1
|
Maalouf KE, Frederick DM, Sharma N, Haidar EA, Xiao T, Han JS, Mahamdeh MS, Soberman RJ, Rufino-Ramos D, Kleinstiver BP, Jinnah HA, Vaine CA, Bragg DC, Breyne K. Non-invasive detection of allele-specific CRISPR-SaCas9-KKH disruption of TOR1A DYT1 allele in a xenograft mouse model. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102466. [PMID: 40114706 PMCID: PMC11925580 DOI: 10.1016/j.omtn.2025.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/24/2025] [Indexed: 03/22/2025]
Abstract
DYT1 dystonia is a neurological movement disorder characterized by a dominant 3-base pair deletion (ΔGAG) in the TOR1A gene. This study demonstrates a gene-editing approach that selectively targets the ΔGAG mutation in the TOR1A DYT1 allele while safeguarding the wild-type (WT) TOR1A allele. We optimized an adeno-associated virus (AAV) vector-compatible variant of the Staphylococcus aureus Cas9 nuclease ortholog (SaCas9-KKH) in DYT1 patient-derived human neuronal progenitor cells (hNPCs). On-target editing of the TOR1A DYT1 allele was confirmed at the genomic level from brain tissue in a xenograft mouse model. To avoid brain biopsy for demonstrating TOR1A DYT1 editing, we developed a non-invasive monitoring method using extracellular RNA (exRNA). TOR1A exRNA was retrieved from the extracellular vesicle (EV) secretions of hNPCs and plasma samples, indicating whether the donor was a TOR1A DYT1 carrier. This technique enabled us to assess AAV-mediated disruption of the TOR1A DYT1 allele in the brains of mice using blood samples.
Collapse
Affiliation(s)
- Katia E Maalouf
- Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Dawn Madison Frederick
- Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Nutan Sharma
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Edwina Abou Haidar
- Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Tianhe Xiao
- Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Justin Seungkyu Han
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Mohammed S Mahamdeh
- Division of Cardiology, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Mass General Brigham Center of Excellence for Molecular Imaging, Charlestown, MA 02129, USA
| | - Roy J Soberman
- Mass General Brigham Center of Excellence for Molecular Imaging, Charlestown, MA 02129, USA
- Division of Nephrology and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - David Rufino-Ramos
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Hyder A Jinnah
- Departments of Neurology and Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Christine A Vaine
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - D Cristopher Bragg
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Koen Breyne
- Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA 02129, USA
| |
Collapse
|
2
|
Classification of Dystonia. Life (Basel) 2022; 12:life12020206. [PMID: 35207493 PMCID: PMC8875209 DOI: 10.3390/life12020206] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 12/23/2022] Open
Abstract
Dystonia is a hyperkinetic movement disorder characterized by abnormal movement or posture caused by excessive muscle contraction. Because of its wide clinical spectrum, dystonia is often underdiagnosed or misdiagnosed. In clinical practice, dystonia could often present in association with other movement disorders. An accurate physical examination is essential to describe the correct phenomenology. To help clinicians reaching the proper diagnosis, several classifications of dystonia have been proposed. The current classification consists of axis I, clinical characteristics, and axis II, etiology. Through the application of this classification system, movement disorder specialists could attempt to correctly characterize dystonia and guide patients to the most effective treatment. The aim of this article is to describe the phenomenological spectrum of dystonia, the last approved dystonia classification, and new emerging knowledge.
Collapse
|
3
|
Yokoi F, Chen HX, Oleas J, Dang MT, Xing H, Dexter KM, Li Y. Characterization of the direct pathway in Dyt1 ΔGAG heterozygous knock-in mice and dopamine receptor 1-expressing-cell-specific Dyt1 conditional knockout mice. Behav Brain Res 2021; 411:113381. [PMID: 34038798 PMCID: PMC8323984 DOI: 10.1016/j.bbr.2021.113381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 04/29/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
DYT1 dystonia is a movement disorder mainly caused by a trinucleotide deletion (ΔGAG) in DYT1 (TOR1A), coding for torsinA. DYT1 dystonia patients show trends of decreased striatal ligand-binding activities to dopamine receptors 1 (D1R) and 2 (D2R). Dyt1 ΔGAG knock-in (KI) mice, which have the corresponding ΔGAG deletion, similarly exhibit reduced striatal D1R and D2R-binding activities and their expression levels. While the consequences of D2R reduction have been well characterized, relatively little is known about the effect of D1R reduction. Here, locomotor responses to D1R and D2R antagonists were examined in Dyt1 KI mice. Dyt1 KI mice showed significantly less responsiveness to both D1R antagonist SCH 23390 and D2R antagonist raclopride. The electrophysiological recording indicated that Dyt1 KI mice showed a significantly increased paired-pulse ratio of the striatal D1R-expressing medium spiny neurons and altered miniature excitatory postsynaptic currents. To analyze the in vivo torsinA function in the D1R-expressing neurons further, Dyt1 conditional knockout (Dyt1 d1KO) mice in these neurons were generated. Dyt1 d1KO mice had decreased spontaneous locomotor activity and reduced numbers of slips in the beam-walking test. Dyt1 d1KO male mice showed abnormal gait. Dyt1 d1KO mice showed defective striatal D1R maturation. Moreover, the mutant striatal D1R-expressing medium spiny neurons had increased capacitance, decreased sEPSC frequency, and reduced intrinsic excitability. The results suggest that torsinA in the D1R-expressing cells plays an important role in the electrophysiological function and motor performance. Medical interventions to the direct pathway may affect the onset and symptoms of this disorder.
Collapse
Affiliation(s)
- Fumiaki Yokoi
- Norman Fixel Institute for Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32610-0236, USA.
| | - Huan-Xin Chen
- Norman Fixel Institute for Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32610-0236, USA
| | - Janneth Oleas
- Norman Fixel Institute for Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32610-0236, USA
| | - Mai Tu Dang
- Norman Fixel Institute for Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32610-0236, USA
| | - Hong Xing
- Norman Fixel Institute for Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32610-0236, USA
| | - Kelly M Dexter
- Norman Fixel Institute for Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32610-0236, USA
| | - Yuqing Li
- Norman Fixel Institute for Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32610-0236, USA.
| |
Collapse
|
4
|
Liu Y, Xing H, Yokoi F, Vaillancourt DE, Li Y. Investigating the role of striatal dopamine receptor 2 in motor coordination and balance: Insights into the pathogenesis of DYT1 dystonia. Behav Brain Res 2021; 403:113137. [PMID: 33476687 DOI: 10.1016/j.bbr.2021.113137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/29/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
Abstract
DYT1 or DYT-TOR1A dystonia is early-onset, generalized dystonia. Most DYT1 dystonia patients have a heterozygous trinucleotide GAG deletion in DYT1 or TOR1A gene, with a loss of a glutamic acid residue of the protein torsinA. DYT1 dystonia patients show reduced striatal dopamine D2 receptor (D2R) binding activity. We previously reported reduced striatal D2R proteins and impaired corticostriatal plasticity in Dyt1 ΔGAG heterozygous knock-in (Dyt1 KI) mice. It remains unclear how the D2R reduction contributes to the pathogenesis of DYT1 dystonia. Recent knockout studies indicate that D2R on cholinergic interneurons (Chls) has a significant role in corticostriatal plasticity, while D2R on medium spiny neurons (MSNs) plays a minor role. To determine how reduced D2Rs on ChIs and MSNs affect motor performance, we generated ChI- or MSN-specific D2R conditional knockout mice (Drd2 ChKO or Drd2 sKO). The striatal ChIs in the Drd2 ChKO mice showed an increased firing frequency and impaired quinpirole-induced inhibition, suggesting a reduced D2R function on the ChIs. Drd2 ChKO mice had an age-dependent deficient performance on the beam-walking test similar to the Dyt1 KI mice. The Drd2 sKO mice, conversely, had a deficit on the rotarod but not the beam-walking test. Our findings suggest that D2Rs on Chls and MSNs have critical roles in motor control and balance. The similarity of the beam-walking deficit between the Drd2 ChKO and Dyt1 KI mice supports our earlier notion that D2R reduction on striatal ChIs contributes to the pathophysiology and the motor symptoms of DYT1 dystonia.
Collapse
Affiliation(s)
- Yuning Liu
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States; Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Hong Xing
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Fumiaki Yokoi
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - David E Vaillancourt
- Department of Applied Physiology and Kinesiology, Biomedical Engineering, and Neurology, University of Florida, Gainesville, FL, United States
| | - Yuqing Li
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States; Genetics Institute, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
5
|
The Role of Torsin AAA+ Proteins in Preserving Nuclear Envelope Integrity and Safeguarding Against Disease. Biomolecules 2020; 10:biom10030468. [PMID: 32204310 PMCID: PMC7175109 DOI: 10.3390/biom10030468] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/17/2022] Open
Abstract
Torsin ATPases are members of the AAA+ (ATPases associated with various cellular activities) superfamily of proteins, which participate in essential cellular processes. While AAA+ proteins are ubiquitously expressed and demonstrate distinct subcellular localizations, Torsins are the only AAA+ to reside within the nuclear envelope (NE) and endoplasmic reticulum (ER) network. Moreover, due to the absence of integral catalytic features, Torsins require the NE- and ER-specific regulatory cofactors, lamina-associated polypeptide 1 (LAP1) and luminal domain like LAP1 (LULL1), to efficiently trigger their atypical mode of ATP hydrolysis. Despite their implication in an ever-growing list of diverse processes, the specific contributions of Torsin/cofactor assemblies in maintaining normal cellular physiology remain largely enigmatic. Resolving gaps in the functional and mechanistic principles of Torsins and their cofactors are of considerable medical importance, as aberrant Torsin behavior is the principal cause of the movement disorder DYT1 early-onset dystonia. In this review, we examine recent findings regarding the phenotypic consequences of compromised Torsin and cofactor activities. In particular, we focus on the molecular features underlying NE defects and the contributions of Torsins to nuclear pore complex biogenesis, as well as the growing implications of Torsins in cellular lipid metabolism. Additionally, we discuss how understanding Torsins may facilitate the study of essential but poorly understood processes at the NE and ER, and aid in the development of therapeutic strategies for dystonia.
Collapse
|
6
|
Yokoi F, Oleas J, Xing H, Liu Y, Dexter KM, Misztal C, Gerard M, Efimenko I, Lynch P, Villanueva M, Alsina R, Krishnaswamy S, Vaillancourt DE, Li Y. Decreased number of striatal cholinergic interneurons and motor deficits in dopamine receptor 2-expressing-cell-specific Dyt1 conditional knockout mice. Neurobiol Dis 2020; 134:104638. [PMID: 31618684 PMCID: PMC7323754 DOI: 10.1016/j.nbd.2019.104638] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 12/28/2022] Open
Abstract
DYT1 early-onset generalized torsion dystonia is a hereditary movement disorder characterized by abnormal postures and repeated movements. It is caused mainly by a heterozygous trinucleotide deletion in DYT1/TOR1A, coding for torsinA. The mutation may lead to a partial loss of torsinA function. Functional alterations of the basal ganglia circuits have been implicated in this disease. Striatal dopamine receptor 2 (D2R) levels are significantly decreased in DYT1 dystonia patients and in the animal models of DYT1 dystonia. D2R-expressing cells, such as the medium spiny neurons in the indirect pathway, striatal cholinergic interneurons, and dopaminergic neurons in the basal ganglia circuits, contribute to motor performance. However, the function of torsinA in these neurons and its contribution to the motor symptoms is not clear. Here, D2R-expressing-cell-specific Dyt1 conditional knockout (d2KO) mice were generated and in vivo effects of torsinA loss in the corresponding cells were examined. The Dyt1 d2KO mice showed significant reductions of striatal torsinA, acetylcholine metabolic enzymes, Tropomyosin receptor kinase A (TrkA), and cholinergic interneurons. The Dyt1 d2KO mice also showed significant reductions of striatal D2R dimers and tyrosine hydroxylase without significant alteration in striatal monoamine contents or the number of dopaminergic neurons in the substantia nigra. The Dyt1 d2KO male mice showed motor deficits in the accelerated rotarod and beam-walking tests without overt dystonic symptoms. Moreover, the Dyt1 d2KO male mice showed significant correlations between striatal monoamines and locomotion. The results suggest that torsinA in the D2R-expressing cells play a critical role in the development or survival of the striatal cholinergic interneurons, expression of striatal D2R mature form, and motor performance. Medical interventions to compensate for the loss of torsinA function in these neurons may affect the onset and symptoms of this disease.
Collapse
Affiliation(s)
- Fumiaki Yokoi
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States.
| | - Janneth Oleas
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States
| | - Hong Xing
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States
| | - Yuning Liu
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States
| | - Kelly M Dexter
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States
| | - Carly Misztal
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States
| | - Melinda Gerard
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States
| | - Iakov Efimenko
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States
| | - Patrick Lynch
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States
| | - Matthew Villanueva
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States
| | - Raul Alsina
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States
| | - Shiv Krishnaswamy
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States
| | - David E Vaillancourt
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611-8205, United States; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611-8205, United States; Department of Neurology and Center for Movement Disorders and Neurorestoration, College of Medicine, University of Florida, Gainesville, FL 32611-8205, United States
| | - Yuqing Li
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States.
| |
Collapse
|
7
|
Yokoi F, Jiang F, Dexter K, Salvato B, Li Y. Improved survival and overt "dystonic" symptoms in a torsinA hypofunction mouse model. Behav Brain Res 2019; 381:112451. [PMID: 31891745 DOI: 10.1016/j.bbr.2019.112451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 12/25/2022]
Abstract
DYT1 dystonia is an inherited movement disorder without obvious neurodegeneration. Multiple mutant mouse models exhibit motor deficits without overt "dystonic" symptoms and neurodegeneration. However, some mouse models do. Among the later models, the N-CKO mouse model, which has a heterozygous Tor1a/Dyt1 knockout (KO) in one allele and Nestin-cre-mediated conditional KO in the other, exhibits a severe lack of weight gain, neurodegeneration, overt "dystonic" symptoms, such as overt leg extension, weak walking, twisted hindpaw and stiff hindlimb, and complete infantile lethality. However, it is not clear if the overt dystonic symptoms were caused by the neurodegeneration in the dying N-CKO mice. Here, the effects of improved maternal care and nutrition during early life on the symptoms in N-CKO mice were analyzed by culling the litter and providing wet food to examine whether the overt dystonic symptoms and severe lack of weight gain are caused by malnutrition-related neurodegeneration. Although the N-CKO mice in this study replicated the severe lack of weight gain and overt "dystonic" symptoms during the lactation period regardless of culling at postnatal day zero or later, there was no significant difference in the brain astrocytes and apoptosis between the N-CKO and control mice. Moreover, more than half of the N-CKO mice with culling survived past the lactation period. The surviving adult N-CKO mice did not display overt "dystonic" symptoms, and in addition they still exhibited small body weight. The results suggest that the overt "dystonic" symptoms in the N-CKO mice were independent of prominent neurodegeneration, which negates the role of neurodegeneration in the pathogenesis of DYT1 dystonia.
Collapse
Affiliation(s)
- Fumiaki Yokoi
- Department of Neurology and Norman Fixel Institute of Neurological Diseases, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Fangfang Jiang
- Department of Neurology and Norman Fixel Institute of Neurological Diseases, College of Medicine, University of Florida, Gainesville, FL, USA; Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Kelly Dexter
- Department of Neurology and Norman Fixel Institute of Neurological Diseases, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Bryan Salvato
- Department of Neurology and Norman Fixel Institute of Neurological Diseases, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yuqing Li
- Department of Neurology and Norman Fixel Institute of Neurological Diseases, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
8
|
Gonzalez-Alegre P. Advances in molecular and cell biology of dystonia: Focus on torsinA. Neurobiol Dis 2019; 127:233-241. [DOI: 10.1016/j.nbd.2019.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/20/2019] [Accepted: 03/09/2019] [Indexed: 12/15/2022] Open
|
9
|
Iqbal Z, Koht J, Pihlstrøm L, Henriksen SP, Cappelletti C, Russel MB, Norberto de Souza O, Skogseid IM, Toft M. Missense mutations in DYT-TOR1A dystonia. NEUROLOGY-GENETICS 2019; 5:e343. [PMID: 31321303 PMCID: PMC6563516 DOI: 10.1212/nxg.0000000000000343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/09/2019] [Indexed: 11/15/2022]
Affiliation(s)
- Zafar Iqbal
- Department of Neurology (Z.I., L.P., S.P.H., C.C,. I.M.S,. M.T), Oslo University Hospital; Institute of Clinical Medicine (J.K., M.T), University of Oslo; Department of Neurology (J.K), Drammen Hospital, Vestre Viken Hospital Trust; Head and Neck Research Group, Research Center (M.B.R), Akershus University Hospital; Campus Akershus University Hospital (M.B.R), University of Oslo, Norway; and Faculty of Informatics, Laboratory for Bioinformatics, Modelling & Simulation of Biosystems (O.N.D.S), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Jeanette Koht
- Department of Neurology (Z.I., L.P., S.P.H., C.C,. I.M.S,. M.T), Oslo University Hospital; Institute of Clinical Medicine (J.K., M.T), University of Oslo; Department of Neurology (J.K), Drammen Hospital, Vestre Viken Hospital Trust; Head and Neck Research Group, Research Center (M.B.R), Akershus University Hospital; Campus Akershus University Hospital (M.B.R), University of Oslo, Norway; and Faculty of Informatics, Laboratory for Bioinformatics, Modelling & Simulation of Biosystems (O.N.D.S), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Lasse Pihlstrøm
- Department of Neurology (Z.I., L.P., S.P.H., C.C,. I.M.S,. M.T), Oslo University Hospital; Institute of Clinical Medicine (J.K., M.T), University of Oslo; Department of Neurology (J.K), Drammen Hospital, Vestre Viken Hospital Trust; Head and Neck Research Group, Research Center (M.B.R), Akershus University Hospital; Campus Akershus University Hospital (M.B.R), University of Oslo, Norway; and Faculty of Informatics, Laboratory for Bioinformatics, Modelling & Simulation of Biosystems (O.N.D.S), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Sandra P Henriksen
- Department of Neurology (Z.I., L.P., S.P.H., C.C,. I.M.S,. M.T), Oslo University Hospital; Institute of Clinical Medicine (J.K., M.T), University of Oslo; Department of Neurology (J.K), Drammen Hospital, Vestre Viken Hospital Trust; Head and Neck Research Group, Research Center (M.B.R), Akershus University Hospital; Campus Akershus University Hospital (M.B.R), University of Oslo, Norway; and Faculty of Informatics, Laboratory for Bioinformatics, Modelling & Simulation of Biosystems (O.N.D.S), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Chiara Cappelletti
- Department of Neurology (Z.I., L.P., S.P.H., C.C,. I.M.S,. M.T), Oslo University Hospital; Institute of Clinical Medicine (J.K., M.T), University of Oslo; Department of Neurology (J.K), Drammen Hospital, Vestre Viken Hospital Trust; Head and Neck Research Group, Research Center (M.B.R), Akershus University Hospital; Campus Akershus University Hospital (M.B.R), University of Oslo, Norway; and Faculty of Informatics, Laboratory for Bioinformatics, Modelling & Simulation of Biosystems (O.N.D.S), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Michael Bjørn Russel
- Department of Neurology (Z.I., L.P., S.P.H., C.C,. I.M.S,. M.T), Oslo University Hospital; Institute of Clinical Medicine (J.K., M.T), University of Oslo; Department of Neurology (J.K), Drammen Hospital, Vestre Viken Hospital Trust; Head and Neck Research Group, Research Center (M.B.R), Akershus University Hospital; Campus Akershus University Hospital (M.B.R), University of Oslo, Norway; and Faculty of Informatics, Laboratory for Bioinformatics, Modelling & Simulation of Biosystems (O.N.D.S), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Osmar Norberto de Souza
- Department of Neurology (Z.I., L.P., S.P.H., C.C,. I.M.S,. M.T), Oslo University Hospital; Institute of Clinical Medicine (J.K., M.T), University of Oslo; Department of Neurology (J.K), Drammen Hospital, Vestre Viken Hospital Trust; Head and Neck Research Group, Research Center (M.B.R), Akershus University Hospital; Campus Akershus University Hospital (M.B.R), University of Oslo, Norway; and Faculty of Informatics, Laboratory for Bioinformatics, Modelling & Simulation of Biosystems (O.N.D.S), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Inger Marie Skogseid
- Department of Neurology (Z.I., L.P., S.P.H., C.C,. I.M.S,. M.T), Oslo University Hospital; Institute of Clinical Medicine (J.K., M.T), University of Oslo; Department of Neurology (J.K), Drammen Hospital, Vestre Viken Hospital Trust; Head and Neck Research Group, Research Center (M.B.R), Akershus University Hospital; Campus Akershus University Hospital (M.B.R), University of Oslo, Norway; and Faculty of Informatics, Laboratory for Bioinformatics, Modelling & Simulation of Biosystems (O.N.D.S), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Mathias Toft
- Department of Neurology (Z.I., L.P., S.P.H., C.C,. I.M.S,. M.T), Oslo University Hospital; Institute of Clinical Medicine (J.K., M.T), University of Oslo; Department of Neurology (J.K), Drammen Hospital, Vestre Viken Hospital Trust; Head and Neck Research Group, Research Center (M.B.R), Akershus University Hospital; Campus Akershus University Hospital (M.B.R), University of Oslo, Norway; and Faculty of Informatics, Laboratory for Bioinformatics, Modelling & Simulation of Biosystems (O.N.D.S), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| |
Collapse
|
10
|
Kariminejad A, Dahl-Halvarsson M, Ravenscroft G, Afroozan F, Keshavarz E, Goullée H, Davis MR, Faraji Zonooz M, Najmabadi H, Laing NG, Tajsharghi H. TOR1A variants cause a severe arthrogryposis with developmental delay, strabismus and tremor. Brain 2019; 140:2851-2859. [PMID: 29053766 DOI: 10.1093/brain/awx230] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 07/20/2017] [Indexed: 12/14/2022] Open
Abstract
See Ginevrino and Valente (doi:10.1093/brain/awx260) for a scientific commentary on this article.
Autosomal dominant torsion dystonia-1 is a disease with incomplete penetrance most often caused by an in-frame GAG deletion (p.Glu303del) in the endoplasmic reticulum luminal protein torsinA encoded by TOR1A. We report an association of the homozygous dominant disease-causing TOR1A p.Glu303del mutation, and a novel homozygous missense variant (p.Gly318Ser) with a severe arthrogryposis phenotype with developmental delay, strabismus and tremor in three unrelated Iranian families. All parents who were carriers of the TOR1A variant showed no evidence of neurological symptoms or signs, indicating decreased penetrance similar to families with autosomal dominant torsion dystonia-1. The results from cell assays demonstrate that the p.Gly318Ser substitution causes a redistribution of torsinA from the endoplasmic reticulum to the nuclear envelope, similar to the hallmark of the p.Glu303del mutation. Our study highlights that TOR1A mutations should be considered in patients with severe arthrogryposis and further expands the phenotypic spectrum associated with TOR1A mutations.
Collapse
Affiliation(s)
| | - Martin Dahl-Halvarsson
- Department of Pathology, University of Gothenburg, Sahlgrenska University Hospital, Sweden
| | - Gianina Ravenscroft
- Centre for Medical Research, The University of Western Australia and the Harry Perkins Institute for Medical Research, Nedlands, Western Australia, Australia
| | - Fariba Afroozan
- Kariminejad-Najmabadi Pathology and Genetics Center, Tehran, Iran
| | - Elham Keshavarz
- Department of Radiology, Mahdieh Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Hayley Goullée
- Centre for Medical Research, The University of Western Australia and the Harry Perkins Institute for Medical Research, Nedlands, Western Australia, Australia
| | - Mark R Davis
- Department of Diagnostic Genomics, Pathwest, QEII Medical Centre, Nedlands, Western Australia, Australia
| | | | | | - Nigel G Laing
- Centre for Medical Research, The University of Western Australia and the Harry Perkins Institute for Medical Research, Nedlands, Western Australia, Australia
| | - Homa Tajsharghi
- Centre for Medical Research, The University of Western Australia and the Harry Perkins Institute for Medical Research, Nedlands, Western Australia, Australia.,School of Health and Education, Division Biomedicine and Public Health, University of Skovde, SE-541 28, Skovde, Sweden
| |
Collapse
|
11
|
Shetty AS, Bhatia KP, Lang AE. Dystonia and Parkinson's disease: What is the relationship? Neurobiol Dis 2019; 132:104462. [PMID: 31078682 DOI: 10.1016/j.nbd.2019.05.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/15/2019] [Accepted: 05/07/2019] [Indexed: 01/30/2023] Open
Abstract
Dystonia and Parkinson's disease are closely linked disorders sharing many pathophysiological overlaps. Dystonia can be seen in 30% or more of the patients suffering with PD and sometimes can precede the overt parkinsonism. The response of early dystonia to the introduction of dopamine replacement therapy (levodopa, dopamine agonists) is variable; dystonia commonly occurs in PD patients following levodopa initiation. Similarly, parkinsonism is commonly seen in patients with mutations in various DYT genes including those involved in the dopamine synthesis pathway. Pharmacological blockade of dopamine receptors can cause both tardive dystonia and parkinsonism and these movement disorders syndromes can occur in many other neurodegenerative, genetic, toxic and metabolic diseases. Pallidotomy in the past and currently deep brain stimulation largely involving the GPi are effective treatment options for both dystonia and parkinsonism. However, the physiological mechanisms underlying the response of these two different movement disorder syndromes are poorly understood. Interestingly, DBS for PD can cause dystonia such as blepharospasm and bilateral pallidal DBS for dystonia can result in features of parkinsonism. Advances in our understanding of these responses may provide better explanations for the relationship between dystonia and Parkinson's disease.
Collapse
Affiliation(s)
- Aakash S Shetty
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Kailash P Bhatia
- Department of Clinical Movement Disorders and Motor Neuroscience, University College London (UCL), Institute of Neurology, Queen Square, London, United Kingdom
| | - Anthony E Lang
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada.
| |
Collapse
|
12
|
Salawu EO. The Impairment of TorsinA's Binding to and Interactions With Its Activator: An Atomistic Molecular Dynamics Study of Primary Dystonia. Front Mol Biosci 2018; 5:64. [PMID: 30042949 PMCID: PMC6048259 DOI: 10.3389/fmolb.2018.00064] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/19/2018] [Indexed: 01/23/2023] Open
Abstract
Primary dystonia's prolonged muscle contractions and the associated abnormal postures and twisting movements remain incurable. Genetic mutation/deletion of GAG from TorsonA's gene resulting in ΔE303 (which weakens the binding between TorsinA and its activator, such as LULL1) primarily cause this neurodegenerative disorder. We studied TorsinA-LULL1 (or TorsinAΔE303-LULL1) bindings and interactions. For the first time, we show the atomic details of TorsinA-LULL1 dynamic interactions and TorsinAΔE303-LULL1 dynamic interactions and their binding affinities. Our results show extensive effects of ΔE303 on TorsinAΔE303-LULL1 interactions, and suggest that the differences between TorsinA-LULL1 interactions and TorsinAΔE303-LULL1 interactions are non-subtle. ΔE303 significantly weakens TorsinAΔE303-LULL1's binding affinity. We present pieces of evidence proving that the effects of ΔE303 (on the differences between TorsinA-LULL1 interactions and TorsinAΔE303-LULL1 interactions) are more pronounced than previously suggested, and that the nanobody used for achieving the X-ray crystallization in the previous study attenuated the differences between TorsinA-LULL1 and TorsinAΔE303-LULL1 interactions. Our accounts of the dynamic interactions between “TorsinA and LULL1” and between “TorsinAΔE303 and LULL1” and the detailed effects of ΔE303 on TorsinA-/TorsinAΔE303-LULL1 build on previous findings and offer new insights for a better understanding of the molecular basis of Primary Dystonia. Our results have long-term potentials of guiding the development of medications for the disease.
Collapse
Affiliation(s)
- Emmanuel O Salawu
- TIGP Bioinformatics Program, Academia Sinica, Taipei, Taiwan.,Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan.,School of Computer Science, University of Hertfordshire, Hertfordshire, United Kingdom.,Bioinformatics Center, Sheridan, WY, United States
| |
Collapse
|
13
|
Piovesana LG, Torres FR, Azevedo PC, Amaral TP, Lopes-Cendes I, D'Abreu A. New THAP1 mutation and role of putative modifier in TOR1A. Acta Neurol Scand 2017; 135:183-188. [PMID: 26940431 DOI: 10.1111/ane.12579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2016] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The prevalence of DYT1 (mutation in TOR1A) and DYT6 (mutation in THAP1) may vary in different populations, which can have important implications in clinical investigation. Our goal was to characterize patients with inherited and isolated dystonia and determine the frequency of mutations responsible for DYT1 and DYT6 in Brazilian patients. METHODS Two movement disorder specialists examined 78 patients with idiopathic isolated dystonia using a standardized questionnaire, before sequencing TOR1A and THAP1 genes. RESULTS Clinically, our cohort was similar to those described in the international literature. Molecular studies of 68 subjects revealed only one potentially deleterious variant in THAP1 (1/68 patients, 1.47%). This was a novel 10-bp deletion at the end of exon 1, g.5308_5317del (ng_011837.1), which is predicted to create an alternative splicing and the insertion of a premature stop codon. Although we did not observe any potentially deleterious mutations in TOR1A, we found the missense variant rs1801968 (TOR1A p.D216H), previously reported as either a modifier of dystonia phenotype or a predisposing factor for dystonia. However, we did not identify any phenotypic impact related to the missense variant rs1801968 (P = 0.3387). CONCLUSIONS Although clinically similar to most cohorts with dystonia worldwide, the classical mutation (c.907_909delGAG) in TOR1A (causing DYT1) is absent in our patients. However, we found a potentially deleterious THAP1 mutation not previously reported. In addition, we found no association of rs1801968 with dystonia.
Collapse
Affiliation(s)
- L. G. Piovesana
- Department of Neurology; University of Campinas (UNICAMP); Campinas SP Brazil
| | - F. R. Torres
- Department of Medical Genetics; University of Campinas (UNICAMP); Campinas SP Brazil
| | - P. C. Azevedo
- Department of Neurology; University of Campinas (UNICAMP); Campinas SP Brazil
| | - T. P. Amaral
- Department of Medical Genetics; University of Campinas (UNICAMP); Campinas SP Brazil
| | - I. Lopes-Cendes
- Department of Medical Genetics; University of Campinas (UNICAMP); Campinas SP Brazil
| | - A. D'Abreu
- Department of Neurology; University of Campinas (UNICAMP); Campinas SP Brazil
| |
Collapse
|
14
|
Cascalho A, Jacquemyn J, Goodchild RE. Membrane defects and genetic redundancy: Are we at a turning point for DYT1 dystonia? Mov Disord 2016; 32:371-381. [PMID: 27911022 DOI: 10.1002/mds.26880] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/24/2016] [Accepted: 10/29/2016] [Indexed: 12/11/2022] Open
Abstract
Heterozygosity for a 3-base pair deletion (ΔGAG) in TOR1A/torsinA is one of the most common causes of hereditary dystonia. In this review, we highlight current understanding of how this mutation causes disease from research spanning structural biochemistry, cell science, neurobiology, and several model organisms. We now know that homozygosity for ΔGAG has the same effects as Tor1aKO , implicating a partial loss of function mechanism in the ΔGAG/+ disease state. In addition, torsinA loss specifically affects neurons in mice, even though the gene is broadly expressed, apparently because of differential expression of homologous torsinB. Furthermore, certain neuronal subtypes are more severely affected by torsinA loss. Interestingly, these include striatal cholinergic interneurons that display abnormal responses to dopamine in several Tor1a animal models. There is also progress on understanding torsinA molecular cell biology. The structural basis of how ΔGAG inhibits torsinA ATPase activity is defined, although mutant torsinAΔGAG protein also displays some characteristics suggesting it contributes to dystonia by a gain-of-function mechanism. Furthermore, a consistent relationship is emerging between torsin dysfunction and membrane biology, including an evolutionarily conserved regulation of lipid metabolism. Considered together, these findings provide major advances toward understanding the molecular, cellular, and neurobiological pathologies of DYT1/TOR1A dystonia that can hopefully be exploited for new approaches to treat this disease. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ana Cascalho
- Vlaams Instituut voor Biotechnologie Centre for the Biology of Disease, Leuven, Belgium.,KU Leuven, Department of Human Genetics, Leuven, Belgium
| | - Julie Jacquemyn
- Vlaams Instituut voor Biotechnologie Centre for the Biology of Disease, Leuven, Belgium.,KU Leuven, Department of Human Genetics, Leuven, Belgium
| | - Rose E Goodchild
- Vlaams Instituut voor Biotechnologie Centre for the Biology of Disease, Leuven, Belgium.,KU Leuven, Department of Human Genetics, Leuven, Belgium
| |
Collapse
|
15
|
Zhou H, Skolnick J. A knowledge-based approach for predicting gene-disease associations. Bioinformatics 2016; 32:2831-8. [PMID: 27283949 DOI: 10.1093/bioinformatics/btw358] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/31/2016] [Indexed: 01/20/2023] Open
Abstract
MOTIVATION Recent advances of next-generation sequence technologies have made it possible to rapidly and inexpensively identify gene variations. Knowing the disease association of these gene variations is important for early intervention to treat deadly diseases and provide possible targets to cure these diseases. Genome-wide association studies (GWAS) have identified many individual genes associated with common diseases. To exploit the large amount of data obtained from GWAS studies and leverage our understanding of common as well as rare diseases, we have developed a knowledge-based approach to predict gene-disease associations. We first derive gene-gene mutual information by utilizing the cooccurrence of genes in known gene-disease association data. Subsequently, the mutual information is combined with known protein-protein interaction networks by a boosted tree regression method. RESULTS The method called Know-GENE is compared with the method of random walking on the heterogeneous network using the same input data. For a set of 960 diseases, using the same training data in testing in 3-fold cross-validation, the average recall rate within the top ranked 100 genes by Know-GENE is 65.0% compared with 37.9% by the state of the art random walking on heterogeneous network. This significant improvement is mostly due to the inclusion of knowledge-based mutual information. AVAILABILITY AND IMPLEMENTATION Predictions for genes associated with the 960 diseases are available at http://cssb2.biology.gatech.edu/knowgene CONTACT : skolnick@gatech.edu.
Collapse
Affiliation(s)
- Hongyi Zhou
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jeffrey Skolnick
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
16
|
Alexander J, Kalev O, Mehrabian S, Traykov L, Raycheva M, Kanakis D, Drineas P, Lutz MI, Ströbel T, Penz T, Schuster M, Bock C, Ferrer I, Paschou P, Kovacs GG. Familial early-onset dementia with complex neuropathologic phenotype and genomic background. Neurobiol Aging 2016; 42:199-204. [PMID: 27143436 DOI: 10.1016/j.neurobiolaging.2016.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/20/2016] [Accepted: 03/13/2016] [Indexed: 12/18/2022]
Abstract
Despite significant progress in our understanding of hereditary neurodegenerative diseases, the list of genes associated with early-onset dementia is not yet complete. In the present study, we describe a familial neurodegenerative disorder characterized clinically as the behavioral and/or dysexecutive variant of Alzheimer's disease with neuroradiologic features of Alzheimer's disease, however, lacking amyloid-β deposits in the brain. Instead, we observed a complex, 4 repeat predominant, tauopathy, together with a TAR DNA-binding protein of 43 kDa proteinopathy. Whole-exome sequencing on 2 affected siblings and 1 unaffected aunt uncovered a large number of candidate genes, including LRRK2 and SYNE2. In addition, DDI1, KRBA1, and TOR1A genes possessed novel stop-gain mutations only in the patients. Pathway, gene ontology, and network interaction analysis indicated the involvement of pathways related to neurodegeneration but revealed novel aspects also. This condition does not fit into any well-characterized category of neurodegenerative disorders. Exome sequencing did not disclose a single disease-specific gene mutation suggesting that a set of genes working together in different pathways may contribute to the etiology of the complex phenotype.
Collapse
Affiliation(s)
- John Alexander
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupoli, Greece
| | - Ognian Kalev
- Institute of Pathology and Neuropathology, Landes-Nervenklinik Wagner-Jauregg, Linz, Austria
| | - Shima Mehrabian
- Department of Neurology, UH "Alexandrovska", Sofia, Bulgaria
| | | | | | - Dimitrios Kanakis
- Department of Pathology, School of Medicine, Democritus University of Thrace, Alexandroupoli, Greece
| | - Petros Drineas
- Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Mirjam I Lutz
- Institute of Neurology, Medical University Vienna, Vienna, Austria
| | - Thomas Ströbel
- Institute of Neurology, Medical University Vienna, Vienna, Austria
| | - Thomas Penz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Michael Schuster
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Isidro Ferrer
- Institute of Neuropathology, IDIBELL-Bellvitge University Hospital, University of Barcelona, Hospitalet de Llobregat; CIBERNED (Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas), Barcelona, Spain
| | - Peristera Paschou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupoli, Greece.
| | - Gabor G Kovacs
- Institute of Neurology, Medical University Vienna, Vienna, Austria.
| |
Collapse
|
17
|
Torsin ATPases: structural insights and functional perspectives. Curr Opin Cell Biol 2016; 40:1-7. [PMID: 26803745 DOI: 10.1016/j.ceb.2016.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/22/2015] [Accepted: 01/02/2016] [Indexed: 12/29/2022]
Abstract
Torsin ATPases are the only members of the AAA+ ATPase family that localize to the endoplasmic reticulum and contiguous perinuclear space. Accordingly, they are well positioned to perform essential work in these compartments, but their precise functions remain elusive. Recent studies have deciphered an unusual ATPase activation mechanism relying on Torsin-associated transmembrane cofactors, LAP1 or LULL1. These findings profoundly change our molecular view of the Torsin machinery and rationalize several human mutations in TorsinA or LAP1 leading to congenital disorders, symptoms of which have recently been recapitulated in mouse models. Here, we review these recent advances in the Torsin field and discuss the most pressing questions in relation to nuclear envelope dynamics.
Collapse
|
18
|
Rachad L, El Kadmiri N, Slassi I, El Otmani H, Nadifi S. Genetic Aspects of Myoclonus–Dystonia Syndrome (MDS). Mol Neurobiol 2016; 54:939-942. [DOI: 10.1007/s12035-016-9712-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 01/11/2016] [Indexed: 11/30/2022]
|
19
|
Demircioglu FE, Sosa BA, Ingram J, Ploegh HL, Schwartz TU. Structures of TorsinA and its disease-mutant complexed with an activator reveal the molecular basis for primary dystonia. eLife 2016; 5:e17983. [PMID: 27490483 PMCID: PMC4999309 DOI: 10.7554/elife.17983] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/03/2016] [Indexed: 01/07/2023] Open
Abstract
The most common cause of early onset primary dystonia, a neuromuscular disease, is a glutamate deletion (ΔE) at position 302/303 of TorsinA, a AAA+ ATPase that resides in the endoplasmic reticulum. While the function of TorsinA remains elusive, the ΔE mutation is known to diminish binding of two TorsinA ATPase activators: lamina-associated protein 1 (LAP1) and its paralog, luminal domain like LAP1 (LULL1). Using a nanobody as a crystallization chaperone, we obtained a 1.4 Å crystal structure of human TorsinA in complex with LULL1. This nanobody likewise stabilized the weakened TorsinAΔE-LULL1 interaction, which enabled us to solve its structure at 1.4 Å also. A comparison of these structures shows, in atomic detail, the subtle differences in activator interactions that separate the healthy from the diseased state. This information may provide a structural platform for drug development, as a small molecule that rescues TorsinAΔE could serve as a cure for primary dystonia.
Collapse
Affiliation(s)
- F Esra Demircioglu
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Brian A Sosa
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Jessica Ingram
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Hidde L Ploegh
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Thomas U Schwartz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States,
| |
Collapse
|
20
|
Abstract
Torsin ATPases (Torsins) belong to the widespread AAA+ (ATPases associated with a variety of cellular activities) family of ATPases, which share structural similarity but have diverse cellular functions. Torsins are outliers in this family because they lack many characteristics of typical AAA+ proteins, and they are the only members of the AAA+ family located in the endoplasmic reticulum and contiguous perinuclear space. While it is clear that Torsins have essential roles in many, if not all metazoans, their precise cellular functions remain elusive. Studying Torsins has significant medical relevance since mutations in Torsins or Torsin-associated proteins result in a variety of congenital human disorders, the most frequent of which is early-onset torsion (DYT1) dystonia, a severe movement disorder. A better understanding of the Torsin system is needed to define the molecular etiology of these diseases, potentially enabling corrective therapy. Here, we provide a comprehensive overview of the Torsin system in metazoans, discuss functional clues obtained from various model systems and organisms and provide a phylogenetic and structural analysis of Torsins and their regulatory cofactors in relation to disease-causative mutations. Moreover, we review recent data that have led to a dramatically improved understanding of these machines at a molecular level, providing a foundation for investigating the molecular defects underlying the associated movement disorders. Lastly, we discuss our ideas on how recent progress may be utilized to inform future studies aimed at determining the cellular role(s) of these atypical molecular machines and their implications for dystonia treatment options.
Collapse
Affiliation(s)
- April E Rose
- a Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , CT , USA and
| | - Rebecca S H Brown
- a Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , CT , USA and
| | - Christian Schlieker
- a Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , CT , USA and.,b Department of Cell Biology , Yale School of Medicine , New Haven , CT , USA
| |
Collapse
|
21
|
Dobričić V, Kresojević N, Žarković M, Tomić A, Marjanović A, Westenberger A, Cvetković D, Svetel M, Novaković I, Kostić VS. Phenotype of non-c.907_909delGAG mutations in TOR1A: DYT1 dystonia revisited. Parkinsonism Relat Disord 2015; 21:1256-9. [PMID: 26297380 DOI: 10.1016/j.parkreldis.2015.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/25/2015] [Accepted: 08/06/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND In addition to the most frequent TOR1A/DYT1 mutation (c.907_909delGAG), a growing number of TOR1A sequence variants are found in dystonia patients. For most, functional characterization has demonstrated pathogenicity at different levels, implying that TOR1A genetic testing should not be limited to screening for c.907_909delGAG. METHODS We tested 461 Serbian patients with isolated or combined dystonia for changes in the TOR1A gene and performed a systematic literature review of the clinical characteristics of patients carrying TOR1A mutations other than c.907_909delGAG. RESULTS One likely pathogenic TOR1A mutation (c.385G>A, p.Val129Ile) was detected in an adult-onset cervical dystonia patient. This change is in proximity to the previously reported p.Glu121Lys mutation and predicted to decrease the stability of TOR1A-encoded protein TorsinA. CONCLUSIONS Our patient and three other reported carriers of non-c.907_909delGAG-mutations within the first three exons of TOR1A showed similar phenotypes of adult-onset focal or segmental cervical dystonia. This observation raises the possibility of genotype-phenotype correlations in DYT1 and indicates that the clinical spectrum of this type of dystonia might be broader then previous classic descriptions.
Collapse
Affiliation(s)
- Valerija Dobričić
- Neurology Clinic CCS, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nikola Kresojević
- Neurology Clinic CCS, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milena Žarković
- Neurology Clinic CCS, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Tomić
- Neurology Clinic CCS, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ana Marjanović
- Neurology Clinic CCS, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ana Westenberger
- Institute for Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Dragana Cvetković
- Department for Genetic and Evolution, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Marina Svetel
- Neurology Clinic CCS, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivana Novaković
- Institute for Human Genetics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir S Kostić
- Neurology Clinic CCS, School of Medicine, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
22
|
Yokoi F, Chen HX, Dang MT, Cheetham CC, Campbell SL, Roper SN, Sweatt JD, Li Y. Behavioral and electrophysiological characterization of Dyt1 heterozygous knockout mice. PLoS One 2015; 10:e0120916. [PMID: 25799505 PMCID: PMC4370625 DOI: 10.1371/journal.pone.0120916] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 01/28/2015] [Indexed: 12/19/2022] Open
Abstract
DYT1 dystonia is an inherited movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Most of the patients have a trinucleotide deletion (ΔGAG) corresponding to a glutamic acid in the C-terminal region (torsinA(ΔE)). Dyt1 ΔGAG heterozygous knock-in (KI) mice, which mimic ΔGAG mutation in the endogenous gene, exhibit motor deficits and deceased frequency of spontaneous excitatory post-synaptic currents (sEPSCs) and normal theta-burst-induced long-term potentiation (LTP) in the hippocampal CA1 region. Although Dyt1 KI mice show decreased hippocampal torsinA levels, it is not clear whether the decreased torsinA level itself affects the synaptic plasticity or torsinA(ΔE) does it. To analyze the effect of partial torsinA loss on motor behaviors and synaptic transmission, Dyt1 heterozygous knock-out (KO) mice were examined as a model of a frame-shift DYT1 mutation in patients. Consistent with Dyt1 KI mice, Dyt1 heterozygous KO mice showed motor deficits in the beam-walking test. Dyt1 heterozygous KO mice showed decreased hippocampal torsinA levels lower than those in Dyt1 KI mice. Reduced sEPSCs and normal miniature excitatory post-synaptic currents (mEPSCs) were also observed in the acute hippocampal brain slices from Dyt1 heterozygous KO mice, suggesting that the partial loss of torsinA function in Dyt1 KI mice causes action potential-dependent neurotransmitter release deficits. On the other hand, Dyt1 heterozygous KO mice showed enhanced hippocampal LTP, normal input-output relations and paired pulse ratios in the extracellular field recordings. The results suggest that maintaining an appropriate torsinA level is important to sustain normal motor performance, synaptic transmission and plasticity. Developing therapeutics to restore a normal torsinA level may help to prevent and treat the symptoms in DYT1 dystonia.
Collapse
Affiliation(s)
- Fumiaki Yokoi
- Department of Neurology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Huan-Xin Chen
- Department of Neurology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Mai Tu Dang
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Chad C. Cheetham
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Susan L. Campbell
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Steven N. Roper
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - J. David Sweatt
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Yuqing Li
- Department of Neurology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
23
|
|
24
|
LeDoux MS. Dystonia. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
25
|
Caldwell GA, Caldwell KA. Use of Caenorhabditis elegans to Model Human Movement Disorders. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00006-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
26
|
Yokoi F, Dang MT, Liu J, Gandre JR, Kwon K, Yuen R, Li Y. Decreased dopamine receptor 1 activity and impaired motor-skill transfer in Dyt1 ΔGAG heterozygous knock-in mice. Behav Brain Res 2014; 279:202-10. [PMID: 25451552 DOI: 10.1016/j.bbr.2014.11.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 11/21/2014] [Indexed: 01/08/2023]
Abstract
DYT1 dystonia is a movement disorder caused by a trinucleotide deletion (ΔGAG) in DYT1 (TOR1A), corresponding to a glutamic acid loss in the C-terminal region of torsinA. Functional alterations in the basal ganglia circuits have been reported in both DYT1 dystonia patients and rodent models. Dyt1 ΔGAG heterozygous knock-in (KI) mice exhibit motor deficits and decreased striatal dopamine receptor 2 (D2R) binding activity, suggesting a malfunction of the indirect pathway. However, the role of the direct pathway in pathogenesis of dystonia is not yet clear. Here, we report that Dyt1 KI mice exhibit significantly decreased striatal dopamine receptor 1 (D1R) binding activity and D1R protein levels, suggesting the alteration of the direct pathway. The decreased D1R may be caused by translational or post-translational processes since Dyt1 KI mice had normal levels of striatal D1R mRNA and a normal number of striatal neurons expressing D1R. Levels of striatal ionotropic glutamate receptor subunits, dopamine transporter, acetylcholine muscarinic M4 receptor and adenosine A2A receptor were not altered suggesting a specificity of affected polytopic membrane-associated proteins. Contribution of the direct pathway to motor-skill learning has been suggested in another pharmacological rat model injected with a D1R antagonist. In the present study, we developed a novel motor skill transfer test for mice and found deficits in Dyt1 KI mice. Further characterization of both the direct and the indirect pathways in Dyt1 KI mice will aid the development of novel therapeutic drugs.
Collapse
Affiliation(s)
- Fumiaki Yokoi
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Mai T Dang
- Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jun Liu
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jason R Gandre
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Kelly Kwon
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Robert Yuen
- Department of Radiology, School of Medicine, Saint Louis University, Saint Louis, MO 63104, USA
| | - Yuqing Li
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA.
| |
Collapse
|
27
|
Hettich J, Ryan SD, de Souza ON, Saraiva Macedo Timmers LF, Tsai S, Atai NA, da Hora CC, Zhang X, Kothary R, Snapp E, Ericsson M, Grundmann K, Breakefield XO, Nery FC. Biochemical and cellular analysis of human variants of the DYT1 dystonia protein, TorsinA/TOR1A. Hum Mutat 2014; 35:1101-13. [PMID: 24930953 DOI: 10.1002/humu.22602] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 06/04/2014] [Indexed: 12/24/2022]
Abstract
Early-onset dystonia is associated with the deletion of one of a pair of glutamic acid residues (c.904_906delGAG/c.907_909delGAG; p.Glu302del/Glu303del; ΔE 302/303) near the carboxyl-terminus of torsinA, a member of the AAA(+) protein family that localizes to the endoplasmic reticulum lumen and nuclear envelope. This deletion commonly underlies early-onset DYT1 dystonia. While the role of the disease-causing mutation, torsinAΔE, has been established through genetic association studies, it is much less clear whether other rare human variants of torsinA are pathogenic. Two missense variations have been described in single patients: R288Q (c.863G>A; p.Arg288Gln; R288Q) identified in a patient with onset of severe generalized dystonia and myoclonus since infancy and F205I (c.613T>A, p.Phe205Ile; F205I) in a psychiatric patient with late-onset focal dystonia. In this study, we have undertaken a series of analyses comparing the biochemical and cellular effects of these rare variants to torsinAΔE and wild-type (wt) torsinA to reveal whether there are common dysfunctional features. The results revealed that the variants, R288Q and F205I, are more similar in their properties to torsinAΔE protein than to torsinAwt. These findings provide functional evidence for the potential pathogenic nature of these rare sequence variants in the TOR1A gene, thus implicating these pathologies in the development of dystonia.
Collapse
Affiliation(s)
- Jasmin Hettich
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts; Department of Medical Genetics and Applied Genomics, University of Tuebingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Vulinovic F, Lohmann K, Rakovic A, Capetian P, Alvarez-Fischer D, Schmidt A, Weißbach A, Erogullari A, Kaiser FJ, Wiegers K, Ferbert A, Rolfs A, Klein C, Seibler P. Unraveling cellular phenotypes of novel TorsinA/TOR1A mutations. Hum Mutat 2014; 35:1114-22. [PMID: 24931141 DOI: 10.1002/humu.22604] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/04/2014] [Indexed: 01/17/2023]
Abstract
A three-nucleotide (GAG) deletion (ΔE) in TorsinA (TOR1A) has been identified as the most common cause of dominantly inherited early-onset torsion dystonia (DYT1). TOR1A encodes a chaperone-like AAA+-protein localized in the endoplasmic reticulum. Currently, only three additional, likely mutations have been reported in single dystonia patients. Here, we report two new, putative TOR1A mutations (p.A14_P15del and p.E121K) that we examined functionally in comparison with wild-type (WT) protein and two known mutations (ΔE and p.R288Q). While inclusion formation is a characteristic feature for ΔE TOR1A, elevated levels of aggregates for other mutations were not observed when compared with WT TOR1A. WT and mutant TOR1A showed preferred degradation through the autophagy-lysosome pathway, which is most pronounced for p.A14_P15del, p.R288Q, and ΔE TOR1A. Notably, blocking of the autophagy pathway with bafilomycin resulted in a significant increase in inclusion formation in p.E121K TOR1A. In addition, all variants had an influence on protein stability. Although the p.A14_P15del mutation affects the proposed oligomerization domain of TOR1A, this mutation did not disturb the ability to dimerize. Our findings demonstrate functional changes for all four mutations on different levels. Thus, both diagnostic and research genetic screening of dystonia patients should not be limited to testing for the ∆E mutation.
Collapse
Affiliation(s)
- Franca Vulinovic
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Cheng FB, Feng JC, Ma LY, Miao J, Ott T, Wan XH, Grundmann K. Combined occurrence of a novel TOR1A and a THAP1 mutation in primary dystonia. Mov Disord 2014; 29:1079-83. [PMID: 24862462 DOI: 10.1002/mds.25921] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 04/08/2014] [Accepted: 04/11/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The ΔGAG deletion of the TOR1A gene (DYT1) is responsible for DYT1 dystonia. However, no other TOR1A mutation has been reported in the Chinese population. METHODS Two hundred one dystonia patients without the ΔGAG deletion were screened for other mutations in TOR1A. Gene function changes were analyzed by subcellular distribution and luciferase reporter assay. RESULTS A novel TOR1A mutation (c.581A>T, p.Asp194Val) was found in a patient with early-onset segmental dystonia harboring a THAP1 mutation (c.539T>C, p.Leu180Ser). Overexpression of mutant TOR1A Asp194Val protein induces inclusion formation in SK-N-AS cell lines, and the repressive activity of the mutant THAP1 Leu180Ser protein on TOR1A gene expression is decreased compared with wild-type THAP1. CONCLUSIONS This is the first report about a dystonia patient harboring two distinct dystonia gene mutations. Functional analysis indicated a potential additive effect of these two mutations, which might provoke the occurrence of dystonic symptoms in this patient.
Collapse
Affiliation(s)
- Fu-Bo Cheng
- Department of Medical Genetics, University of Tuebingen, 72076, Germany; Department of Neurology, the First Hospital of Jilin University, Changchun, PR China
| | | | | | | | | | | | | |
Collapse
|
30
|
Oleas J, Yokoi F, DeAndrade MP, Pisani A, Li Y. Engineering animal models of dystonia. Mov Disord 2014; 28:990-1000. [PMID: 23893455 DOI: 10.1002/mds.25583] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 05/25/2013] [Accepted: 05/29/2013] [Indexed: 12/19/2022] Open
Abstract
Dystonia is a neurological disorder characterized by abnormal involuntary movements that are prolonged and often cause twisting and turning. Several genetically modified worms, fruit flies, and rodents have been generated as models of genetic dystonias, in particular DYT1, DYT11, and DYT12 dystonias. Although these models do not show overt dystonic symptoms, the rodent models exhibit motor deficits in specialized behavioral tasks, such as the rotarod and beam-walking tests. For example, in a rodent model of DYT12 dystonia, which is generally stress triggered, motor deficits are observed only after the animal is stressed. Moreover, in a rodent model of DYT1 dystonia, the motor and electrophysiological deficits can be rescued by trihexyphenidyl, a common anticholinergic medication used to treat dystonic symptoms in human patients. Biochemically, the DYT1 and DYT11 animal models also share some similarities to patients, such as a reduction in striatal D2 dopamine receptor and binding activities. In addition, conditional knockout mouse models for DYT1 and DYT11 dystonia demonstrate that loss of the causal dystonia-related proteins in the striatum leads to motor deficits. Interestingly, loss of the DYT1 dystonia causal protein in Purkinje cells shows an improvement in motor performance, suggesting that gene therapy targeting of the cerebellum or intervention in its downstream pathways may be useful. Finally, recent studies using DYT1 dystonia worm and mouse models led to a potential novel therapeutic agent, which is currently undergoing clinical trials. These results indicate that genetic animal models are powerful tools to elucidate the pathophysiology and to further develop new therapeutics for dystonia.
Collapse
Affiliation(s)
- Janneth Oleas
- Department of Neurology, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | |
Collapse
|
31
|
Pre-synaptic release deficits in a DYT1 dystonia mouse model. PLoS One 2013; 8:e72491. [PMID: 23967309 PMCID: PMC3742515 DOI: 10.1371/journal.pone.0072491] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 07/17/2013] [Indexed: 01/01/2023] Open
Abstract
DYT1 early-onset generalized torsion dystonia (DYT1 dystonia) is an inherited movement disorder caused by mutations in one allele of DYT1 (TOR1A), coding for torsinA. The most common mutation is a trinucleotide deletion (ΔGAG), which causes a deletion of a glutamic acid residue (ΔE) in the C-terminal region of torsinA. Although recent studies using cultured cells suggest that torsinA contributes to protein processing in the secretory pathway, endocytosis, and the stability of synaptic proteins, the nature of how this mutation affects synaptic transmission remains unclear. We previously reported that theta-burst-induced long-term potentiation (LTP) in the CA1 region of the hippocampal slice is not altered in Dyt1 ΔGAG heterozygous knock-in (KI) mice. Here, we examined short-term synaptic plasticity and synaptic transmission in the hippocampal slices. Field recordings in the hippocampal Schaffer collaterals (SC) pathway revealed significantly enhanced paired pulse ratios (PPRs) in Dyt1 ΔGAG heterozygous KI mice, suggesting an impaired synaptic vesicle release. Whole-cell recordings from the CA1 neurons showed that Dyt1 ΔGAG heterozygous KI mice exhibited normal miniature excitatory post-synaptic currents (mEPSC), suggesting that action-potential independent spontaneous pre-synaptic release was normal. On the other hand, there was a significant decrease in the frequency, but not amplitude or kinetics, of spontaneous excitatory post-synaptic currents (sEPSC) in Dyt1 ΔGAG heterozygous KI mice, suggesting that the action-potential dependent pre-synaptic release was impaired. Moreover, hippocampal torsinA was significantly reduced in Dyt1 ΔGAG heterozygous KI mice. Although the hippocampal slice model may not represent the neurons directly associated with dystonic symptoms, impaired release of neurotransmitters caused by partial dysfunction of torsinA in other brain regions may contribute to the pathophysiology of DYT1 dystonia.
Collapse
|
32
|
Caldwell KA, Shu Y, Roberts NB, Caldwell GA, O’Donnell JM. Invertebrate models of dystonia. Curr Neuropharmacol 2013; 11:16-29. [PMID: 23814534 PMCID: PMC3580786 DOI: 10.2174/157015913804999504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 06/02/2012] [Accepted: 07/03/2012] [Indexed: 01/15/2023] Open
Abstract
The neurological movement disorder dystonia is an umbrella term for a heterogeneous group of related conditions where at least 20 monogenic forms have been identified. Despite the substantial advances resulting from the identification of these loci, the function of many DYT gene products remains unclear. Comparative genomics using simple animal models to examine the evolutionarily conserved functional relationships with monogenic dystonias represents a rapid route toward a comprehensive understanding of these movement disorders. Current studies using the invertebrate animal models Caenorhabditis elegans and Drosophila melanogaster are uncovering cellular functions and mechanisms associated with mutant forms of the well-conserved gene products corresponding to DYT1, DYT5a, DYT5b, and DYT12 dystonias. Here we review recent findings from the invertebrate literature pertaining to molecular mechanisms of these gene products, torsinA, GTP cyclohydrolase I, tyrosine hydroxylase, and the alpha subunit of Na+/K ATPase, respectively. In each study, the application of powerful genetic tools developed over decades of intensive work with both of these invertebrate systems has led to mechanistic insights into these human disorders. These models are particularly amenable to large-scale genetic screens for modifiers or additional alleles, which are bolstering our understanding of the molecular functions associated with these gene products. Moreover, the use of invertebrate models for the evaluation of DYT genetic loci and their genetic interaction networks has predictive value and can provide a path forward for therapeutic intervention.
Collapse
Affiliation(s)
- Kim A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | | | | | | | | |
Collapse
|
33
|
Abstract
Dystonia has been defined as a syndrome of involuntary, sustained muscle contractions affecting one or more sites of the body, frequently causing twisting and repetitive movements or abnormal postures. Dystonia is also a clinical sign that can be the presenting or prominent manifestation of many neurodegenerative and neurometabolic disorders. Etiological categories include primary dystonia, secondary dystonia, heredodegenerative diseases with dystonia, and dystonia plus. Primary dystonia includes syndromes in which dystonia is the sole phenotypic manifestation with the exception that tremor can be present as well. Most primary dystonia begins in adults, and approximately 10% of probands report one or more affected family members. Many cases of childhood- and adolescent-onset dystonia are due to mutations in TOR1A and THAP1. Mutations in THAP1 and CIZ1 have been associated with sporadic and familial adult-onset dystonia. Although significant recent progress had been made in defining the genetic basis for most of the dystonia-plus and heredodegenerative diseases with dystonia, a major gap remains in understanding the genetic etiologies for most cases of adult-onset primary dystonia. Common themes in the cellular biology of dystonia include G1/S cell cycle control, monoaminergic neurotransmission, mitochondrial dysfunction, and the neuronal stress response.
Collapse
Affiliation(s)
- Mark S LeDoux
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
34
|
Paudel R, Hardy J, Revesz T, Holton JL, Houlden H. Review: Genetics and neuropathology of primary pure dystonia. Neuropathol Appl Neurobiol 2012; 38:520-34. [PMID: 22897341 DOI: 10.1111/j.1365-2990.2012.01298.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- R Paudel
- Department of Molecular Neuroscience Queen Square Brain Bank and UCL Institute of Neurology, London, UK
| | | | | | | | | |
Collapse
|
35
|
Xiromerisiou G, Houlden H, Scarmeas N, Stamelou M, Kara E, Hardy J, Lees AJ, Korlipara P, Limousin P, Paudel R, Hadjigeorgiou GM, Bhatia KP. THAP1 mutations and dystonia phenotypes: genotype phenotype correlations. Mov Disord 2012; 27:1290-4. [PMID: 22903657 PMCID: PMC3664430 DOI: 10.1002/mds.25146] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 05/30/2012] [Accepted: 07/17/2012] [Indexed: 01/17/2023] Open
Abstract
THAP1 mutations have been shown to be the cause of DYT6. A number of different mutation types and locations in the THAP1 gene have been associated with a range of severity and dystonia phenotypes, but, as yet, it has been difficult to identify clear genotype phenotype patterns. Here, we screened the THAP1 gene in a further series of dystonia cases and evaluated the mutation pathogenicity in this series as well as previously reported mutations to investigate possible phenotype-genotype correlations. THAP1 mutations have been identified throughout the coding region of the gene, with the greatest concentration of variants localized to the THAP1 domain. In the additional cases analyzed here, a further two mutations were found. No obvious, indisputable genotype-phenotype correlation emerged from these data. However, we managed to find a correlation between the pathogenicity of mutations, distribution, and age of onset of dystonia. THAP1 mutations are an important cause of dystonia, but, as yet, no clear genotype-phenotype correlations have been identified. Greater mutation numbers in different populations will be important and mutation-specific functional studies will be essential to identify the pathogenicity of the various THAP1 mutations. © 2012 Movement Disorder Society
Collapse
Affiliation(s)
- Georgia Xiromerisiou
- Department of Molecular Neuroscience and Reta Lila Weston Institute, University College London Institute of Neurology, London, London, United Kingdom; Department of Neurology, Faculty of Medicine University of Thessaly, Larissa, Greece.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Untethering the nuclear envelope and cytoskeleton: biologically distinct dystonias arising from a common cellular dysfunction. Int J Cell Biol 2012; 2012:634214. [PMID: 22611399 PMCID: PMC3352338 DOI: 10.1155/2012/634214] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 12/12/2011] [Accepted: 01/08/2012] [Indexed: 12/31/2022] Open
Abstract
Most cases of early onset DYT1 dystonia in humans are caused by a GAG deletion in the TOR1A gene leading to loss of a glutamic acid (ΔE) in the torsinA protein, which underlies a movement disorder associated with neuronal dysfunction without apparent neurodegeneration. Mutation/deletion of the gene (Dst) encoding dystonin in mice results in a dystonic movement disorder termed dystonia musculorum, which resembles aspects of dystonia in humans. While torsinA and dystonin proteins do not share modular domain architecture, they participate in a similar function by modulating a structural link between the nuclear envelope and the cytoskeleton in neuronal cells. We suggest that through a shared interaction with the nuclear envelope protein nesprin-3α, torsinA and the neuronal dystonin-a2 isoform comprise a bridge complex between the outer nuclear membrane and the cytoskeleton, which is critical for some aspects of neuronal development and function. Elucidation of the overlapping roles of torsinA and dystonin-a2 in nuclear/endoplasmic reticulum dynamics should provide insights into the cellular mechanisms underlying the dystonic phenotype.
Collapse
|
37
|
Yokoi F, Dang MT, Li Y. Improved motor performance in Dyt1 ΔGAG heterozygous knock-in mice by cerebellar Purkinje-cell specific Dyt1 conditional knocking-out. Behav Brain Res 2012; 230:389-98. [PMID: 22391119 PMCID: PMC3322286 DOI: 10.1016/j.bbr.2012.02.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 02/11/2012] [Accepted: 02/17/2012] [Indexed: 01/23/2023]
Abstract
Early-onset generalized torsion dystonia (dystonia 1) is an inherited movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Most patients have a 3-base pair deletion (ΔGAG) in one allele of DYT1, corresponding to a loss of a glutamic acid residue (ΔE) in the C-terminal region of the protein. Functional alterations in basal ganglia circuits and the cerebellum have been reported in dystonia. Pharmacological manipulations or mutations in genes that result in functional alterations of the cerebellum have been reported to have dystonic symptoms and have been used as phenotypic rodent models. Additionally, structural lesions in the abnormal cerebellar circuits, such as cerebellectomy, have therapeutic effects in these models. A previous study has shown that the Dyt1 ΔGAG heterozygous knock-in (KI) mice exhibit motor deficits in the beam-walking test. Both Dyt1 ΔGAG heterozygous knock-in (KI) and Dyt1 Purkinje cell-specific knockout (Dyt1 pKO) mice exhibit dendritic alterations of cerebellar Purkinje cells. Here, Dyt1 pKO mice exhibited significantly less slip numbers in the beam-walking test, suggesting better motor performance than control littermates, and normal gait. Furthermore, Dyt1 ΔGAG KI/Dyt1 pKO double mutant mice exhibited significantly lower numbers of slips than Dyt1 ΔGAG heterozygous KI mice, suggesting Purkinje-cell specific knockout of Dyt1 wild-type (WT) allele in Dyt1 ΔGAG heterozygous KI mice rescued the motor deficits. The results suggest that molecular lesions of torsinA in Purkinje cells by gene therapy or intervening in the signaling pathway downstream of the cerebellar Purkinje cells may rescue motor symptoms in dystonia 1.
Collapse
Affiliation(s)
- Fumiaki Yokoi
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32610-0236, USA
| | - Mai Tu Dang
- Department of Neurology, Hospital of University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yuqing Li
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32610-0236, USA
| |
Collapse
|
38
|
Tanabe LM, Martin C, Dauer WT. Genetic background modulates the phenotype of a mouse model of DYT1 dystonia. PLoS One 2012; 7:e32245. [PMID: 22393392 PMCID: PMC3290549 DOI: 10.1371/journal.pone.0032245] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 01/23/2012] [Indexed: 11/18/2022] Open
Abstract
DYT1 dystonia is a debilitating neurological disease characterized by involuntary twisting movements. The disease is caused by an in-frame deletion (GAG, "ΔE") mutation in the TOR1A gene that encodes the torsinA protein. Intriguingly, only 30% of mutation carriers exhibit motor symptoms despite the fact that functional brain imaging studies show abnormal brain metabolism in all carriers. Because genetic modifiers may be a determinant of this reduced penetrance, we examined the genetic contribution of three different inbred strains of mice on the DYT1 mutation in animals that are homozygous (Tor1a(ΔE/ΔE)) or heterozygous (Tor1a(ΔE/+); disease state) for the disease-causing ΔE mutation. We find that the DBA/2J, C57BL/6J, and CD1-ICR contribution of genes significantly alter lifespan in Tor1a(ΔE/ΔE) mice, which die during the first few days of life on the 129S6/SvEvTac (129) background. The C57BL/6J (B6) strain significantly decreases life expectancy of Tor1a(ΔE/ΔE) animals but, like 129S6/SvEvTac Tor1a(ΔE/+) mice, congenic C57BL/6J Tor1a(ΔE/+) mice do not exhibit any motor abnormalities. In contrast, the DBA/2J (D2) strain significantly increases life expectancy. This effect was not present in congenic DBA/2J Tor1a(ΔE/ΔE) mice, indicating that the extended lifespan of F2 129/D2 mice was due to a combination of homozygous and heterozygous allelic effects. Our observations suggest that genetic modifiers may alter the penetrance of the ΔE mutation, and that mapping these modifiers may provide fresh insight into the torsinA molecular pathway.
Collapse
Affiliation(s)
- Lauren M. Tanabe
- Department of Neurology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Caitlin Martin
- Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - William T. Dauer
- Department of Neurology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
39
|
Paquette MA, Dong H, Gagné R, Williams A, Malowany M, Wade MG, Yauk CL. Thyroid hormone-regulated gene expression in juvenile mouse liver: identification of thyroid response elements using microarray profiling and in silico analyses. BMC Genomics 2011; 12:634. [PMID: 22206413 PMCID: PMC3340398 DOI: 10.1186/1471-2164-12-634] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 12/29/2011] [Indexed: 01/26/2023] Open
Abstract
Background Disruption of thyroid hormone signalling can alter growth, development and energy metabolism. Thyroid hormones exert their effects through interactions with thyroid receptors that directly bind thyroid response elements and can alter transcriptional activity of target genes. The effects of short-term thyroid hormone perturbation on hepatic mRNA transcription in juvenile mice were evaluated, with the goal of identifying genes containing active thyroid response elements. Thyroid hormone disruption was induced from postnatal day 12 to 15 by adding goitrogens to dams' drinking water (hypothyroid). A subgroup of thyroid hormone-disrupted pups received intraperitoneal injections of replacement thyroid hormones four hours prior to sacrifice (replacement). An additional group received only thyroid hormones four hours prior to sacrifice (hyperthyroid). Hepatic mRNA was extracted and hybridized to Agilent mouse microarrays. Results Transcriptional profiling enabled the identification of 28 genes that appeared to be under direct thyroid hormone-regulation. The regulatory regions of the genome adjacent to these genes were examined for half-site sequences that resemble known thyroid response elements. A bioinformatics search identified 33 thyroid response elements in the promoter regions of 13 different genes thought to be directly regulated by thyroid hormones. Thyroid response elements found in the promoter regions of Tor1a, 2310003H01Rik, Hect3d and Slc25a45 were further validated by confirming that the thyroid receptor is associated with these sequences in vivo and that it can bind directly to these sequences in vitro. Three different arrangements of thyroid response elements were identified. Some of these thyroid response elements were located far up-stream (> 7 kb) of the transcription start site of the regulated gene. Conclusions Transcriptional profiling of thyroid hormone disrupted animals coupled with a novel bioinformatics search revealed new thyroid response elements associated with genes previously unknown to be responsive to thyroid hormone. The work provides insight into thyroid response element sequence motif characteristics.
Collapse
Affiliation(s)
- Martin A Paquette
- Environmental Health Sciences and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, 50 Colombine Driveway, Ottawa, Ontario K1A 0K9, Canada
| | | | | | | | | | | | | |
Collapse
|
40
|
Dang MT, Yokoi F, Cheetham CC, Lu J, Vo V, Lovinger DM, Li Y. An anticholinergic reverses motor control and corticostriatal LTD deficits in Dyt1 ΔGAG knock-in mice. Behav Brain Res 2011; 226:465-72. [PMID: 21995941 DOI: 10.1016/j.bbr.2011.10.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Revised: 09/28/2011] [Accepted: 10/01/2011] [Indexed: 11/19/2022]
Abstract
DYT1 early-onset generalized torsion dystonia is an inherited movement disorder associated with mutations in DYT1 that codes for torsinA protein. The most common mutation seen in this gene is a trinucleotide deletion of GAG. We previously reported a motor control deficit on a beam-walking task in our Dyt1 ΔGAG knock-in heterozygous mice. In this report we show the reversal of this motor deficit with the anticholinergic trihexyphenidyl (THP), a drug commonly used to treat movement problems in dystonia patients. THP also restored the reduced corticostriatal long-term depression (LTD) observed in these mice. Corticostriatal LTD has long been known to be dependent on D2 receptor activation. In this mouse model, striatal D2 receptors were expressed at lower quantities in comparison to wild-type mice. Furthermore, the mice were also partially resistant to FPL64176, an agonist of L-type calcium channels that have been previously reported to cause severe dystonic-like symptoms in wild-type mice. Our findings collectively suggest that altered communication between cholinergic interneurons and medium spiny neurons is responsible for the LTD deficit and that this synaptic plasticity modification may be involved in the striatal motor control abnormalities in our mouse model of DYT1 dystonia.
Collapse
Affiliation(s)
- Mai T Dang
- Department of Neurology, Hospital of University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Waite A, De Rosa MC, Brancaccio A, Blake DJ. A gain-of-glycosylation mutation associated with myoclonus-dystonia syndrome affects trafficking and processing of mouse ε-sarcoglycan in the late secretory pathway. Hum Mutat 2011; 32:1246-58. [PMID: 21796726 DOI: 10.1002/humu.21561] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 06/20/2011] [Indexed: 11/07/2022]
Abstract
Missense mutations in the SGCE gene encoding ε-sarcoglycan account for approximately 15% of SGCE-positive cases of myoclonus-dystonia syndrome (MDS) in humans. In this study, we show that while the majority of MDS-associated missense mutants modeled with a murine ε-sarcoglycan cDNA are substrates for endoplasmic reticulum-associated degradation, one mutant, M68T (analogous to human c.275T>C, p.M92T), located in the Ig-like domain of ε-sarcoglycan, results in a gain-of-glycosylation mutation producing a protein that is targeted to the plasma membrane, albeit at reduced levels compared to wild-type ε-sarcoglycan. Removal of the ectopic N-linked glycan failed to restore efficient plasma membrane targeting of M68T demonstrating that the substitution rather than the glycan was responsible for the trafficking defect of this mutant. M68T also colocalized with CD63-positive vesicles in the endosomal-lysosomal system and was found to be more susceptible to lysosomal proteolysis than wild-type ε-sarcoglycan. Finally, we demonstrate impaired ectodomain shedding of M68T, a process that occurs physiologically for ε-sarcoglycan resulting in the lysosomal trafficking of the intracellular C-terminal domain of the protein. Our findings show that functional analysis of rare missense mutations can provide a mechanistic insight into the pathogenesis of MDS and the physiological role of ε-sarcoglycan.
Collapse
Affiliation(s)
- Adrian Waite
- Department of Psychological Medicine and Neurology, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Heath Park, Cardiff, UK
| | | | | | | |
Collapse
|
42
|
Motor deficits and decreased striatal dopamine receptor 2 binding activity in the striatum-specific Dyt1 conditional knockout mice. PLoS One 2011; 6:e24539. [PMID: 21931745 PMCID: PMC3171455 DOI: 10.1371/journal.pone.0024539] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 08/12/2011] [Indexed: 11/23/2022] Open
Abstract
DYT1 early-onset generalized dystonia is a hyperkinetic movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Recently, significant progress has been made in studying pathophysiology of DYT1 dystonia using targeted mouse models. Dyt1 ΔGAG heterozygous knock-in (KI) and Dyt1 knock-down (KD) mice exhibit motor deficits and alterations of striatal dopamine metabolisms, while Dyt1 knockout (KO) and Dyt1 ΔGAG homozygous KI mice show abnormal nuclear envelopes and neonatal lethality. However, it has not been clear whether motor deficits and striatal abnormality are caused by Dyt1 mutation in the striatum itself or the end results of abnormal signals from other brain regions. To identify the brain region that contributes to these phenotypes, we made a striatum-specific Dyt1 conditional knockout (Dyt1 sKO) mouse. Dyt1 sKO mice exhibited motor deficits and reduced striatal dopamine receptor 2 (D2R) binding activity, whereas they did not exhibit significant alteration of striatal monoamine contents. Furthermore, we also found normal nuclear envelope structure in striatal medium spiny neurons (MSNs) of an adult Dyt1 sKO mouse and cerebral cortical neurons in cerebral cortex-specific Dyt1 conditional knockout (Dyt1 cKO) mice. The results suggest that the loss of striatal torsinA alone is sufficient to produce motor deficits, and that this effect may be mediated, at least in part, through changes in D2R function in the basal ganglia circuit.
Collapse
|
43
|
Albanese A, Asmus F, Bhatia KP, Elia AE, Elibol B, Filippini G, Gasser T, Krauss JK, Nardocci N, Newton A, Valls-Solé J. EFNS guidelines on diagnosis and treatment of primary dystonias. Eur J Neurol 2011; 18:5-18. [PMID: 20482602 DOI: 10.1111/j.1468-1331.2010.03042.x] [Citation(s) in RCA: 270] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES to provide a revised version of earlier guidelines published in 2006. BACKGROUND primary dystonias are chronic and often disabling conditions with a widespread spectrum mainly in young people. DIAGNOSIS primary dystonias are classified as pure dystonia, dystonia plus or paroxysmal dystonia syndromes. Assessment should be performed using a validated rating scale for dystonia. Genetic testing may be performed after establishing the clinical diagnosis. DYT1 testing is recommended for patients with primary dystonia with limb onset before age 30, and in those with an affected relative with early-onset dystonia. DYT6 testing is recommended in early-onset or familial cases with cranio-cervical dystonia or after exclusion of DYT1. Individuals with early-onset myoclonus should be tested for mutations in the DYT11 gene. If direct sequencing of the DYT11 gene is negative, additional gene dosage is required to improve the proportion of mutations detected. A levodopa trial is warranted in every patient with early-onset primary dystonia without an alternative diagnosis. In patients with idiopathic dystonia, neurophysiological tests can help with describing the pathophysiological mechanisms underlying the disorder. TREATMENT botulinum toxin (BoNT) type A is the first-line treatment for primary cranial (excluding oromandibular) or cervical dystonia; it is also effective on writing dystonia. BoNT/B is not inferior to BoNT/A in cervical dystonia. Pallidal deep brain stimulation (DBS) is considered a good option, particularly for primary generalized or cervical dystonia, after medication or BoNT have failed. DBS is less effective in secondary dystonia. This treatment requires a specialized expertise and a multidisciplinary team.
Collapse
Affiliation(s)
- A Albanese
- Istituto Neurologico Carlo Besta, Milan, Italy Università Cattolica del Sacro Cuore, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Genetics and Pharmacological Treatment of Dystonia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011. [DOI: 10.1016/b978-0-12-381328-2.00019-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
45
|
Genetic and clinical features of primary torsion dystonia. Neurobiol Dis 2010; 42:127-35. [PMID: 21168499 DOI: 10.1016/j.nbd.2010.12.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 12/08/2010] [Accepted: 12/10/2010] [Indexed: 12/31/2022] Open
Abstract
Primary torsion dystonia (PTD) is defined as a syndrome in which dystonia is the only clinical sign (except for tremor), and there is no evidence of neuronal degeneration or an acquired cause by history or routine laboratory assessment. Seven different loci have been recognized for PTD but only two of the genes have been identified. In this review we will describe the phenotypes associated with these loci and discuss the responsible gene. This article is part of a Special Issue entitled "Advances in dystonia".
Collapse
|
46
|
Bragg DC, Armata IA, Nery FC, Breakefield XO, Sharma N. Molecular pathways in dystonia. Neurobiol Dis 2010; 42:136-47. [PMID: 21134457 DOI: 10.1016/j.nbd.2010.11.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 11/08/2010] [Accepted: 11/26/2010] [Indexed: 11/27/2022] Open
Abstract
The hereditary dystonias comprise a set of diseases defined by a common constellation of motor deficits. These disorders are most likely associated with different molecular etiologies, many of which have yet to be elucidated. Here we discuss recent advances in three forms of hereditary dystonia, DYT1, DYT6 and DYT16, which share a similar clinical picture: onset in childhood or adolescence, progressive spread of symptoms with generalized involvement of body regions and a steady state affliction without treatment. Unlike DYT1, the genes responsible for DYT6 and DYT16 have only recently been identified, with relatively little information about the function of the encoded proteins. Nevertheless, recent data suggest that these proteins may fit together within interacting pathways involved in dopaminergic signaling, transcriptional regulation, and cellular stress responses. This review focuses on these molecular pathways, highlighting potential common themes among these dystonias which may serve as areas for future research. This article is part of a Special Issue entitled "Advances in dystonia".
Collapse
Affiliation(s)
- D Cristopher Bragg
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA.
| | | | | | | | | |
Collapse
|
47
|
Herzfeld T, Korinthenberg R, Müller U. D216H polymorphism within TOR1A
does not affect penetrance in DRD and is not a general modifier in primary dystonia. Mov Disord 2010; 26:182-3. [DOI: 10.1002/mds.23238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
48
|
Zhu L, Millen L, Mendoza JL, Thomas PJ. A unique redox-sensing sensor II motif in TorsinA plays a critical role in nucleotide and partner binding. J Biol Chem 2010; 285:37271-80. [PMID: 20861018 DOI: 10.1074/jbc.m110.123471] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Early onset dystonia is commonly associated with the deletion of one of a pair of glutamate residues (ΔE302/303) near the C terminus of torsinA, a member of the AAA+ protein family (ATPases associated with a variety of cellular activities) located in the endoplasmic reticulum lumen. The functional consequences of the disease-causing mutation, ΔE, are not currently understood. By contrast to other AAA+ proteins, torsin proteins contain two conserved cysteine residues in the C-terminal domain, one of which is located in the nucleotide sensor II motif. Depending on redox status, an ATP hydrolysis mutant of torsinA interacts with lamina-associated polypeptide 1 (LAP1) and lumenal domain like LAP1 (LULL1). Substitution of the cysteine in sensor II diminishes the redox-regulated interaction of torsinA with these substrates. Significantly, the dystonia-causing mutation, ΔE, alters the ability of torsinA to mediate the redox-regulated interactions with LAP1 and LULL1. Limited proteolysis experiments reveal redox- and mutation-dependent changes in the local conformation of torsinA as a function of nucleotide binding. These results indicate that the cysteine-containing sensor II plays a critical role in redox sensing and the nucleotide and partner binding functions of torsinA and suggest that loss of this function of torsinA contributes to the development of DYT1 dystonia.
Collapse
Affiliation(s)
- Li Zhu
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Texas 75390, USA
| | | | | | | |
Collapse
|
49
|
Cheng FB, Wan XH, Feng JC, Wang L, Yang YM, Cui LY. Clinical and genetic evaluation of DYT1 and DYT6 primary dystonia in China. Eur J Neurol 2010; 18:497-503. [PMID: 20825472 DOI: 10.1111/j.1468-1331.2010.03192.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Dystonia is defined as the presence of sustained involuntary muscle contractions, often leading to abnormal posture and movement. DYT1 is caused by a mutation in the TOR1A gene, whilst mutations in THAP1 gene have been identified as responsible for DYT6. The relative frequency and phenotype differences between DYT1 and DYT6 amongst Chinese primary dystonia patients have not been well-characterized. PATIENTS AND METHODS One hundred eleven unrelated Chinese patients with primary dystonia were screened for mutations in TOR1A and THAP1 genes, and correlate this with clinical presentation. Exon 5 of TOR1A and all three exons and exon-intron conjunctions in THAP1 were screened by direct sequencing. RESULTS Three subjects were found to have the GAG deletion in the TOR1A gene, and two patients were detected with THAP1 gene mutations/variations (c.224A>T, c.449A>C). The overall mutation frequency was 4.5% in this cohort with TOR1A mutations found in 2.7% and THAP1 mutations found in 1.8%. No mutations were detected in the controls composed of 100 normal Chinese subjects. The clinical presentations of the DYT1 cases included onset in the limbs that could progress to the generalized dystonia within several years but without cranial involvement. Whilst in the DYT6 cases, the onset was cranial or cervical and progresses very slowly. CONCLUSION The major clinical differences between DYT1 and DYT6 dystonia in China were the cranial involvement in DYT6 and progress to general dystonia within several years in DYT1.
Collapse
Affiliation(s)
- F B Cheng
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, PR China
| | | | | | | | | | | |
Collapse
|
50
|
Yokoi F, Yang G, Li J, DeAndrade MP, Zhou T, Li Y. Earlier onset of motor deficits in mice with double mutations in Dyt1 and Sgce. J Biochem 2010; 148:459-66. [PMID: 20627944 DOI: 10.1093/jb/mvq078] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
DYT1 early-onset generalized torsion dystonia is an inherited movement disorder caused by mutations in DYT1 coding for torsinA with ∼30% penetrance. Most of the DYT1 dystonia patients exhibit symptoms during childhood and adolescence. On the other hand, DYT1 mutation carriers without symptoms during these periods mostly do not exhibit symptoms later in their life. Little is known about what controls the timing of the onset, a critical issue for DYT1 mutation carriers. DYT11 myoclonus-dystonia is caused by mutations in SGCE coding for ε-sarcoglycan. Two dystonia patients from a single family with double mutations in DYT1 and SGCE exhibited more severe symptoms. A recent study suggested that torsinA contributes to the quality control of ε-sarcoglycan. Here, we derived mice carrying mutations in both Dyt1 and Sgce and found that these double mutant mice showed earlier onset of motor deficits in beam-walking test. A novel monoclonal antibody against mouse ε-sarcoglycan was developed by using Sgce knock-out mice to avoid the immune tolerance. Western blot analysis suggested that functional deficits of torsinA and ε-sarcoglycan may independently cause motor deficits. Examining additional mutations in other dystonia genes may be beneficial to predict the onset in DYT1 mutation carriers.
Collapse
Affiliation(s)
- Fumiaki Yokoi
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | | | | | | | | | | |
Collapse
|