1
|
Uyy E, Suica VI, Boteanu RM, Cerveanu-Hogas A, Ivan L, Hansen R, Antohe F. Regulated cell death joins in atherosclerotic plaque silent progression. Sci Rep 2022; 12:2814. [PMID: 35181730 PMCID: PMC8857202 DOI: 10.1038/s41598-022-06762-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/31/2022] [Indexed: 01/01/2023] Open
Abstract
Non-apoptotic regulated cell death (ferroptosis and necroptosis) leads to the release of damage-associated molecular patterns (DAMPs), which initiate and perpetuate a non-infectious inflammatory response. We hypothesize that DAMPs and non-apoptotic regulated cell death are critical players of atherosclerotic plaque progression with inadequate response to lipid-lowering treatment. We aimed to uncover the silent mechanisms that govern the existing residual risk of cardiovascular-related mortality in experimental atherosclerosis. Proteomic and genomic approaches were applied on the ascending aorta of hyperlipidemic rabbits and controls with and without lipid-lowering treatment. The hyperlipidemic animals, which presented numerous heterogeneous atherosclerotic lesions, exhibited high concentrations of serum lipids and increased lipid peroxidation oxidative stress markers. The analyses revealed the significant upregulation of DAMPs and proteins implicated in ferroptosis and necroptosis by hyperlipidemia. Some of them did not respond to lipid-lowering treatment. Dysregulation of five proteins involved in non-apoptotic regulated cell death proteins (VDAC1, VDAC3, FTL, TF and PCBP1) and nine associated DAMPs (HSP90AA1, HSP90AB1, ANXA1, LGALS3, HSP90B1, S100A11, FN, CALR, H3-3A) was not corrected by the treatment. These proteins could play a key role in the atherosclerotic silent evolution and may possess an unexplored therapeutic potential. Mass spectrometry data are available via ProteomeXchange with identifier PXD026379.
Collapse
Affiliation(s)
- Elena Uyy
- Department of Proteomics, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, P.O. Box 35-14, 050568, Bucharest, Romania
| | - Viorel I Suica
- Department of Proteomics, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, P.O. Box 35-14, 050568, Bucharest, Romania
| | - Raluca M Boteanu
- Department of Proteomics, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, P.O. Box 35-14, 050568, Bucharest, Romania
| | - Aurel Cerveanu-Hogas
- Department of Proteomics, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, P.O. Box 35-14, 050568, Bucharest, Romania
| | - Luminita Ivan
- Department of Proteomics, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, P.O. Box 35-14, 050568, Bucharest, Romania
| | - Rune Hansen
- Department of Health Research, SINTEF Digital, Trondheim, Norway.,Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Felicia Antohe
- Department of Proteomics, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, P.O. Box 35-14, 050568, Bucharest, Romania.
| |
Collapse
|
2
|
Marino M, Del Bo C, Tucci M, Venturi S, Mantegazza G, Taverniti V, Møller P, Riso P, Porrini M. A mix of chlorogenic and caffeic acid reduces C/EBPß and PPAR-γ1 levels and counteracts lipid accumulation in macrophages. Eur J Nutr 2021; 61:1003-1014. [PMID: 34698900 DOI: 10.1007/s00394-021-02714-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 10/13/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE Chlorogenic acid (CGA) and caffeic acid (CA) are bioactive compounds in whole grains, berries, apples, some citrus fruits and coffee, which are hypothesized to promote health-beneficial effects on the cardiovascular system. This study aimed to evaluate the capacity of CGA and CA to reduce lipid accumulation in macrophages, recognized as a critical stage in the progression of atherosclerosis. Furtherly, the modulation of CCAAT/enhancer-binding protein β (C/EBPβ) and peroxisome proliferator-activated receptor- γ1 (PPAR-γ1), as transcription factors involved in lipid metabolism, was evaluated. METHODS THP-1-derived macrophages were treated for 24 h with 0.03, 0.3, 3 and 30 μM of CGA and CA, tested alone or in combination, and a solution of oleic/palmitic acid (500 μM, 2:1 ratio). Lipid storage was assessed spectrophotometrically through fluorescent staining of cells with Nile red. C/EBPβ and PPAR-γ1 mRNA and protein levels were evaluated by RT-PCR and enzyme-linked immunosorbent assay, respectively. RESULTS The mix of CGA + CA (1:1 ratio) reduced lipid accumulation at all concentrations tested, except for the highest one. The greatest effect ( - 65%; p < 0.01) was observed at the concentration of 0.3 μM for each compound. The same concentration significantly (p < 0.01) downregulated C/EBPβ and PPAR-γ1 gene expression and reduced their protein levels at 2 h and 24 h, respectively. CONCLUSION The results indicate that the capacity of CGA + CA mix to reduce lipid storage in macrophages is mediated by a reduction in the expression of transcription factors C/EBPβ and PPAR-γ1.
Collapse
Affiliation(s)
- Mirko Marino
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi Di Milano, 20133, Milan, Italy
| | - Cristian Del Bo
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi Di Milano, 20133, Milan, Italy.
| | - Massimiliano Tucci
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi Di Milano, 20133, Milan, Italy
| | - Samuele Venturi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi Di Milano, 20133, Milan, Italy
| | - Giacomo Mantegazza
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi Di Milano, 20133, Milan, Italy
| | - Valentina Taverniti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi Di Milano, 20133, Milan, Italy
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, 1014, Copenhagen K, Denmark
| | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi Di Milano, 20133, Milan, Italy
| | - Marisa Porrini
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi Di Milano, 20133, Milan, Italy
| |
Collapse
|
3
|
Khor VK, Ahrends R, Lin Y, Shen WJ, Adams CM, Roseman AN, Cortez Y, Teruel MN, Azhar S, Kraemer FB. The proteome of cholesteryl-ester-enriched versus triacylglycerol-enriched lipid droplets. PLoS One 2014; 9:e105047. [PMID: 25111084 PMCID: PMC4128735 DOI: 10.1371/journal.pone.0105047] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 07/19/2014] [Indexed: 12/20/2022] Open
Abstract
Within cells, lipids are stored in the form of lipid droplets (LDs), consisting of a neutral lipid core, surrounded by a phospholipid monolayer and an outer layer of protein. LDs typically accumulate either triacylglycerol (TAG) and diacylglycerol or cholesteryl ester (CE), depending on the type of tissue. Recently, there has been an increased interest in the proteins that surround LDs. LD proteins have been found to be quite diverse, from structural proteins to metabolic enzymes, proteins involved in vesicular transport, and proteins that may play a role in LD formation. Previous proteomics analyses have focused on TAG-enriched LDs, whereas CE-enriched LDs have been largely ignored. Our study has compared the LD proteins from CE-enriched LDs to TAG-enriched LDs in steroidogenic cells. In primary rat granulosa cells loaded with either HDL to produce CE-enriched LDs or fatty acids to produce TAG-enriched LDs, 61 proteins were found to be elevated in CE-enriched LDs and 40 proteins elevated in TAG-enriched LDs with 278 proteins in similar amounts. Protein expression was further validated by selected reaction monitoring (SRM) mass spectrometry (MS). SRM verified expression of 25 of 27 peptides that were previously detected by tandem mass tagging MS. Several proteins were confirmed to be elevated in CE-enriched LDs by SRM including the intermediate filament vimentin. This study is the first to compare the proteins found on CE-enriched LDs with TAG-enriched LDs and constitutes the first step in creating a better understanding of the proteins found on CE-enriched LDs in steroidogenic cells.
Collapse
Affiliation(s)
- Victor K. Khor
- Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, California, United States of America
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Robert Ahrends
- Department of Chemical and Systems Biology, Stanford University, Stanford, California, United States of America
| | - Ye Lin
- Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, California, United States of America
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Wen-Jun Shen
- Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, California, United States of America
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Christopher M. Adams
- Mass Spectrometry Center, Stanford University, Stanford, California, United States of America
| | - Ann Nomoto Roseman
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Yuan Cortez
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Mary N. Teruel
- Department of Chemical and Systems Biology, Stanford University, Stanford, California, United States of America
| | - Salman Azhar
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Stanford, California, United States of America
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Fredric B. Kraemer
- Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, California, United States of America
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
- * E-mail:
| |
Collapse
|
4
|
Lee YJ, Choi IK, Sheen YY, Park SN, Kwon HJ. Identification of EBP50 as a specific biomarker for carcinogens via the analysis of mouse lymphoma cellular proteome. Mol Cells 2012; 33:309-16. [PMID: 22434383 PMCID: PMC3887708 DOI: 10.1007/s10059-012-2280-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 12/30/2011] [Accepted: 01/11/2012] [Indexed: 11/30/2022] Open
Abstract
To identify specific biomarkers generated upon exposure of L5178Y mouse lymphoma cells to carcinogens, 2-DE and MALDI-TOF MS analysis were conducted using the cellular proteome of L5178Y cells that had been treated with the known carcinogens, 1,2-dibromoethane and O-nitrotoluene and the noncarcinogens, emodin and D-mannitol. Eight protein spots that showed a greater than 1.5-fold increase or decrease in intensity following carcinogen treatment compared with treatment with noncarcinogens were selected. Of the identified proteins, we focused on the candidate biomarker ERM-binding phosphoprotein 50 (EBP50), the expression of which was specifically increased in response to treatment with the carcinogens. The expression level of EBP50 was determined by western analysis using polyclonal rabbit anti-EBP50 antibody. Further, the expression level of EBP50 was increased in cells treated with seven additional carcinogens, verifying that EBP50 could serve as a specific biomarker for carcinogens.
Collapse
Affiliation(s)
- Yoen Jung Lee
- Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749,
Korea
| | - In-Kwon Choi
- Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749,
Korea
| | | | | | - Ho Jeong Kwon
- Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749,
Korea
| |
Collapse
|
5
|
Lee YJ, Choi IK, Sheen YY, Park SN, Kwon HJ. Moesin is a biomarker for the assessment of genotoxic carcinogens in mouse lymphoma. Mol Cells 2012; 33:203-10. [PMID: 22358511 PMCID: PMC3887720 DOI: 10.1007/s10059-012-2271-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 12/07/2011] [Indexed: 10/28/2022] Open
Abstract
1,2-Dibromoethane and glycidol are well known genotoxic carcinogens, which have been widely used in industry. To identify a specific biomarker for these carcinogens in cells, the cellular proteome of L5178Y mouse lymphoma cells treated with these compounds was analyzed by 2-dimensional gel electrophoresis (2-DE) and MALDI-TOF mass spectrometry (MS). Of 50 protein spots showing a greater than 1.5-fold increase or decrease in intensity compared to control cells on a 2-D gel, we focused on the candidate biomarker moesin. Western analysis using monoclonal rabbit anti-moesin confirmed the identity of the protein and its increased level of expression upon exposure to the carcinogenic compounds. Moesin expression also increased in cells treated with six additional genotoxic carcinogens, verifying that moesin could serve as a biomarker to monitor phenotypic change upon exposure to genotoxic carcinogens in L5178Y mouse lymphoma cells.
Collapse
Affiliation(s)
- Yoen Jung Lee
- Department of Biotechnology, Yonsei University, Seoul 120-749,
Korea
- Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749,
Korea
| | - In-Kwon Choi
- Department of Biotechnology, Yonsei University, Seoul 120-749,
Korea
- Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749,
Korea
| | - Yhun Yhong Sheen
- College of Pharmacy, Ewha Womans University, Seoul 120-750,
Korea
| | - Sue Nie Park
- Hazardous Substances Analysis Division at Seoul Regional FDA, Korea Food and Drug Administration, Seoul 158-050,
Korea
| | - Ho Jeong Kwon
- Department of Biotechnology, Yonsei University, Seoul 120-749,
Korea
- Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749,
Korea
| |
Collapse
|