1
|
Radhakrishnan K, Truong L, Carmichael CL. An "unexpected" role for EMT transcription factors in hematological development and malignancy. Front Immunol 2023; 14:1207360. [PMID: 37600794 PMCID: PMC10435889 DOI: 10.3389/fimmu.2023.1207360] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
The epithelial to mesenchymal transition (EMT) is a fundamental developmental process essential for normal embryonic development. It is also important during various pathogenic processes including fibrosis, wound healing and epithelial cancer cell metastasis and invasion. EMT is regulated by a variety of cell signalling pathways, cell-cell interactions and microenvironmental cues, however the key drivers of EMT are transcription factors of the ZEB, TWIST and SNAIL families. Recently, novel and unexpected roles for these EMT transcription factors (EMT-TFs) during normal blood cell development have emerged, which appear to be largely independent of classical EMT processes. Furthermore, EMT-TFs have also begun to be implicated in the development and pathogenesis of malignant hematological diseases such as leukemia and lymphoma, and now present themselves or the pathways they regulate as possible new therapeutic targets within these malignancies. In this review, we discuss the ZEB, TWIST and SNAIL families of EMT-TFs, focusing on what is known about their normal roles during hematopoiesis as well as the emerging and "unexpected" contribution they play during development and progression of blood cancers.
Collapse
Affiliation(s)
- Karthika Radhakrishnan
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Lynda Truong
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Catherine L. Carmichael
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Monash University, Faculty of Medicine, Nursing and Health Sciences, Clayton, VIC, Australia
| |
Collapse
|
2
|
Waryah C, Alves E, Mazzieri R, Dolcetti R, Thompson EW, Redfern A, Blancafort P. Unpacking the Complexity of Epithelial Plasticity: From Master Regulator Transcription Factors to Non-Coding RNAs. Cancers (Basel) 2023; 15:3152. [PMID: 37370762 DOI: 10.3390/cancers15123152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular plasticity in cancer enables adaptation to selective pressures and stress imposed by the tumor microenvironment. This plasticity facilitates the remodeling of cancer cell phenotype and function (such as tumor stemness, metastasis, chemo/radio resistance), and the reprogramming of the surrounding tumor microenvironment to enable immune evasion. Epithelial plasticity is one form of cellular plasticity, which is intrinsically linked with epithelial-mesenchymal transition (EMT). Traditionally, EMT has been regarded as a binary state. Yet, increasing evidence suggests that EMT involves a spectrum of quasi-epithelial and quasi-mesenchymal phenotypes governed by complex interactions between cellular metabolism, transcriptome regulation, and epigenetic mechanisms. Herein, we review the complex cross-talk between the different layers of epithelial plasticity in cancer, encompassing the core layer of transcription factors, their interacting epigenetic modifiers and non-coding RNAs, and the manipulation of cancer immunogenicity in transitioning between epithelial and mesenchymal states. In examining these factors, we provide insights into promising therapeutic avenues and potential anti-cancer targets.
Collapse
Affiliation(s)
- Charlene Waryah
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Eric Alves
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Roberta Mazzieri
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Riccardo Dolcetti
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Erik W Thompson
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Andrew Redfern
- School of Medicine, University of Western Australia, Perth, WA 6009, Australia
| | - Pilar Blancafort
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
3
|
Hahn L, Meister S, Mannewitz M, Beyer S, Corradini S, Hasbargen U, Mahner S, Jeschke U, Kolben T, Burges A. Gal-2 Increases H3K4me3 and H3K9ac in Trophoblasts and Preeclampsia. Biomolecules 2022; 12:biom12050707. [PMID: 35625634 PMCID: PMC9139023 DOI: 10.3390/biom12050707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/10/2022] Open
Abstract
Preeclampsia (PE) is a severe pregnancy disorder with a pathophysiology not yet completely understood and without curative therapy. The histone modifications H3K4me3 and H3K9ac, as well as galectin-2 (Gal-2), are known to be decreased in PE. To gain a better understanding of the development of PE, the influence of Gal-2 on histone modification in trophoblasts and in syncytialisation was investigated. Immunohistochemical stains of 13 PE and 13 control placentas were correlated, followed by cell culture experiments. An analysis of H3K4me3 and H3K9ac was conducted, as well as cell fusion staining with E-cadherin and β-catenin—both after incubation with Gal-2. The expression of H3K4me3 and H3K9ac correlated significantly with the expression of Gal-2. Furthermore, we detected an increase in H3K4me3 and H3K9ac after the addition of Gal-2 to BeWo/HVT cells. Moreover, there was increased fusion of HVT cells after incubation with Gal-2. Gal-2 is associated with the histone modifications H3K4me3 and H3K9ac in trophoblasts. Furthermore, syncytialisation increased after incubation with Gal-2. Therefore, we postulate that Gal-2 stimulates syncytialisation, possibly mediated by H3K4me3 and H3K9ac. Since Gal-2, as well as H3K4me3 and H3K9ac, are decreased in PE, the induction of Gal-2 might be a promising therapeutic target.
Collapse
Affiliation(s)
- Laura Hahn
- Department of Obsterics and Gynecology, University Hospital, Ludwig-Maximilians-Universität Munich, Marchioninistr. 15, 81337 Munich, Germany; (S.M.); (M.M.); (S.B.); (U.H.); (S.M.); (U.J.); (T.K.); (A.B.)
- Correspondence: ; Tel.: +49-89-440073800
| | - Sarah Meister
- Department of Obsterics and Gynecology, University Hospital, Ludwig-Maximilians-Universität Munich, Marchioninistr. 15, 81337 Munich, Germany; (S.M.); (M.M.); (S.B.); (U.H.); (S.M.); (U.J.); (T.K.); (A.B.)
| | - Mareike Mannewitz
- Department of Obsterics and Gynecology, University Hospital, Ludwig-Maximilians-Universität Munich, Marchioninistr. 15, 81337 Munich, Germany; (S.M.); (M.M.); (S.B.); (U.H.); (S.M.); (U.J.); (T.K.); (A.B.)
| | - Susanne Beyer
- Department of Obsterics and Gynecology, University Hospital, Ludwig-Maximilians-Universität Munich, Marchioninistr. 15, 81337 Munich, Germany; (S.M.); (M.M.); (S.B.); (U.H.); (S.M.); (U.J.); (T.K.); (A.B.)
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-Universität Munich, Marchioninistr. 15, 81337 Munich, Germany;
| | - Uwe Hasbargen
- Department of Obsterics and Gynecology, University Hospital, Ludwig-Maximilians-Universität Munich, Marchioninistr. 15, 81337 Munich, Germany; (S.M.); (M.M.); (S.B.); (U.H.); (S.M.); (U.J.); (T.K.); (A.B.)
| | - Sven Mahner
- Department of Obsterics and Gynecology, University Hospital, Ludwig-Maximilians-Universität Munich, Marchioninistr. 15, 81337 Munich, Germany; (S.M.); (M.M.); (S.B.); (U.H.); (S.M.); (U.J.); (T.K.); (A.B.)
| | - Udo Jeschke
- Department of Obsterics and Gynecology, University Hospital, Ludwig-Maximilians-Universität Munich, Marchioninistr. 15, 81337 Munich, Germany; (S.M.); (M.M.); (S.B.); (U.H.); (S.M.); (U.J.); (T.K.); (A.B.)
- Department of Gynecology and Obsterics, University Hospital Augsburg, 86156 Augsburg, Germany
| | - Thomas Kolben
- Department of Obsterics and Gynecology, University Hospital, Ludwig-Maximilians-Universität Munich, Marchioninistr. 15, 81337 Munich, Germany; (S.M.); (M.M.); (S.B.); (U.H.); (S.M.); (U.J.); (T.K.); (A.B.)
| | - Alexander Burges
- Department of Obsterics and Gynecology, University Hospital, Ludwig-Maximilians-Universität Munich, Marchioninistr. 15, 81337 Munich, Germany; (S.M.); (M.M.); (S.B.); (U.H.); (S.M.); (U.J.); (T.K.); (A.B.)
| |
Collapse
|
4
|
Wechsler J, Ingen-Housz-Oro S, Deschamps L, Brunet-Possenti F, Deschamps J, Delfau MH, Calderaro J, Ortonne N. Prevalence of T-cell antigen losses in mycosis fungoides and CD30-positive cutaneous T-cell lymphoproliferations in a series of 153 patients. Pathology 2022; 54:729-737. [DOI: 10.1016/j.pathol.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 01/28/2022] [Accepted: 02/09/2022] [Indexed: 10/18/2022]
|
5
|
The Role of Tumor Microenvironment in the Pathogenesis of Sézary Syndrome. Int J Mol Sci 2022; 23:ijms23020936. [PMID: 35055124 PMCID: PMC8781892 DOI: 10.3390/ijms23020936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/11/2021] [Accepted: 12/19/2021] [Indexed: 02/05/2023] Open
Abstract
Sézary syndrome is an aggressive leukemic variant of cutaneous T-cell lymphomas, characterized by erythroderma, lymphadenopathy, and peripheral blood involvement by CD4+ malignant T-cells. The pathogenesis of Sézary syndrome is not fully understood. However, the course of the disease is strongly influenced by the tumor microenvironment, which is altered by a combination of cytokines, chemokines, and growth factors. The crosstalk between malignant and reactive cells affects the immunologic response against tumor cells causing immune dysregulation. This review focuses on the interaction of malignant Sézary cells and the tumor microenvironment.
Collapse
|
6
|
Xu WD, Huang Q, Huang AF. Emerging role of galectin family in inflammatory autoimmune diseases. Autoimmun Rev 2021; 20:102847. [PMID: 33971347 DOI: 10.1016/j.autrev.2021.102847] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/12/2021] [Accepted: 03/20/2021] [Indexed: 12/13/2022]
Abstract
Galectin family is a group of glycan-binding proteins. Members in this family are expressed in different tissues, immune or non-immune cells. These molecules are important regulators in innate and adaptive immune response, performing significantly in a broad range of cellular and pathophysiological functions, such as cell proliferation, adhesion, migration, and invasion. Findings have shown that expression of galectins is abnormal in many inflammatory autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis, osteoarthritis, sjögren's syndrome, systemic sclerosis. Galectins also function as intracellular and extracellular disease regulators mainly through the binding of their carbohydrate recognition domain to glycoconjugates. Here, we review the state-of-the-art of the role that different galectin family members play in immune cells, contributing to the complex inflammatory diseases. Hopefully collection of the information will provide a preliminary theoretical basis for the exploration of new targets for treatment of the disorders.
Collapse
Affiliation(s)
- Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China.
| | - Qi Huang
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
7
|
Uotila PM, Lemma SA, Haapasaari KM, Porvari K, Skarp S, Soini Y, Jantunen E, Turpeenniemi-Hujanen T, Kuittinen O. Prognostic significance of Twist, ZEB1 and Slug in peripheral T-cell lymphomas. ACTA ACUST UNITED AC 2020; 25:241-246. [PMID: 32567520 DOI: 10.1080/16078454.2020.1780754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT Objectives: To investigate the protein expression of the epithelial-mesenchymal transition-inducing transcription factors (TFs) Twist, ZEB1 and Slug in peripheral T-cell lymphomas (PTCL) and their correlation with clinical parameters. Methods: The expression of these TFs was studied in 53 diagnostic biopsy specimens of several different PTCL subtypes with immunohistochemistry. Patient data were retrospectively collected from patient records and a statistical analysis was performed. Results: All three TFs were widely expressed. ZEB1 and Slug had correlations with clinical outcome. In all PTCL cases, high nuclear ZEB1 percentage correlated with a favorable progression-free survival (PFS) (3-year PFS: 70% vs. 34%; P = 0.010) and strong nuclear Slug intensity correlated with an unfavorable PFS (3-year PFS: 17% vs. 62%; P = 0.036). Discussion: The correlations between PFS and ZEB1 or Slug protein expression have not previously been established in PTCLs. The impact of ZEB1 and Slug expression on prognosis differed from our findings in DLBCL and the impact of ZEB1 expression was in line with current studies on mycosis fungoides and sézary syndrome. The findings may be explained by the roles these TFs play in hematopoiesis. Conclusion: ZEB1 and Slug may have potential clinical value for evaluating prognosis in PTCLs. The study size was small and heterogenous, and larger studies are warranted.
Collapse
Affiliation(s)
- Pyry M Uotila
- Department of Oncology and Radiotherapy, Oulu University Hospital and University of Oulu, Oulu, Finland.,Medical Research Center and Unit of Translational Medicine, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Siria A Lemma
- Department of Oncology and Radiotherapy, Oulu University Hospital and University of Oulu, Oulu, Finland.,Medical Research Center and Unit of Translational Medicine, Oulu University Hospital and University of Oulu, Oulu, Finland
| | | | - Katja Porvari
- Medical Research Center and Unit of Translational Medicine, Oulu University Hospital and University of Oulu, Oulu, Finland.,Department of Pathology, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Sini Skarp
- Faculty of Biochemistry and Molecular Medicine, Oulu University Hospital and University of Oulu, Oulu, Finland.,Biocenter Oulu, Oulu University, Oulu, Finland
| | - Ylermi Soini
- Department of Clinical Pathology and Forensic Medicine, Cancer Center of Eastern Finland, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | - Esa Jantunen
- Department of Medicine, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Taina Turpeenniemi-Hujanen
- Department of Oncology and Radiotherapy, Oulu University Hospital and University of Oulu, Oulu, Finland.,Medical Research Center and Unit of Translational Medicine, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Outi Kuittinen
- Department of Oncology and Radiotherapy, Oulu University Hospital and University of Oulu, Oulu, Finland.,Medical Research Center and Unit of Translational Medicine, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
8
|
Chen SC, Liao TT, Yang MH. Emerging roles of epithelial-mesenchymal transition in hematological malignancies. J Biomed Sci 2018; 25:37. [PMID: 29685144 PMCID: PMC5913878 DOI: 10.1186/s12929-018-0440-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/19/2018] [Indexed: 01/06/2023] Open
Abstract
Background Epithelial-mesenchymal transition is an important process in embryonic development, fibrosis, and cancer metastasis. During the progression of epithelial cancer, activation of epithelial-mesenchymal transition is tightly associated with metastasis, stemness and drug resistance. However, the role of epithelial-mesenchymal transition in non-epithelial cancer is relatively unclear. Main body Epithelial-mesenchymal transition transcription factors are critical in both myeloid and lymphoid development. Growing evidence indicates their roles in cancer cells to promote leukemia and lymphoma progression. The expression of epithelial-mesenchymal transition transcription factors can cause the differentiation of indolent type to the aggressive type of lymphoma. Their up-regulation confers cancer cells resistant to chemotherapy, tyrosine kinase inhibitors, and radiotherapy. Conversely, the down-regulation of epithelial-mesenchymal transition transcription factors, monoclonal antibodies, induce lymphoma cells apoptosis. Conclusions Epithelial-mesenchymal transition transcription factors are potentially important prognostic or predictive factors and treatment targets for leukemia and lymphoma.
Collapse
Affiliation(s)
- San-Chi Chen
- Institute of Clinical Medicine, National Yang-Ming University, No. 155, Sec. 2, Li-Nong Street, Taipei, 11221, Taiwan.,Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tsai-Tsen Liao
- Institute of Clinical Medicine, National Yang-Ming University, No. 155, Sec. 2, Li-Nong Street, Taipei, 11221, Taiwan.,Cancer Progression Center of Excellence, National Yang-Ming University, Taipei, Taiwan.,Department of Otolaryngology, National Yang-Ming University, Taipei, Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, National Yang-Ming University, No. 155, Sec. 2, Li-Nong Street, Taipei, 11221, Taiwan. .,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan. .,Cancer Progression Center of Excellence, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
9
|
Norozi F, Ahmadzadeh A, Shahjahani M, Shahrabi S, Saki N. Twist as a new prognostic marker in hematological malignancies. Clin Transl Oncol 2015. [DOI: 10.1007/s12094-015-1357-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Merindol N, Riquet A, Szablewski V, Eliaou JF, Puisieux A, Bonnefoy N. The emerging role of Twist proteins in hematopoietic cells and hematological malignancies. Blood Cancer J 2014; 4:e206. [PMID: 24769647 PMCID: PMC4003416 DOI: 10.1038/bcj.2014.22] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 03/17/2014] [Indexed: 02/03/2023] Open
Abstract
Twist1 and Twist2 (Twist1–2) are two transcription factors, members of the basic helix-loop-helix family, that have been well established as master transcriptional regulators of embryogenesis and developmental programs of mesenchymal cell lineages. Their role in oncogenesis in epithelium-derived cancer and in epithelial-to-mesenchymal transition has also been thoroughly characterized. Recently, emerging evidence also suggests a key role for Twist1–2 in the function and development of hematopoietic cells, as well as in survival and development of numerous hematological malignancies. In this review, we summarize the latest data that depict the role of Twist1–2 in monocytes, T cells and B lymphocyte activation, and in associated hematological malignancies.
Collapse
Affiliation(s)
- N Merindol
- Université de Lyon and INSERM U1111, Lyon, France
| | - A Riquet
- Université de Lyon and INSERM U1111, Lyon, France
| | - V Szablewski
- 1] IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U896, Université Montpellier 1, Montpellier, France [2] Département de Biopathologie, Centre Hospitalier Régional Universitaire de Montpellier et Faculté de Médecine, Université Montpellier 1, Montpellier, France
| | - J-F Eliaou
- 1] IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U896, Université Montpellier 1, Montpellier, France [2] Département d'Immunologie, Centre Hospitalier Régional Universitaire de Montpellier et Faculté de Médecine, Université Montpellier 1, Montpellier, France
| | - A Puisieux
- Centre de Receherche en Cancérologie de Lyon, INSERM UMR-S1052, Centre Léon Bérard, Lyon, France
| | - N Bonnefoy
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U896, Université Montpellier 1, Montpellier, France
| |
Collapse
|
11
|
Wang T, Li Y, Tuerhanjiang A, Wang W, Wu Z, Yuan M, Maitituoheti M, Wang S. Twist2 contributes to cisplatin-resistance of ovarian cancer through the AKT/GSK-3β signaling pathway. Oncol Lett 2014; 7:1102-1108. [PMID: 24944676 PMCID: PMC3961411 DOI: 10.3892/ol.2014.1816] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 01/03/2014] [Indexed: 12/30/2022] Open
Abstract
Cisplatin is regularly used in the treatment of ovarian cancer. However, the drug only provides a modest survival advantage, primarily due to chemoresistance and the upregulation of antiapoptotic machineries in ovarian cancer cells. Therefore, targeting the mechanisms responsible for cisplatin resistance in ovarian cancer cells may improve the therapeutic outcomes. Twist basic helix-loop-helix transcription factor 2 (Twist2) is a novel zinc finger transcription factor that has been indicated to be an important inducer of epithelial-mesenchymal transition, which has been shown to be involved in various phases of tumorigenicity and progression. However, whether Twist2 suppression increases the chemosensitivity of ovarian cancer cells to chemotherapeutic agents remains unclear. In the present study, Twist2 expression was found to differ between human ovarian cisplatin-sensitive cancer cell line, OV2008, and the resistant variant, C13K cells. Twist2 plasmids or RNA interference were then utilized to alter Twist2 expression in OV2008 or C13K cells, respectively, to further assess apoptosis, cell viability and cell growth, as well as a possible mechanism. The results of the present study indicated that Twist2 plays a crucial role in the chemoresistance of ovarian cancer. In addition, the downregulation of Twist2 expression may facilitate apoptosis and recover the sensitivity of chemoresistant ovarian cancer through the protein kinase B/glycogen synthase kinase-3β pathway. Therefore, Twist2 depletion may be a promising approach to ovarian cancer therapy.
Collapse
Affiliation(s)
- Tian Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yan Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Abidan Tuerhanjiang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Wenwen Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhangying Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ming Yuan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Mayinuer Maitituoheti
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
12
|
Khan MA, Chen HC, Zhang D, Fu J. Twist: a molecular target in cancer therapeutics. Tumour Biol 2013; 34:2497-2506. [PMID: 23873099 DOI: 10.1007/s13277-013-1002-x] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/04/2013] [Indexed: 01/28/2023] Open
Abstract
Twist, the basic helix-loop-helix transcription factor, is involved in the process of epithelial to mesenchymal transitions (EMTs), which play an essential role in cancer metastasis. Overexpression of Twist or its promoter methylation is a common scenario in metastatic carcinomas. Twist is activated by a variety of signal transduction pathways, including Akt, signal transducer and activator of transcription 3, mitogen-activated protein kinase, Ras, and Wnt signaling. Activated Twist upregulates N-cadherin and downregulates E-cadherin, which are the hallmarks of EMT. Moreover, Twist plays an important role in some physiological processes involved in metastasis, like angiogenesis, invadopodia, extravasation, and chromosomal instability. Twist also protects cancer cells from apoptotic cell death. In addition, Twist is responsible for the stemness of cancer cells and the generation of drug resistance. Recently, targeting Twist has gained significant interests in cancer therapeutics. The inactivation of Twist by small RNA technology or chemotherapeutic approach has been proved successful. Moreover, several inhibitors which are antagonistic to the upstream or downstream molecules of Twist signaling pathways have also been identified. Development of potential treatment strategies by targeting Twist has a great promise in cancer therapeutics.
Collapse
Affiliation(s)
- Md Asaduzzaman Khan
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Luzhou Medical College, 3-319 Zhongshan Road, Luzhou, Sichuan, 646000, China
| | | | | | | |
Collapse
|
13
|
Yu H, Jin GZ, Liu K, Dong H, Yu H, Duan JC, Li Z, Dong W, Cong WM, Yang JH. Twist2 is a valuable prognostic biomarker for colorectal cancer. World J Gastroenterol 2013; 19:2404-2411. [PMID: 23613636 PMCID: PMC3631994 DOI: 10.3748/wjg.v19.i15.2404] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/15/2013] [Accepted: 02/06/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the significance of Twist2 for colorectal cancer (CRC).
METHODS: In this study, 93 CRC patients were included who received curative surgery in Eastern Hepatobiliary Surgery Hospital from January 1999 to December 2010. Records of patients’ clinicopathological characteristics and follow up data were reviewed. Formalin-fixed, paraffin-embedded tissue blocks were used to observe the protein expression of Twist2 and E-cadherin by immunohistochemistry. Two independent pathologists who were blinded to the clinical information performed semiquantitative scoring of immunostaining. A total score of 3-6 (sum of extent + intensity) was considered as Twist2-positive expression. The expression of E-cadherin was divided into two levels (preserved and reduced). An exploratory statistical analysis was conducted to determine the association between Twist2 expression and clinicopathological parameters, as well as E-cadherin expression. Furthermore, the variables associated with prognosis were analyzed by Cox’s proportional hazards model. Kaplan-Meier analysis was used to plot survival curves according to different expression levels of Twist2.
RESULTS: Twist2-positive expression was observed in 66 (71.0%) samples and mainly located in the cytoplasm. Forty-three (46.2%) samples showed reduced expression of E-cadherin. There were no significant correlations between Twist2 expression and any of the clinicopathological parameters. However, Twist2-positive expression was significantly associated with reduced expression of E-cadherin (P = 0.040). Multivariate analysis revealed that bad M-stage [hazard ratio (HR) = 7.694, 95%CI: 2.927-20.224, P < 0.001] and Twist2-positive (HR = 5.744, 95%CI: 1.347-24.298, P = 0.018) were the independent risk factors for poor overall survival (OS), while Twist2-positive (HR = 3.264, 95%CI: 1.455-7.375, P = 0.004), bad N-stage (HR = 2.149, 95%CI: 1.226-3.767, P = 0.008) and bad M-stage (HR = 10.907, 95%CI: 4.937-24.096, P < 0.001) were independently associated with poor disease-free survival (DFS). Survival curves showed a definite trend for Twist2-negative patients to have longer OS and DFS than Twist2-negative patients, not only overall, but also for patients in different stages, especially for DFS of patients in stage III (P = 0.033) and IV (P = 0.026).
CONCLUSION: Our data suggests, for the first time, that Twist2 is a valuable prognostic biomarker for CRC, particularly for patients in stage III and IV.
Collapse
|
14
|
Salameire D, Solly F, Fabre B, Lefebvre C, Chauvet M, Gressin R, Corront B, Ciapa A, Pernollet M, Plumas J, Macintyre E, Callanan MB, Leroux D, Jacob MC. Accurate detection of the tumor clone in peripheral T-cell lymphoma biopsies by flow cytometric analysis of TCR-Vβ repertoire. Mod Pathol 2012; 25:1246-57. [PMID: 22627740 DOI: 10.1038/modpathol.2012.74] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Multiparametric flow cytometry has proven to be a powerful method for detection and immunophenotypic characterization of clonal subsets, particularly in lymphoproliferative disorders of the B-cell lineage. Although in theory promising, this approach has not been comparably fulfilled in mature T-cell malignancies. Specifically, the T-cell receptor-Vβ repertoire analysis in blood can provide strong evidence of clonality, particularly when a single expanded Vß family is detected. The purpose of this study was to determine the relevance of this approach when applied to biopsies, at the site of tumor involvement. To this end, 30 peripheral T-cell lymphoma and 94 control biopsies were prospectively studied. Vβ expansions were commonly detected within CD4+ or CD8+ T cells (97% of peripheral T-cell lymphoma and 54% of non-peripheral T-cell lymphoma cases); thus, not differentiating malignant from reactive processes. Interestingly, we demonstrated that using a standardized evaluation, the detection of a high Vβ expansion was closely associated with diagnosis of peripheral T-cell lymphoma, with remarkable specificity (98%) and sensitivity (90%). This approach also identified eight cases of peripheral T-cell lymphoma that were not detectable by other forms of immunophenotyping. Moreover, focusing Vβ expression analysis to T-cell subsets with aberrant immunophenotypes, we demonstrated that the T-cell clone might be heterogeneous with regard to surface CD7 or CD10 expression (4/11 cases), providing indication on 'phenotypic plasticity'. Finally, among the wide variety of Vβ families, the occurrence of a Vβ17 expansion in five cases was striking. To our knowledge, this is the first report demonstrating the power of T-cell receptor-Vβ repertoire analysis by flow cytometry in biopsies as a basis for peripheral T-cell lymphoma diagnosis and precise T-cell clone identification and characterization.
Collapse
|
15
|
Goswami M, Duvic M, Dougherty A, Ni X. Increased Twist expression in advanced stage of mycosis fungoides and Sézary syndrome. J Cutan Pathol 2012; 39:500-7. [PMID: 22515221 DOI: 10.1111/j.1600-0560.2012.01883.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The mechanisms of tumor progression in mycosis fungoides (MF) and Sézary syndrome (SS) are poorly understood. Twist, a transcription factor, is thought to promote solid tumor progression by blocking p53 and inhibiting c-myc-induced apoptosis. Whether Twist expression is correlated to MF/SS stages remains unknown. METHODS Twist, c-myc and p53 proteins in 68 MF/SS lesions across all T stages were examined by immunohistochemistry, and mRNA levels in peripheral blood CD4+ T-cells from SS patients were measured by real-time quantitative polymerase chain reaction. RESULTS Positive staining for Twist was found in 12.5% (2/16) of T1 and 33.3% (7/21) of T2 early stage patches/plaques compared to 50.0% (9/18) of T3 tumors and 84.6% (11/13) of T4 erythroderma. Most T4 erythroderma were positive for Twist in dermal lymphocytes, with the strongest staining. Positive staining for c-myc was higher in T3/T4 lesions (29/31, 93.5%) than T1/T2 lesions (25/37, 67.6%, p < 0.05), with strongest staining in T3 tumors. Aberrant p53 expression was more common in T3/T4 lesions (8/31, 25.8%) than in T1/T2 lesions (2/37, 5.4%, p < 0.05). Twist mRNA was detected in all CD4+ T cells from SS patients but not in normal donors. CONCLUSIONS Increased Twist protein expression in advanced MF/SS lesions suggests that Twist expression may correlate with MF/SS stages.
Collapse
Affiliation(s)
- Meghali Goswami
- Department of Dermatology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | |
Collapse
|
16
|
Kuo PL, Huang MS, Cheng DE, Hung JY, Yang CJ, Chou SH. Lung cancer-derived galectin-1 enhances tumorigenic potentiation of tumor-associated dendritic cells by expressing heparin-binding EGF-like growth factor. J Biol Chem 2012; 287:9753-9764. [PMID: 22291012 DOI: 10.1074/jbc.m111.321190] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The interaction between cancer cells and their microenvironment is a vicious cycle that enhances the survival and progression of cancer, resulting in metastasis. This study is the first to indicate that lung cancer-derived galectin-1 secretion is responsible for stimulating tumor-associated dendritic cells (TADCs) production of mature heparin-binding EGF-like growth factor (HB-EGF), which, in turn, increases cancer progression. Treatment of galectin-1, present in large amounts in lung cancer conditioned medium and lung cancer patient sera, mimicked the inductive effect of lung cancer conditioned medium on the expression and ectodomain shedding of HB-EGF by TNFα-converting enzyme/a disintegrin and metalloproteinase 9 (ADAM9) and ADAM17. Significant up-regulation of HB-EGF has been seen in tumor-infiltrating CD11c(+) dendritic cells in human lung cancer samples. Active cleavage of HB-EGF in TADCs by ADAM9 and ADAM17 is associated with increased protein kinase C δ and Lyn signaling. Enhancement of HB-EGF production in TADCs increased the proliferation, migration, and epithelial-to-mesenchymal transition abilities of lung cancer. In contrast, inhibiting HB-EGF by siRNA suppressed TADC-mediated cancer progression. Moreover, mice injected with galectin-1 knockdown Lewis lung carcinoma showed decreased expression and ectodomain shedding of HB-EGF and reduced incidence of cancer development, resulting in increased survival rates. We demonstrate here for the first time that human and mouse DCs are a source of HB-EGF, an EGFR ligand with tumorigenic properties. Antagonists of the effect of lung cancer-derived galectin-1 on DCs and anti-HB-EGF blocking antibodies could, therefore, have therapeutic potential as antitumor agents.
Collapse
Affiliation(s)
- Po-Lin Kuo
- Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan,; Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| | - Ming-Shyan Huang
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Da-En Cheng
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, and
| | - Jen-Yu Hung
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan,; Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, and
| | - Chih-Jen Yang
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan,; Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, and
| | - Shah-Hwa Chou
- Department of Chest Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
17
|
Gan Y, Shinohara MM, Rosenbach M, Elder D, Frey N, Bagg A. Transient Blood Transfusion Reaction Masquerading As a Post-Transplantation Lymphoproliferative Disorder Mimicking Acute Leukemia Cutis. J Clin Oncol 2011; 29:e751-3. [DOI: 10.1200/jco.2011.36.5296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Yuebo Gan
- University of Pennsylvania, Philadelphia, PA
| | | | | | - David Elder
- University of Pennsylvania, Philadelphia, PA
| | - Noelle Frey
- University of Pennsylvania, Philadelphia, PA
| | - Adam Bagg
- University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
18
|
Zhang DC, Hu YT, Guo HY, Cui SG, Su TF, Jiang SG. cDNA cloning and mRNA expression of a tandem-repeat galectin (PoGal2) from the pearl oyster, Pinctada fucata. GENETICS AND MOLECULAR RESEARCH 2011; 10:1963-74. [PMID: 21948759 DOI: 10.4238/vol10-3gmr1149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Galectins can recognize and specifically bind to β-galactoside residues, playing crucial roles in innate immune responses of vertebrates and invertebrates. We cloned the cDNA of a tandem-repeat galectin from the pearl oyster Pinctada fucata (designated as PoGal2). PoGal2 cDNA is 1347 bp long and consists of a 5'-untranslated region (UTR) of 3 bp, a 3'-UTR of 297 bp with one cytokine RNA instability motif (ATTTA), and an open reading frame of 1047 bp, encoding a polypeptide of 349 amino acids, with an estimated molecular mass of 38.1 kDa and a theoretical isoelectric point of 8.5. PoGal2 contains two carbohydrate recognition domains (CRDs); both have the conserved carbohydrate-binding motifs H-NPR and WG-EE. PoGal2 shares 50.6 and 50.9% identity with those of abalone (Haliotis discus) and the Manila clam (Venerupis philippinarum), respectively. Phylogenetic analysis revealed that the tandem-repeat galectins formed two clades for the different species. Molluscan tandem-repeat galectins were clustered into a single clade, and nematode tandem-repeat galectins were clustered into another single clade. In both clades, CRD-N and CRD-C were divided into different groups. PoGal2 mRNA was constitutively expressed in all tissues analyzed, and the expression level of PoGal2 mRNA was found to be significantly up-regulated in digestive glands, gills and hemocytes after Vibrio alginolyticus stimulation/infection. Expression profile analysis showed that the expression level of PoGal2 mRNA was significantly up-regulated at 8, 12 and 24 h after V. alginolyticus infection. These results suggest that PoGal2 is a constitutive and inducible acute-phase protein involved in the innate immune response of pearl oysters.
Collapse
Affiliation(s)
- D C Zhang
- Division of Aquaculture and Biotechnology, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
19
|
Zhang D, Jiang S, Hu Y, Cui S, Guo H, Wu K, Li Y, Su T. A multidomain galectin involved in innate immune response of pearl oyster Pinctada fucata. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1-6. [PMID: 20813129 DOI: 10.1016/j.dci.2010.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Revised: 08/12/2010] [Accepted: 08/16/2010] [Indexed: 05/29/2023]
Abstract
Galectins could specifically bind to β-galactoside residues and play crucial roles in innate immune responses of vertebrates and invertebrates. In this study, the cDNA of a galectin with multiple carbohydrate-recognition domains (CRDs) was cloned from pearl oyster Pinctada fucata (designated as PoGal). PoGal cDNA was 2138bp long and consisted of a 5'-untranslated region (UTR) of 120bp, a 3'-UTR of 350bp with two cytokine RNA instability motifs (ATTTA), and an open reading frame (ORF) of 1668bp encoding a polypeptide of 555 amino acids with an estimated molecular mass of 63.4kDa and a theoretical isoelectric point of 4.8. PoGal contained four CRDs, each CRD of PoGal all had the conserved carbohydrate-binding motifs H-NPR and WG-ER. PoGal shared 43.7% and 62.9% identity to those of bay scallop and eastern oyster, respectively, which were only two galectins with four CRDs. The phylogenetic analysis revealed that all galectins with four CRDs formed a single clade. PoGal mRNA was constitutively expressed in all detected tissues, and the expression level of PoGal mRNA was significantly up-regulated in digestive gland, mantle, haemocyte, gonad and intestine after Vibrio alginolyticus stimulation. The expression profile analysis showed that the expression level of PoGal mRNA was significantly up-regulated at 4, 8 and 12h after V. alginolyticus stimulation. These results suggested that PoGal was a constitutive and inducible acute-phase protein that perhaps involved in innate immune response of pearl oyster.
Collapse
Affiliation(s)
- Dianchang Zhang
- Division of Aquaculture and Biotechnology, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Franco HL, Casasnovas J, Rodríguez-Medina JR, Cadilla CL. Redundant or separate entities?--roles of Twist1 and Twist2 as molecular switches during gene transcription. Nucleic Acids Res 2010; 39:1177-86. [PMID: 20935057 PMCID: PMC3045590 DOI: 10.1093/nar/gkq890] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Twist1 and Twist2 are highly conserved members of the Twist subfamily of bHLH proteins responsible for the transcriptional regulation of the developmental programs in mesenchymal cell lineages. The regulation of such processes requires that Twist1 and Twist2 function as molecular switches to activate and repress target genes by employing several direct and indirect mechanisms. Modes of action by these proteins include direct DNA binding to conserved E-box sequences and recruitment of coactivators or repressors, sequestration of E-protein modulators, and interruption of proper activator/repressor function through protein–protein interactions. Regulatory outcomes of Twist1 and Twist2 are themselves controlled by spatial-temporal expression, phosphoregulation, dimer choice and cellular localization. Although these two proteins are highly conserved and exhibit similar functions in vitro, emerging literature have demonstrated different roles in vivo. The involvement of Twist1 and Twist2 in a broad spectrum of regulatory pathways highlights the importance of understanding their roles in normal development, homeostasis and disease. Here we focus on the mechanistic models of transcriptional regulation and summarize the similarities and differences between Twist1 and Twist2 in the context of myogenesis, osteogenesis, immune system development and cancer.
Collapse
Affiliation(s)
- Hector L Franco
- Human Molecular Genetics Lab, Department of Biochemistry, School of Medicine University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, PR 00936, USA
| | | | | | | |
Collapse
|