provide the first insight into the DTU landscape of PD and identify novel disease-associated genes. Moreover, we show that DTU may have important functional consequences in the PD brain, since it is predicted to alter the functional composition of the proteome. Based on these results, we propose that DTU analysis is an essential complement to differential gene expression studies in order to provide a more accurate and complete picture of disease-associated transcriptomic alterations.
Collapse
Affiliation(s)
- Fiona Dick
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Gonzalo S. Nido
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Guido Werner Alves
- The Norwegian Center for Movement Disorders and Department of Neurology, Stavanger University Hospital, Stavanger, Norway
- Department of Mathematics and Natural Sciences, University of Stavanger, Stavanger, Norway
| | - Ole-Bjørn Tysnes
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Gry Hilde Nilsen
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Christian Dölle
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Charalampos Tzoulis
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- * E-mail:
| |
Collapse
|
30
|
Hanan M, Simchovitz A, Yayon N, Vaknine S, Cohen‐Fultheim R, Karmon M, Madrer N, Rohrlich TM, Maman M, Bennett ER, Greenberg DS, Meshorer E, Levanon EY, Soreq H, Kadener S. A Parkinson's disease CircRNAs Resource reveals a link between circSLC8A1 and oxidative stress. EMBO Mol Med 2020; 12:e11942. [PMID: 32715657 PMCID: PMC7507321 DOI: 10.15252/emmm.201911942] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/19/2022] Open
Abstract
Circular RNAs (circRNAs) are brain-abundant RNAs of mostly unknown functions. To seek their roles in Parkinson's disease (PD), we generated an RNA sequencing resource of several brain region tissues from dozens of PD and control donors. In the healthy substantia nigra (SN), circRNAs accumulate in an age-dependent manner, but in the PD SN this correlation is lost and the total number of circRNAs reduced. In contrast, the levels of circRNAs are increased in the other studied brain regions of PD patients. We also found circSLC8A1 to increase in the SN of PD individuals. CircSLC8A1 carries 7 binding sites for miR-128 and is strongly bound to the microRNA effector protein Ago2. Indeed, RNA targets of miR-128 are also increased in PD individuals, suggesting that circSLC8A1 regulates miR-128 function and/or activity. CircSLC8A1 levels also increased in cultured cells exposed to the oxidative stress-inducing agent paraquat but were decreased in cells treated with the neuroprotective antioxidant regulator drug Simvastatin. Together, our work links circSLC8A1 to oxidative stress-related Parkinsonism and suggests further exploration of its molecular function in PD.
Collapse
Affiliation(s)
- Mor Hanan
- Department of Biological ChemistryThe Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Alon Simchovitz
- Department of Biological ChemistryThe Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Nadav Yayon
- Department of Biological ChemistryThe Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Shani Vaknine
- Department of Biological ChemistryThe Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Roni Cohen‐Fultheim
- Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat GanIsrael
| | - Miriam Karmon
- Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat GanIsrael
| | - Nimrod Madrer
- Department of Biological ChemistryThe Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Talia Miriam Rohrlich
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
- Department of GeneticsThe Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Moria Maman
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
- Department of GeneticsThe Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Estelle R Bennett
- Department of Biological ChemistryThe Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - David S Greenberg
- Department of Biological ChemistryThe Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Eran Meshorer
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
- Department of GeneticsThe Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Erez Y Levanon
- Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat GanIsrael
| | - Hermona Soreq
- Department of Biological ChemistryThe Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Sebastian Kadener
- Department of Biological ChemistryThe Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
- Biology DepartmentBrandeis UniversityWalthamMAUSA
| |
Collapse
|
31
|
Zafarullah M, Tang HT, Durbin-Johnson B, Fourie E, Hessl D, Rivera SM, Tassone F. FMR1 locus isoforms: potential biomarker candidates in fragile X-associated tremor/ataxia syndrome (FXTAS). Sci Rep 2020; 10:11099. [PMID: 32632326 PMCID: PMC7338407 DOI: 10.1038/s41598-020-67946-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Fragile X associated tremor/ataxia syndrome (FXTAS) is a late adult-onset neurodegenerative disorder that affects movement and cognition in male and female carriers of a premutation allele of 55-200 CGG repeats in the Fragile X mental retardation (FMR1) gene. It is currently unknown if and when an individual carrier of a premutation allele will develop FXTAS, as clinical assessment fails to identify carriers at risk before significant neurological symptoms are evident. The primary objective of this study was to investigate the alternative splicing landscape at the FMR1 locus in conjunction with brain measures in male individuals with a premutation allele enrolled in a very first longitudinal study, compared to age-matched healthy male controls, with the purpose of identifying biomarkers for early diagnosis, disease prediction and, a progression of FXTAS. Our findings indicate that increased expression of FMR1 mRNA isoforms, including Iso4/4b, Iso10/10b, as well as of the ASFMR1 mRNAs Iso131bp, are present in premutation carriers as compared to non-carrier healthy controls. More specifically, we observed a higher expression of Iso4/4b and Iso10/10b, which encode for truncated proteins, only in those premutation carriers who developed symptoms of FXTAS over time as compared to non-carrier healthy controls, suggesting a potential role in the development of the disorder. In addition, we found a significant association of these molecular changes with various measurements of brain morphology, including the middle cerebellar peduncle (MCP), superior cerebellar peduncle (SCP), pons, and midbrain, indicating their potential contribution to the pathogenesis of FXTAS. Interestingly, the high expression levels of Iso4/4b observed both at visit 1 and visit 2 and found to be associated with a decrease in mean MCP width only in those individuals who developed FXTAS over time, suggests their role as potential biomarkers for early diagnosis of FXTAS.
Collapse
Affiliation(s)
- Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, 95817 CA, USA
| | - Hiu-Tung Tang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, 95817 CA, USA
| | - Blythe Durbin-Johnson
- Division of Biostatistics, School of Medicine, University of California Davis, Davis, CA, USA
| | - Emily Fourie
- Center for Mind and Brain, University of California Davis, Davis, CA, USA
- Department of Psychology, University of California, Davis, Davis, CA, USA
| | - David Hessl
- MIND Institute, University of California Davis Medical Center, Sacramento, 95817 CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis Medical Center, Sacramento, 95817 CA, USA
| | - Susan M Rivera
- Center for Mind and Brain, University of California Davis, Davis, CA, USA
- Department of Psychology, University of California, Davis, Davis, CA, USA
- MIND Institute, University of California Davis Medical Center, Sacramento, 95817 CA, USA
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, 95817 CA, USA.
- MIND Institute, University of California Davis Medical Center, Sacramento, 95817 CA, USA.
| |
Collapse
|
32
|
Splicing Players Are Differently Expressed in Sporadic Amyotrophic Lateral Sclerosis Molecular Clusters and Brain Regions. Cells 2020; 9:cells9010159. [PMID: 31936368 PMCID: PMC7017305 DOI: 10.3390/cells9010159] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/23/2019] [Accepted: 01/04/2020] [Indexed: 12/12/2022] Open
Abstract
Splicing is a tightly orchestrated process by which the brain produces protein diversity over time and space. While this process specializes and diversifies neurons, its deregulation may be responsible for their selective degeneration. In amyotrophic lateral sclerosis (ALS), splicing defects have been investigated at the singular gene level without considering the higher-order level, involving the entire splicing machinery. In this study, we analyzed the complete spectrum (396) of genes encoding splicing factors in the motor cortex (41) and spinal cord (40) samples from control and sporadic ALS (SALS) patients. A substantial number of genes (184) displayed significant expression changes in tissue types or disease states, were implicated in distinct splicing complexes and showed different topological hierarchical roles based on protein–protein interactions. The deregulation of one of these splicing factors has a central topological role, i.e., the transcription factor YBX1, which might also have an impact on stress granule formation, a pathological marker associated with ALS.
Collapse
|
33
|
Perrone B, La Cognata V, Sprovieri T, Ungaro C, Conforti FL, Andò S, Cavallaro S. Alternative Splicing of ALS Genes: Misregulation and Potential Therapies. Cell Mol Neurobiol 2020; 40:1-14. [PMID: 31385134 PMCID: PMC11448865 DOI: 10.1007/s10571-019-00717-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022]
Abstract
Neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), Parkinson's, Alzheimer's, and Huntington's disease affect a rapidly increasing population worldwide. Although common pathogenic mechanisms have been identified (e.g., protein aggregation or dysfunction, immune response alteration and axonal degeneration), the molecular events underlying timing, dosage, expression, and location of RNA molecules are still not fully elucidated. In particular, the alternative splicing (AS) mechanism is a crucial player in RNA processing and represents a fundamental determinant for brain development, as well as for the physiological functions of neuronal circuits. Although in recent years our knowledge of AS events has increased substantially, deciphering the molecular interconnections between splicing and ALS remains a complex task and still requires considerable efforts. In the present review, we will summarize the current scientific evidence outlining the involvement of AS in the pathogenic processes of ALS. We will also focus on recent insights concerning the tuning of splicing mechanisms by epigenomic and epi-transcriptomic regulation, providing an overview of the available genomic technologies to investigate AS drivers on a genome-wide scale, even at a single-cell level resolution. In the future, gene therapy strategies and RNA-based technologies may be utilized to intercept or modulate the splicing mechanism and produce beneficial effects against ALS.
Collapse
Affiliation(s)
- Benedetta Perrone
- Institute for Biomedical Research and Innovation, National Research Council, Mangone, Cosenza, Italy
| | - Valentina La Cognata
- Institute for Biomedical Research and Innovation, National Research Council, Catania, Italy
| | - Teresa Sprovieri
- Institute for Biomedical Research and Innovation, National Research Council, Mangone, Cosenza, Italy
| | - Carmine Ungaro
- Institute for Biomedical Research and Innovation, National Research Council, Mangone, Cosenza, Italy
| | - Francesca Luisa Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
- Centro Sanitario, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council, Catania, Italy.
| |
Collapse
|
34
|
Constantinof A, Boureau L, Moisiadis VG, Kostaki A, Szyf M, Matthews SG. Prenatal Glucocorticoid Exposure Results in Changes in Gene Transcription and DNA Methylation in the Female Juvenile Guinea Pig Hippocampus Across Three Generations. Sci Rep 2019; 9:18211. [PMID: 31796763 PMCID: PMC6890750 DOI: 10.1038/s41598-019-54456-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/13/2019] [Indexed: 01/01/2023] Open
Abstract
Synthetic glucocorticoids (sGC) are administered to women at risk for pre-term delivery, to mature the fetal lung and decrease neonatal morbidity. sGC also profoundly affect the fetal brain. The hippocampus expresses high levels of glucocorticoid (GR) and mineralocorticoid receptor (MR), and its development is affected by elevated fetal glucocorticoid levels. Antenatal sGC results in neuroendocrine and behavioral changes that persist in three generations of female guinea pig offspring of the paternal lineage. We hypothesized that antenatal sGC results in transgenerational changes in gene expression that correlate with changes in DNA methylation. We used RNASeq and capture probe bisulfite sequencing to investigate the transcriptomic and epigenomic effects of antenatal sGC exposure in the hippocampus of three generations of juvenile female offspring from the paternal lineage. Antenatal sGC exposure (F0 pregnancy) resulted in generation-specific changes in hippocampal gene transcription and DNA methylation. Significant changes in individual CpG methylation occurred in RNApol II binding regions of small non-coding RNA (snRNA) genes, which implicates alternative splicing as a mechanism involved in transgenerational transmission of the effects of antenatal sGC. This study provides novel perspectives on the mechanisms involved in transgenerational transmission and highlights the importance of human studies to determine the longer-term effects of antenatal sGC on hippocampal-related function.
Collapse
Affiliation(s)
- Andrea Constantinof
- Department of Physiology, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Lisa Boureau
- Department of Pharmacology & Therapeutics, Sackler Program for Epigenetics & Psychobiology, McGill University, Montreal, QC, H3G1Y6, Canada
| | - Vasilis G Moisiadis
- Department of Physiology, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Alisa Kostaki
- Department of Physiology, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Moshe Szyf
- Department of Pharmacology & Therapeutics, Sackler Program for Epigenetics & Psychobiology, McGill University, Montreal, QC, H3G1Y6, Canada
| | - Stephen G Matthews
- Department of Physiology, University of Toronto, Toronto, ON, M5S1A8, Canada.
- Department of Obstetrics and Gynecology, Toronto, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, M5S1A8, Canada.
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G1X5, Canada.
| |
Collapse
|
35
|
Pérez-Roca L, Prada-Dacasa P, Segú-Vergés C, Gámez-Valero A, Serrano-Muñoz MA, Santos C, Beyer K. Glucocerebrosidase regulators SCARB2 and TFEB are up-regulated in Lewy body disease brain. Neurosci Lett 2019; 706:164-168. [PMID: 31116970 DOI: 10.1016/j.neulet.2019.05.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 11/30/2022]
Abstract
Mutations in the glucocerebrosidase (GCase) gene (GBA) and GCase deficiency are major risk factors for Lewy body diseases. Decreased GCase activity enhances alpha-synuclein aggregation and disease development. Lysosomal integral membrane protein type 2, encoded by SCARB2, binds GCase targeting it to lysosomes and transcription factor EB (Tfeb) regulates lysosomal proteostasis. Our aim was to find out if GCase deficiency in Lewy body diseases is accompanied by SCARB2 and TFEB deregulation at the transcriptional level involving alternative splicing as well. Relative mRNA expression of two SCARB2 and two TFEB transcripts was studied by real-time PCR in post-mortem brain samples of cases with pure Lewy body pathology (LBP), cases with concomitant LBP and Alzheimer disease-like pathology, and controls. TFEB expression was increased in the temporal cortex and caudate nucleus of LBP cases, and SCARB2 was differentially expressed. Female-gender associated overexpression of all transcripts was found in the caudate nucleus, and disease duration associated TFEB expression changes in the temporal cortex. SCARB2 and TFEB expression correlated negatively with GBA mRNA expression in the temporal cortex. Our findings show disease-specific deregulation of TFEB and SCARB2 expression affecting alternative promoter usage and alternative splicing in Lewy body diseases.
Collapse
Affiliation(s)
- Laia Pérez-Roca
- Department of Pathology, Hospital Universitari and Health Sciences Research Institute Germans Trias i Pujol, Badalona, Barcelona, Spain; Universitat Autònoma de Barcelona, Spain
| | | | | | - Ana Gámez-Valero
- Department of Pathology, Hospital Universitari and Health Sciences Research Institute Germans Trias i Pujol, Badalona, Barcelona, Spain; Universitat Autònoma de Barcelona, Spain
| | - María A Serrano-Muñoz
- Department of Pathology, Hospital Universitari and Health Sciences Research Institute Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Cristina Santos
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Spain
| | - Katrin Beyer
- Department of Pathology, Hospital Universitari and Health Sciences Research Institute Germans Trias i Pujol, Badalona, Barcelona, Spain; Universitat Autònoma de Barcelona, Spain.
| |
Collapse
|
36
|
Tan SH, Karri V, Tay NWR, Chang KH, Ah HY, Ng PQ, Ho HS, Keh HW, Candasamy M. Emerging pathways to neurodegeneration: Dissecting the critical molecular mechanisms in Alzheimer's disease, Parkinson's disease. Biomed Pharmacother 2019; 111:765-777. [PMID: 30612001 DOI: 10.1016/j.biopha.2018.12.101] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 12/18/2018] [Accepted: 12/23/2018] [Indexed: 01/02/2023] Open
Abstract
Neurodegenerative diseases are usually sporadic in nature and commonly influenced by a wide range of genetic, life style and environmental factors. A unifying feature of Alzheimer's disease (AD) and Parkinson's disease (PD) is the abnormal accumulation and processing of mutant or damaged intra and extracellular proteins; this leads to neuronal vulnerability and dysfunction in the brain. Through a detailed review of ubiquitin proteasome, mRNA splicing, mitochondrial dysfunction, and oxidative stress pathway interrelation on neurodegeneration can improve the understanding of the disease mechanism. The identified pathways common to AD and PD nominate promising new targets for further studies, and as well as biomarkers. These insights suggested would likely provide major stimuli for developing unified treatment approaches to combat neurodegeneration. More broadly, pathways can serve as vehicles for integrating findings from diverse studies of neurodegeneration. The evidence examined in this review provides a brief overview of the current literature on significant pathways in promoting in AD, PD. Additionally, these insights suggest that biomarkers and treatment strategies may require simultaneous targeting of multiple components.
Collapse
Affiliation(s)
- Sean Hong Tan
- School of Pharmacy, International Medical University, No 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Venkatanaidu Karri
- Department of Toxicogenomics, Faculty of Health, Medicines, Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Nicole Wuen Rong Tay
- School of Pharmacy, International Medical University, No 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Kuan Hui Chang
- School of Pharmacy, International Medical University, No 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Hui Yen Ah
- School of Pharmacy, International Medical University, No 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Phui Qi Ng
- School of Pharmacy, International Medical University, No 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Hui San Ho
- School of Pharmacy, International Medical University, No 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Hsiao Wai Keh
- School of Pharmacy, International Medical University, No 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Mayuren Candasamy
- Department of Life Sciences, School of Pharmacy, International Medical University, No 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
37
|
Vinnakota RL, Yedlapudi D, Manda KM, Bhamidipati K, Bommakanti KT, RangaLakshmi GS, Kalivendi SV. Identification of an Alternatively Spliced α-Synuclein Isoform That Generates a 41-Amino Acid N-Terminal Truncated Peptide, 41-syn: Role in Dopamine Homeostasis. ACS Chem Neurosci 2018; 9:2948-2958. [PMID: 29996045 DOI: 10.1021/acschemneuro.8b00140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The presynaptic protein, α-synuclein (α-syn), has been shown to play a crucial role in multiple neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), and dementia with Lewy bodies (DLB). The three major domains of α-syn protein were shown to govern its membrane interaction, protein fibrillation, and chaperone activity. So far, four different alternatively spliced isoforms of α-syn, which lack either exon 3 (syn-126) or exon 5 (syn-112) or both (syn-98) resulting in altered function of the proteins, have been identified. In the present study, we have identified the smallest isoform of α-syn due to the skipping of exons 3 and 4 generating a 238 bp transcript. Due to the presence of a premature stop codon, the 238 bp transcript generated a 41 aa N-terminal peptide instead of the 78 aa protein, which is secreted into the extracellular medium when overexpressed in cells. The presence of 41-syn was initially noticed in the substantia nigra of PD autopsy tissues, as well as in cells undergoing oxidative stress. In vitro studies inferred that 41-syn neither aggregates nor alters the aggregation propensity of either WT or 112-syn. Overexpression of 41-syn or treatment of cells with 41-syn peptide did not affect cell viability. However, PC-12 cells treated with 41-syn exhibited a time and dose dependent enhancement in the cellular uptake of dopamine. Based on the physiological role of the N-terminal region of α-syn in modulating membrane trafficking events, we believe that the identification of 41-syn may provide novel impetus in unraveling the physiological basis of alternative splicing events in governing PD pathophysiology.
Collapse
Affiliation(s)
| | | | | | | | | | - G Sree RangaLakshmi
- Department of Neurology, Osmania General Hospital, Afzal Gunj, Hyderabad, 500012 TS, India
| | | |
Collapse
|
38
|
Nery TGM, Silva EM, Tavares R, Passetti F. The Challenge to Search for New Nervous System Disease Biomarker Candidates: the Opportunity to Use the Proteogenomics Approach. J Mol Neurosci 2018; 67:150-164. [PMID: 30554402 DOI: 10.1007/s12031-018-1220-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/18/2018] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease, Parkinson's disease, prion diseases, schizophrenia, and multiple sclerosis are the most common nervous system diseases, affecting millions of people worldwide. The current scientific literature associates these pathological conditions to abnormal expression levels of certain proteins, which in turn improved the knowledge concerning normal and affected brains. However, there is no available cure or preventive therapy for any of these disorders. Proteogenomics is a recent approach defined as the data integration of both nucleotide high-throughput sequencing and protein mass spectrometry technologies. In the last years, proteogenomics studies in distinct diseases have emerged as a strategy for the identification of uncharacterized proteoforms, which are all the different protein forms derived from a single gene. For many of these diseases, at least one protein used as biomarker presents more than one proteoform, which fosters the analysis of publicly available data focusing proteoforms. Given this context, we describe the most important biomarkers for each neurodegenerative disease and how genomics, transcriptomics, and proteomics separately contributed to unveil them. Finally, we present a selection of proteogenomics studies in which the combination of nucleotide and proteome high-throughput data, from cell lines or brain tissue samples, is used to uncover proteoforms not previously described. We believe that this new approach may improve our knowledge about nervous system diseases and brain function and an opportunity to identify new biomarker candidates.
Collapse
Affiliation(s)
- Thais Guimarães Martins Nery
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (Fiocruz), Manguinhos, Rio de Janeiro, Brazil
- Laboratory of Gene Expression Regulation, Carlos Chagas Institute, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Esdras Matheus Silva
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (Fiocruz), Manguinhos, Rio de Janeiro, Brazil
- Laboratory of Gene Expression Regulation, Carlos Chagas Institute, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Raphael Tavares
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Fabio Passetti
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (Fiocruz), Manguinhos, Rio de Janeiro, Brazil.
- Laboratory of Gene Expression Regulation, Carlos Chagas Institute, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil.
| |
Collapse
|
39
|
Darwish SS, Abdel-Halim M, ElHady AK, Salah M, Abadi AH, Becker W, Engel M. Development of novel amide-derivatized 2,4-bispyridyl thiophenes as highly potent and selective Dyrk1A inhibitors. Part II: Identification of the cyclopropylamide moiety as a key modification. Eur J Med Chem 2018; 158:270-285. [PMID: 30223116 DOI: 10.1016/j.ejmech.2018.08.097] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 11/28/2022]
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A) is a potential target in Alzheimer's disease (AD) because of the established correlation between its over-expression and generation of neurofibrillary tangles (NFT) as well as the accumulation of amyloid plaques. However, the use of Dyrk1A inhibitors requires a high degree of selectivity over closely related kinases. In addition, the physicochemical properties of the Dyrk1A inhibitors need to be controlled to enable CNS permeability. In the present study, we optimized our previously published 2,4-bispyridyl thiophene class of Dyrk1A inhibitors by the synthesis of a small library of amide derivatives, carrying alkyl, cycloalkyl, as well as acidic and basic residues. Among this library, the cyclopropylamido modification (compound 4b) was identified as being highly beneficial for several crucial properties. 4b displayed high potency and selectivity against Dyrk1A over closely related kinases in cell-free assays (IC50: Dyrk1A = 3.2 nM; Dyrk1B = 72.9 nM and Clk1 = 270 nM) and inhibited the Dyrk1A activity in HeLa cells with high efficacy (IC50: 43 nM), while no significant cytotoxicity was observed. In addition, the cyclopropylamido group conferred high metabolic stability and maintained the calculated physicochemical properties in a range compatible with a potential CNS activity. Thus, based on its favourable properties, 4b can be considered as a candidate for further in vivo testing in animal models of AD.
Collapse
Affiliation(s)
- Sarah S Darwish
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Ahmed K ElHady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Mohamed Salah
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123, Saarbrücken, Germany
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Walter Becker
- Institute of Pharmacology and Toxicology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123, Saarbrücken, Germany.
| |
Collapse
|
40
|
La Cognata V, Morello G, Gentile G, Cavalcanti F, Cittadella R, Conforti FL, De Marco EV, Magariello A, Muglia M, Patitucci A, Spadafora P, D’Agata V, Ruggieri M, Cavallaro S. NeuroArray: A Customized aCGH for the Analysis of Copy Number Variations in Neurological Disorders. Curr Genomics 2018; 19:431-443. [PMID: 30258275 PMCID: PMC6128384 DOI: 10.2174/1389202919666180404105451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 02/02/2018] [Accepted: 03/13/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Neurological disorders are a highly heterogeneous group of pathological conditions that affect both the peripheral and the central nervous system. These pathologies are characterized by a complex and multifactorial etiology involving numerous environmental agents and genetic susceptibility factors. For this reason, the investigation of their pathogenetic basis by means of traditional methodological approaches is rather arduous. High-throughput genotyping technologies, including the microarray-based comparative genomic hybridization (aCGH), are currently replacing classical detection methods, providing powerful molecular tools to identify genomic unbalanced structural rearrangements and explore their role in the pathogenesis of many complex human diseases. METHODS In this report, we comprehensively describe the design method, the procedures, validation, and implementation of an exon-centric customized aCGH (NeuroArray 1.0), tailored to detect both single and multi-exon deletions or duplications in a large set of multi- and monogenic neurological diseases. This focused platform enables a targeted measurement of structural imbalances across the human genome, targeting the clinically relevant genes at exon-level resolution. CONCLUSION An increasing use of the NeuroArray platform may offer new insights in investigating potential overlapping gene signatures among neurological conditions and defining genotype-phenotype relationships.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Sebastiano Cavallaro
- Address correspondence to this author at the Institute of Neurological Sciences, National Research Council, Via Paolo Gaifami 18, 95125, Catania, Italy; Tel: +39-095-7338111; E-mail:
| |
Collapse
|
41
|
Kim A, Nigmatullina R, Zalyalova Z, Soshnikova N, Krasnov A, Vorobyeva N, Georgieva S, Kudrin V, Narkevich V, Ugrumov M. Upgraded Methodology for the Development of Early Diagnosis of Parkinson's Disease Based on Searching Blood Markers in Patients and Experimental Models. Mol Neurobiol 2018; 56:3437-3450. [PMID: 30128652 DOI: 10.1007/s12035-018-1315-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 08/10/2018] [Indexed: 01/08/2023]
Abstract
Numerous attempts to develop an early diagnosis of Parkinson's disease (PD) by searching biomarkers in biological fluids were unsuccessful. The drawback of this methodology is searching markers in patients at the clinical stage without guarantee that they are also characteristic of either preclinical stage or prodromal stage (preclinical-prodromal stage). We attempted to upgrade this methodology by selecting only markers that are found both in patients and in PD animal models. HPLC and RT-PCR were used to estimate the concentration of amino acids, catecholamines/metabolites in plasma and gene expression in lymphocytes in 36 untreated early-stage PD patients and 52 controls, and in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice at modeling the clinical ("symptomatic") stage and preclinical-prodromal ("presymptomatic") stage of PD. It was shown that among 13 blood markers found in patients, 7 markers are characteristic of parkinsonian symptomatic mice and 3 markers of both symptomatic and presymptomatic mice. According to our suggestion, the detection of the same marker in patients and symptomatic animals indicates adequate reproduction of pathogenesis along the corresponding metabolic pathway, whereas the detection of the same marker in presymptomatic animals indicates its specificity for preclinical-prodromal stage. This means that the minority of markers found in patients-decreased concentration of L-3,4-dihydroxyphenylalanine (L-DOPA) and dihydroxyphenylacetic acid (DOPAC) and increased dopamine D3 receptor gene expression-are specific for preclinical-prodromal stage and are suitable for early diagnosis of PD. Thus, we upgraded a current methodology for development of early diagnosis of PD by searching blood markers not only in patients but also in parkinsonian animals.
Collapse
Affiliation(s)
- Alexander Kim
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Razina Nigmatullina
- Kazan State Medical University, Ministry of Health of the Russian Federation, Kazan, Russia
| | - Zuleikha Zalyalova
- Kazan State Medical University, Ministry of Health of the Russian Federation, Kazan, Russia
- Kazan Hospital for War Veterans, Ministry of Health of the Republic of Tatarstan, Kazan, Russia
| | | | - Alexey Krasnov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Sofia Georgieva
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | - Michael Ugrumov
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia.
- National Research University Higher School of Economics, Moscow, Russia.
| |
Collapse
|
42
|
Paiva I, Jain G, Lázaro DF, Jerčić KG, Hentrich T, Kerimoglu C, Pinho R, Szegő ÈM, Burkhardt S, Capece V, Halder R, Islam R, Xylaki M, Caldi Gomes LA, Roser AE, Lingor P, Schulze-Hentrich JM, Borovečki F, Fischer A, Outeiro TF. Alpha-synuclein deregulates the expression of COL4A2 and impairs ER-Golgi function. Neurobiol Dis 2018; 119:121-135. [PMID: 30092270 DOI: 10.1016/j.nbd.2018.08.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/12/2018] [Accepted: 08/03/2018] [Indexed: 12/21/2022] Open
Abstract
Alpha-synuclein (aSyn) is the major protein component of Lewy bodies and Lewy neurites, the typical pathological hallmarks in Parkinson's disease (PD) and Dementia with Lewy bodies. aSyn is capable of inducing transcriptional deregulation, but the precise effect of specific aSyn mutants associated with familial forms of PD, remains unclear. Here, we used transgenic mice overexpressing human wild-type (WT) or A30P aSyn to compare the transcriptional profiles of the two animal models. We found that A30P aSyn promotes strong transcriptional deregulation and increases DNA binding. Interestingly, COL4A2, a major component of basement membranes, was found to be upregulated in both A30P aSyn transgenic mice and in dopaminergic neurons expressing A30P aSyn, suggesting a crucial role for collagen related genes in aSyn-induced toxicity. Finally, we observed that A30P aSyn alters Golgi morphology and increases the susceptibility to endoplasmic reticulum (ER) stress in dopaminergic cells. In total, our findings provide novel insight into the putative role of aSyn on transcription and on the molecular mechanisms involved, thereby opening novel avenues for future therapeutic interventions in PD and other synucleinopathies.
Collapse
Affiliation(s)
- Isabel Paiva
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen 37073, Germany
| | - Gaurav Jain
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
| | - Diana F Lázaro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen 37073, Germany
| | - Kristina Gotovac Jerčić
- Department for Functional Genomics, Center for Translational and Clinical Research, University Hospital Center Zagreb, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Thomas Hentrich
- Institute of Medical Genetics and Applied Genomics, Faculty of Medicine, University of Tübingen, Tübingen 72076, Germany
| | - Cemil Kerimoglu
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany; Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Raquel Pinho
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen 37073, Germany
| | - Èva M Szegő
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen 37073, Germany
| | - Susanne Burkhardt
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
| | - Vincenzo Capece
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
| | - Rashi Halder
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
| | - Rezaul Islam
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
| | - Mary Xylaki
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen 37073, Germany
| | - Lucas A Caldi Gomes
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Anna-Elisa Roser
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Paul Lingor
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Julia M Schulze-Hentrich
- Institute of Medical Genetics and Applied Genomics, Faculty of Medicine, University of Tübingen, Tübingen 72076, Germany
| | - Fran Borovečki
- Department for Functional Genomics, Center for Translational and Clinical Research, University Hospital Center Zagreb, University of Zagreb School of Medicine, Zagreb, Croatia
| | - André Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany; Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen 37073, Germany; CEDOC - Chronic Diseases Research Center, Faculdade de Ciencias Medicas, Universidade Nova de Lisboa, Lisboa, Portugal; Max Planck Institute for Experimental Medicine, Göttingen 37075, Germany; Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle NE2 4HH, UK.
| |
Collapse
|
43
|
Karri V, Ramos D, Martinez JB, Odena A, Oliveira E, Coort SL, Evelo CT, Mariman ECM, Schuhmacher M, Kumar V. Differential protein expression of hippocampal cells associated with heavy metals (Pb, As, and MeHg) neurotoxicity: Deepening into the molecular mechanism of neurodegenerative diseases. J Proteomics 2018; 187:106-125. [PMID: 30017948 DOI: 10.1016/j.jprot.2018.06.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 12/29/2022]
Abstract
Chronic exposure to heavy metals such as Pb, As, and MeHg can be associated with an increased risk of developing neurodegenerative diseases. Our in vitro bioassays results showed the potency of heavy metals in the order of Pb < As < MeHg on hippocampal cells. The main objective of this study was combining in vitro label free proteomics and systems biology approach for elucidating patterns of biological response, discovering underlying mechanisms of Pb, As, and MeHg toxicity in hippocampal cells. The omics data was refined by using different filters and normalization and multilevel analysis tools were employed to explore the data visualization. The functional and pathway visualization was performed by using Gene ontology and PathVisio tools. Using these all integrated approaches, we identified significant proteins across treatments within the mitochondrial dysfunction, oxidative stress, ubiquitin proteome dysfunction, and mRNA splicing related to neurodegenerative diseases. The systems biology analysis revealed significant alterations in proteins implicated in Parkinson's disease (PD) and Alzheimer's disease (AD). The current proteomics analysis of three metals support the insight into the proteins involved in neurodegeneration and the altered proteins can be useful for metal-specific biomarkers of exposure and its adverse effects. SIGNIFICANCE The proteomics techniques have been claimed to be more sensitive than the conventional toxicological assays, facilitating the measurement of responses to heavy metals (Pb, As, and MeHg) exposure before obvious harm has occurred demonstrating their predictive value. Also, proteomics allows for the comparison of responses between Pb, As, and MeHg metals, permitting the evaluation of potency differences hippocampal cells of the brain. Hereby, the molecular information provided by pathway and gene functional analysis can be used to develop a more thorough understanding of each metal mechanism at the protein level for different neurological adverse outcomes (e.g. Parkinson's disease, Alzheimer's diseases). Efforts are put into developing proteomics based toxicity testing methods using in vitro models for improving human risk assessment. Some of the key proteins identified can also potentially be used as biomarkers in epidemiologic studies. These heavy metal response patterns shed new light on the mechanisms of mRNA splicing, ubiquitin pathway role in neurodegeneration, and can be useful for the development of molecular biomarkers of heavy metals exposure.
Collapse
Affiliation(s)
- Venkatanaidu Karri
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
| | - David Ramos
- Plataforma de Proteòmica, Parc Científic de Barcelona, C/Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Julia Bauzá Martinez
- Plataforma de Proteòmica, Parc Científic de Barcelona, C/Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Antonia Odena
- Plataforma de Proteòmica, Parc Científic de Barcelona, C/Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Eliandre Oliveira
- Unidad de Toxicologia, Parc Científic de Barcelona, C/Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Susan L Coort
- Department of Bioinformatics, BiGCaT, NUTRIM, Maastricht University, 6229, ER, Maastricht, the Netherlands
| | - Chris T Evelo
- Department of Bioinformatics, BiGCaT, NUTRIM, Maastricht University, 6229, ER, Maastricht, the Netherlands
| | - Edwin C M Mariman
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
| | - Vikas Kumar
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain; IISPV, Hospital Universitari Sant Joan de Reus, Universitat Rovira I Virgili, Reus, Spain.
| |
Collapse
|
44
|
Interrogating Parkinson's disease LRRK2 kinase pathway activity by assessing Rab10 phosphorylation in human neutrophils. Biochem J 2018; 475:23-44. [PMID: 29127255 PMCID: PMC5748842 DOI: 10.1042/bcj20170803] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 02/02/2023]
Abstract
There is compelling evidence for the role of the leucine-rich repeat kinase 2 (LRRK2) and in particular its kinase function in Parkinson's disease. Orally bioavailable, brain penetrant and potent LRRK2 kinase inhibitors are in the later stages of clinical development. Here, we describe a facile and robust assay to quantify LRRK2 kinase pathway activity by measuring LRRK2-mediated phosphorylation of Rab10 in human peripheral blood neutrophils. We use the selective MJFF-pRab10 monoclonal antibody recognising the Rab10 Thr73 phospho-epitope that is phosphorylated by LRRK2. We highlight the feasibility and practicability of using our assay in the clinical setting by studying a few patients with G2019S LRRK2 associated and sporadic Parkinson's as well as healthy controls. We suggest that peripheral blood neutrophils are a valuable resource for LRRK2 research and should be considered for inclusion in Parkinson's bio-repository collections as they are abundant, homogenous and express relatively high levels of LRRK2 as well as Rab10. In contrast, the widely used peripheral blood mononuclear cells are heterogeneous and only a minority of cells (monocytes and contaminating neutrophils) express LRRK2. While our LRRK2 kinase pathway assay could assist in patient stratification based on LRRK2 kinase activity, we envision that it may find greater utility in pharmacodynamic and target engagement studies in future LRRK2 inhibitor trials.
Collapse
|
45
|
Galganski L, Urbanek MO, Krzyzosiak WJ. Nuclear speckles: molecular organization, biological function and role in disease. Nucleic Acids Res 2017; 45:10350-10368. [PMID: 28977640 PMCID: PMC5737799 DOI: 10.1093/nar/gkx759] [Citation(s) in RCA: 342] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/18/2017] [Indexed: 12/13/2022] Open
Abstract
The nucleoplasm is not homogenous; it consists of many types of nuclear bodies, also known as nuclear domains or nuclear subcompartments. These self-organizing structures gather machinery involved in various nuclear activities. Nuclear speckles (NSs) or splicing speckles, also called interchromatin granule clusters, were discovered as sites for splicing factor storage and modification. Further studies on transcription and mRNA maturation and export revealed a more general role for splicing speckles in RNA metabolism. Here, we discuss the functional implications of the localization of numerous proteins crucial for epigenetic regulation, chromatin organization, DNA repair and RNA modification to nuclear speckles. We highlight recent advances suggesting that NSs facilitate integrated regulation of gene expression. In addition, we consider the influence of abundant regulatory and signaling proteins, i.e. protein kinases and proteins involved in protein ubiquitination, phosphoinositide signaling and nucleoskeletal organization, on pre-mRNA synthesis and maturation. While many of these regulatory proteins act within NSs, direct evidence for mRNA metabolism events occurring in NSs is still lacking. NSs contribute to numerous human diseases, including cancers and viral infections. In addition, recent data have demonstrated close relationships between these structures and the development of neurological disorders.
Collapse
Affiliation(s)
- Lukasz Galganski
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Martyna O Urbanek
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
46
|
Consales C, Merla C, Marino C, Benassi B. The epigenetic component of the brain response to electromagnetic stimulation in Parkinson's Disease patients: A literature overview. Bioelectromagnetics 2017; 39:3-14. [PMID: 28990199 DOI: 10.1002/bem.22083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/20/2017] [Indexed: 12/12/2022]
Abstract
Modulations of epigenetic machinery, namely DNA methylation pattern, histone modification, and non-coding RNAs expression, have been recently included among the key determinants contributing to Parkinson's Disease (PD) aetiopathogenesis and response to therapy. Along this line of reasoning, a set of experimental findings are highlighting the epigenetic-based response to electromagnetic (EM) therapies used to alleviate PD symptomatology, mainly Deep Brain Stimulation (DBS) and Transcranial Magnetic Stimulation (TMS). Notwithstanding the proven efficacy of EM therapies, the precise molecular mechanisms underlying the brain response to these types of stimulations are still far from being elucidated. In this review we provide an overview of the epigenetic changes triggered by DBS and TMS in both PD patients and neurons from different experimental animal models. Furthermore, we also propose a critical overview of the exposure modalities currently applied, in order to evaluate the technical robustness and dosimetric control of the stimulation, which are key issues to be carefully assessed when new molecular findings emerge from experimental studies. Bioelectromagnetics. 39:3-14, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Claudia Consales
- ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Caterina Merla
- ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy.,CNRS, Gustave Roussy, University of Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Carmela Marino
- ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Barbara Benassi
- ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| |
Collapse
|
47
|
La Cognata V, Maugeri G, D'Amico AG, Saccone S, Federico C, Cavallaro S, D'Agata V. Differential expression of PARK2 splice isoforms in an in vitro model of dopaminergic-like neurons exposed to toxic insults mimicking Parkinson's disease. J Cell Biochem 2017; 119:1062-1073. [PMID: 28688199 DOI: 10.1002/jcb.26274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/07/2017] [Indexed: 12/16/2022]
Abstract
Mutations in PARK2 (or parkin) are responsible for 50% of cases of autosomal-recessive juvenile-onset Parkinson's disease (PD). To date, 21 alternative splice variants of the human gene have been cloned. Yet most studies have focused on the full-length protein, whereas the spectrum of the parkin isoforms expressed in PD has never been investigated. In this study, the role of parkin proteins in PD neurodegeneration was explored for the first time by analyzing their expression profile in an in vitro model of PD. To do so, undifferentiated and all-trans-retinoic-acid (RA)-differentiated SH-SY5Y cells (which thereby acquire a PD-like phenotype) were exposed to PD-mimicking neurotoxins: 1-methyl-4-phenylpyridinium (MPP+ ) and 6-hydroxydopamine (6-OHDA) are widely used in PD models, whereas carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and carbobenzoxy-Leu-Leu-leucinal (MG132) interfere, respectively, with mitochondrial mitophagy and proteasomal degradation. Following treatment with each neurotoxin H1, the first parkin isoform to be cloned, was down-regulated compared to the respective controls both in undifferentiated and RA-differentiated cells. In contrast, the expression pattern of the minor splice isoforms varied as a function of the compound used: it was largely unchanged in both cell cultures (eg, H21-H6, H12, XP isoform) or it showed virtually opposite alterations in undifferentiated and RA-differentiated cells (eg, H20 and H3 isoform). This complex picture suggests that up- or down-regulation may be a direct effect of toxin exposure, and that the different isoforms may exert different actions in neurodegeneration via modulation of different molecular pathways.
Collapse
Affiliation(s)
- Valentina La Cognata
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Institute of Neurological Sciences, National Research Council, Catania, Italy
| | - Grazia Maugeri
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Agata Grazia D'Amico
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Department of Human Science and Promotion of Quality of Life, San Raffaele Open University of Rome, Rome, Italy
| | - Salvatore Saccone
- Section of Animal Biology, Department of Biological, Geological, and Environmental Sciences, University of Catania, Catania, Italy
| | - Concetta Federico
- Section of Animal Biology, Department of Biological, Geological, and Environmental Sciences, University of Catania, Catania, Italy
| | | | - Velia D'Agata
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
48
|
D'Amico AG, Maugeri G, Reitano R, Cavallaro S, D'Agata V. Proteomic Analysis of Parkin Isoforms Expression in Different Rat Brain Areas. Protein J 2017; 35:354-362. [PMID: 27601173 DOI: 10.1007/s10930-016-9679-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PARK2 gene's mutations are related to the familial form of juvenile Parkinsonism, also known as the autosomic recessive juvenile Parkinsonism. This gene encodes for parkin, a 465-amino acid protein. To date, a large number of parkin isoforms, generated by an alternative splicing mechanism, have been described. Currently, Gene Bank lists 27 rat PARK2 transcripts, which matches to 20 exclusive parkin alternative splice variants. Despite the existence of these isoforms, most of the studies carried out so far, have been focused only on the originally cloned parkin. In this work we have analyzed the expression profile of parkin isoforms in some rat brain areas including prefrontal cortex, hippocampus, substantia nigra and cerebellum. To discriminate among these isoforms, we detected their localization through the use of two antibodies that are able to identify different domains of the parkin canonical sequence. Our analysis has revealed that at least fourteen parkin isoforms are expressed in rat brain with a various distribution in the regions analyzed. Our study might help to elucidate the pathophysiological role of these proteins in the central nervous system.
Collapse
Affiliation(s)
- Agata Grazia D'Amico
- San Raffaele Open University of Rome, Rome, Italy.,Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Via S.Sofia, 87, 95123, Catania, Italy
| | - Grazia Maugeri
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Via S.Sofia, 87, 95123, Catania, Italy
| | - Rita Reitano
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Via S.Sofia, 87, 95123, Catania, Italy
| | - Sebastiano Cavallaro
- Institute of Neurological Sciences, Italian National Research Council, Catania, Italy
| | - Velia D'Agata
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Via S.Sofia, 87, 95123, Catania, Italy.
| |
Collapse
|
49
|
Gallego-Paez LM, Bordone MC, Leote AC, Saraiva-Agostinho N, Ascensão-Ferreira M, Barbosa-Morais NL. Alternative splicing: the pledge, the turn, and the prestige : The key role of alternative splicing in human biological systems. Hum Genet 2017; 136:1015-1042. [PMID: 28374191 PMCID: PMC5602094 DOI: 10.1007/s00439-017-1790-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/25/2017] [Indexed: 02/06/2023]
Abstract
Alternative pre-mRNA splicing is a tightly controlled process conducted by the spliceosome, with the assistance of several regulators, resulting in the expression of different transcript isoforms from the same gene and increasing both transcriptome and proteome complexity. The differences between alternative isoforms may be subtle but enough to change the function or localization of the translated proteins. A fine control of the isoform balance is, therefore, needed throughout developmental stages and adult tissues or physiological conditions and it does not come as a surprise that several diseases are caused by its deregulation. In this review, we aim to bring the splicing machinery on stage and raise the curtain on its mechanisms and regulation throughout several systems and tissues of the human body, from neurodevelopment to the interactions with the human microbiome. We discuss, on one hand, the essential role of alternative splicing in assuring tissue function, diversity, and swiftness of response in these systems or tissues, and on the other hand, what goes wrong when its regulatory mechanisms fail. We also focus on the possibilities that splicing modulation therapies open for the future of personalized medicine, along with the leading techniques in this field. The final act of the spliceosome, however, is yet to be fully revealed, as more knowledge is needed regarding the complex regulatory network that coordinates alternative splicing and how its dysfunction leads to disease.
Collapse
Affiliation(s)
- L M Gallego-Paez
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - M C Bordone
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - A C Leote
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - N Saraiva-Agostinho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - M Ascensão-Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - N L Barbosa-Morais
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
50
|
Integrative transcriptomic meta-analysis of Parkinson's disease and depression identifies NAMPT as a potential blood biomarker for de novo Parkinson's disease. Sci Rep 2016; 6:34579. [PMID: 27680512 PMCID: PMC5041099 DOI: 10.1038/srep34579] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/15/2016] [Indexed: 02/06/2023] Open
Abstract
Emerging research indicates that depression could be one of the earliest prodromal symptoms or risk factors associated with the pathogenesis of Parkinson’s disease (PD), the second most common neurodegenerative disorder worldwide, but the mechanisms underlying the association between both diseases remains unknown. Understanding the molecular networks linking these diseases could facilitate the discovery of novel diagnostic and therapeutics. Transcriptomic meta-analysis and network analysis of blood microarrays from untreated patients with PD and depression identified genes enriched in pathways related to the immune system, metabolism of lipids, glucose, fatty acids, nicotinamide, lysosome, insulin signaling and type 1 diabetes. Nicotinamide phosphoribosyltransferase (NAMPT), an adipokine that plays a role in lipid and glucose metabolism, was identified as the most significant dysregulated gene. Relative abundance of NAMPT was upregulated in blood of 99 early stage and drug-naïve PD patients compared to 101 healthy controls (HC) nested in the cross-sectional Parkinson’s Progression Markers Initiative (PPMI). Thus, here we demonstrate that shared molecular networks between PD and depression provide an additional source of biologically relevant biomarkers. Evaluation of NAMPT in a larger prospective longitudinal study including samples from other neurodegenerative diseases, and patients at risk of PD is warranted.
Collapse
|