1
|
Luo L, Jiang P, Chen Q, Chang J, Jing Y, Luo X, Gu H, Huang Y, Chen R, Liu J, Kang D, Liu Q, Wang Y, Fang G, Zhu Y, Guan F, Lei J, Yang L, Liu C, Dai X. c-Abl controls BCR signaling and B cell differentiation by promoting B cell metabolism. Immunology 2022; 167:181-196. [PMID: 35753034 DOI: 10.1111/imm.13525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/15/2022] [Indexed: 11/30/2022] Open
Abstract
As a non-receptor tyrosine kinase, c-Abl was first studied in chronic myelogenous leukemia, and its role in lymphocytes has been well characterized. c-Abl is involved in B cell development and CD19 associated B cell antigen receptor (BCR) signaling. Although c-Abl regulates different metabolic pathways, the role of c-Abl is still unknown in B cell metabolism. In this study, B cell specific c-Abl knockout (KO) mice (Mb1Cre+/- c-Ablfl/fl ) were used to investigate how c-Abl regulates B cell metabolism and BCR signaling. We found that the levels of activation positive BCR signaling proximal molecules, phosphorylated spleen tyrosine kinase (pSYK) and phosphorylated Bruton tyrosine kinase (pBTK), were decreased, while the level of key negative regulator, phosphorylated SH2-containing inositol phosphatase (pSHIP1), was increased in Mb1Cre+/- c-Ablfl/fl mice. Furthermore, we found c-Abl deficiency weakened the B cell spreading, formation of BCR signalosomes, and the polymerization of actin during BCR activation, and also impaired the differentiation of germinal center (GC) B cells both in quiescent condition and after immunization. Moreover, B cell mitochondrial respiration and the expression of B cell metabolism regulating molecules were downregulated in c-Abl deficiency mice. Overall, c-Abl, which involved in actin remodeling and B cell metabolism, positively regulates BCR signaling and promotes GC differentiation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Li Luo
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Panpan Jiang
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianglin Chen
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Jiang Chang
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yukai Jing
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Luo
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Gu
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanmei Huang
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ran Chen
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ju Liu
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danqing Kang
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Liu
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Yi Wang
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guofeng Fang
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingzi Zhu
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Guan
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Lei
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Yang
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaohong Liu
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Dai
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Duan M, Gao P, Chen SX, Novák P, Yin K, Zhu X. Sphingosine-1-phosphate in mitochondrial function and metabolic diseases. Obes Rev 2022; 23:e13426. [PMID: 35122459 DOI: 10.1111/obr.13426] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/02/2022] [Accepted: 01/02/2022] [Indexed: 01/23/2023]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite. The past decade has witnessed exponential growth in the field of S1P research, partly attributed to drugs targeting its receptors or kinases. Accumulating evidence indicates that changes in the S1P axis (i.e., S1P production, transport, and receptors) may modify metabolism and eventually mediate metabolic diseases. Dysfunction of the mitochondria on a master monitor of cellular metabolism is considered the leading cause of metabolic diseases, with aberrations typically induced by abnormal biogenesis, respiratory chain complex disorders, reactive oxygen species overproduction, calcium deposition, and mitophagy impairment. Accordingly, we discuss decades of investigation into changes in the S1P axis and how it controls mitochondrial function. Furthermore, we summarize recent scientific advances in disorders associated with the S1P axis and their involvement in the pathogenesis of metabolic diseases in humans, including type 2 diabetes mellitus and cardiovascular disease, from the perspective of mitochondrial function. Finally, we review potential challenges and prospects for S1P axis application to the regulation of mitochondrial function and metabolic diseases; these data may provide theoretical guidance for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Meng Duan
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Pan Gao
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Sheng-Xi Chen
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Petr Novák
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Kai Yin
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China.,Department of Cardiology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Xiao Zhu
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| |
Collapse
|
3
|
Wang Y, Zhang J, Huang L, Mo Y, Wang C, Li Y, Zhang Y, Zhang Z. The LPA-CDK5-tau pathway mediates neuronal injury in an in vitro model of ischemia-reperfusion insult. BMC Neurol 2022; 22:166. [PMID: 35501719 PMCID: PMC9059403 DOI: 10.1186/s12883-022-02694-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 04/29/2022] [Indexed: 11/23/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a common glycerol phospholipid and an important extracellular signaling molecule. LPA binds to its receptors and mediates a variety of biological effects, including the pathophysiological process underlying ischemic brain damage and traumatic brain injury. However, the molecular mechanisms mediating the pathological role of LPA are not clear. Here, we found that LPA activates cyclin-dependent kinase 5 (CDK5). CDK5 phosphorylates tau, which leads to neuronal cell death. Inhibition of LPA production or blocking its receptors reduced the abnormal activation of CDK5 and phosphorylation of tau, thus reversing the death of neurons. Our data indicate that the LPA-CDK5-Tau pathway plays an important role in the pathophysiological process after ischemic stroke. Inhibiting the LPA pathway may be a potential therapeutic target for treating ischemic brain injury.
Collapse
Affiliation(s)
- Yaya Wang
- Department of Neurology, Renmin hospital of Wuhan University, Wuhan, 430060, China
| | - Jie Zhang
- Department of Neurology, Renmin hospital of Wuhan University, Wuhan, 430060, China
| | - Liqin Huang
- Department of Neurology, Renmin hospital of Wuhan University, Wuhan, 430060, China
| | - Yanhong Mo
- Department of Neurology, Renmin hospital of Wuhan University, Wuhan, 430060, China
| | - Changyu Wang
- Department of Neurology, Renmin hospital of Wuhan University, Wuhan, 430060, China
| | - Yiyi Li
- Department of Neurology, Renmin hospital of Wuhan University, Wuhan, 430060, China
| | - Yangyang Zhang
- Department of Neurology, Renmin hospital of Wuhan University, Wuhan, 430060, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
4
|
Sgpl1 deletion elevates S1P levels, contributing to NPR2 inactivity and p21 expression that block germ cell development. Cell Death Dis 2021; 12:574. [PMID: 34083520 PMCID: PMC8175456 DOI: 10.1038/s41419-021-03848-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 11/20/2022]
Abstract
Sphingosine phosphate lyase 1 (SGPL1) is a highly conserved enzyme that irreversibly degrades sphingosine-1-phosphate (S1P). Sgpl1-knockout mice fail to develop germ cells, resulting in infertility. However, the molecular mechanism remains unclear. The results of the present study showed that SGPL1 was expressed mainly in granulosa cells, Leydig cells, spermatocytes, and round spermatids. Sgpl1 deletion led to S1P accumulation in the gonads. In the ovary, S1P decreased natriuretic peptide receptor 2 (NPR2) activity in granulosa cells and inhibited early follicle growth. In the testis, S1P increased the levels of cyclin-dependent kinase inhibitor 1A (p21) and apoptosis in Leydig cells, thus resulting in spermatogenesis arrest. These results indicate that Sgpl1 deletion increases intracellular S1P levels, resulting in the arrest of female and male germ cell development via different signaling pathways.
Collapse
|
5
|
Regulation of Tumor Immunity by Lysophosphatidic Acid. Cancers (Basel) 2020; 12:cancers12051202. [PMID: 32397679 PMCID: PMC7281403 DOI: 10.3390/cancers12051202] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/16/2022] Open
Abstract
The tumor microenvironment (TME) may be best conceptualized as an ecosystem comprised of cancer cells interacting with a multitude of stromal components such as the extracellular matrix (ECM), blood and lymphatic networks, fibroblasts, adipocytes, and cells of the immune system. At the center of this crosstalk between cancer cells and their TME is the bioactive lipid lysophosphatidic acid (LPA). High levels of LPA and the enzyme generating it, termed autotaxin (ATX), are present in many cancers. It is also well documented that LPA drives tumor progression by promoting angiogenesis, proliferation, survival, invasion and metastasis. One of the hallmarks of cancer is the ability to modulate and escape immune detection and eradication. Despite the profound role of LPA in regulating immune functions and inflammation, its role in the context of tumor immunity has not received much attention until recently where emerging studies highlight that this signaling axis may be a means that cancer cells adopt to evade immune detection and eradication. The present review aims to look at the immunomodulatory actions of LPA in baseline immunity to provide a broad understanding of the subject with a special emphasis on LPA and cancer immunity, highlighting the latest progress in this area of research.
Collapse
|
6
|
Assad S, Khan HH, Ghazanfar H, Khan ZH, Mansoor S, Rahman MA, Khan GH, Zafar B, Tariq U, Malik SA. Role of Sex Hormone Levels and Psychological Stress in the Pathogenesis of Autoimmune Diseases. Cureus 2017; 9:e1315. [PMID: 28690949 PMCID: PMC5498122 DOI: 10.7759/cureus.1315] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The aim of this review article is to assess the connection between psychological stress and sex hormones and their effect on the development of autoimmune diseases. Psychological stress describes what people feel when they are under mental, physical, or emotional pressure. We searched for online articles using MEDLINE®, Embase, Cochrane Library and Google Scholar. Our research yielded a total of 165 articles out of which 30 articles were considered for further perusal. The articles were reviewed from February 2016 to February 2017. Case reports and patients suffering from hematolymphoid malignancies and active infections were excluded from the review. Estrogen and testosterone are potential physiological regulatory factors for the peripheral development of CD4+CD25+ T regulatory cells. Stress at any age leads to the depletion of estrogen and testosterone stores in the body, leading to the loss of expansion of T regulatory cells, making the immature B cells evade the negative selection at the germinal center, or in other words, leading to the loss of central tolerance, a triggering event in autoimmune diseases like systemic lupus erythematosus. Autoimmune diseases in women are most likely due to changes in estrogen levels during mental, physical, pre-menopausal, post-menopausal, and pregnancy-induced stress. We conclude that modulating estrogen in females (pre-menopausal and post-menopausal) and testosterone in males can be used to treat stress-related immune imbalance resulting in autoimmune diseases in both sexes.
Collapse
Affiliation(s)
- Salman Assad
- Department of Medicine, Shifa International Hospital, Islamabad, Pakistan
| | - Hamza H Khan
- Graduate, Shifa International Hospital, Islamabad, Pakistan
| | - Haider Ghazanfar
- Department of Internal Medicine, Shifa International Hospital, Islamabad, Pakistan
| | - Zarak H Khan
- Department of Medicine, Shifa College of Medicine
| | - Salman Mansoor
- Department of Neurology, Shifa International Hospital, Islamabad, Pakistan
| | | | | | - Bilal Zafar
- Internal Medicine, Shifa College of Medicine
| | - Usman Tariq
- Internal Medicine, Shifa College of Medicine
| | - Shuja A Malik
- Department of Medicine, Shifa International Hospital, Islamabad, Pakistan
| |
Collapse
|
7
|
Tiper IV, East JE, Subrahmanyam PB, Webb TJ. Sphingosine 1-phosphate signaling impacts lymphocyte migration, inflammation and infection. Pathog Dis 2016; 74:ftw063. [PMID: 27354294 DOI: 10.1093/femspd/ftw063] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2016] [Indexed: 01/01/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is a sphingosine containing lipid intermediate obtained from ceramide. S1P is known to be an important signaling molecule and plays multiple roles in the context of immunity. This lysophospholipid binds and activates G-protein-coupled receptors (GPCRs) known as S1P receptors 1-5 (S1P1-5). Once activated, these GPCRs mediate signaling that can lead to alterations in cell proliferation, survival or migration, and can also have other effects such as promoting angiogenesis. In this review, we will present evidence demonstrating a role for S1P in lymphocyte migration, inflammation and infection, as well as in cancer. The therapeutic potential of targeting S1P receptors, kinases and lyase will also be discussed.
Collapse
Affiliation(s)
- Irina V Tiper
- Department of Microbiology and Immunology, University of Maryland School of Medicine and the Marlene and Stewart Greenebaum Cancer Center, 685 W Baltimore St., Baltimore, MD 21201, USA
| | - James E East
- Department of Microbiology and Immunology, University of Maryland School of Medicine and the Marlene and Stewart Greenebaum Cancer Center, 685 W Baltimore St., Baltimore, MD 21201, USA
| | - Priyanka B Subrahmanyam
- Department of Microbiology and Immunology, University of Maryland School of Medicine and the Marlene and Stewart Greenebaum Cancer Center, 685 W Baltimore St., Baltimore, MD 21201, USA
| | - Tonya J Webb
- Department of Microbiology and Immunology, University of Maryland School of Medicine and the Marlene and Stewart Greenebaum Cancer Center, 685 W Baltimore St., Baltimore, MD 21201, USA
| |
Collapse
|
8
|
Hu J, Oda SK, Shotts K, Donovan EE, Strauch P, Pujanauski LM, Victorino F, Al-Shami A, Fujiwara Y, Tigyi G, Oravecz T, Pelanda R, Torres RM. Lysophosphatidic acid receptor 5 inhibits B cell antigen receptor signaling and antibody response. THE JOURNAL OF IMMUNOLOGY 2014; 193:85-95. [PMID: 24890721 DOI: 10.4049/jimmunol.1300429] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lysophospholipids have emerged as biologically important chemoattractants capable of directing lymphocyte development, trafficking, and localization. Lysophosphatidic acid (LPA) is a major lysophospholipid found systemically, and its levels are elevated in certain pathological settings, such as cancer and infections. In this study, we demonstrate that BCR signal transduction by mature murine B cells is inhibited upon LPA engagement of the LPA5 (GPR92) receptor via a Gα12/13-Arhgef1 pathway. The inhibition of BCR signaling by LPA5 manifests by impaired intracellular calcium store release and most likely by interfering with inositol 1,4,5-triphosphate receptor activity. We further show that LPA5 also limits Ag-specific induction of CD69 and CD86 expression and that LPA5-deficient B cells display enhanced Ab responses. Thus, these data show that LPA5 negatively regulates BCR signaling, B cell activation, and immune response. Our findings extend the influence of lysophospholipids on immune function and suggest that alterations in LPA levels likely influence adaptive humoral immunity.
Collapse
Affiliation(s)
- Jiancheng Hu
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, CO 80206, USA
| | - Shannon K Oda
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, CO 80206, USA
| | - Kristin Shotts
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, CO 80206, USA
| | - Erin E Donovan
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, CO 80206, USA
| | - Pamela Strauch
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, CO 80206, USA
| | - Lindsey M Pujanauski
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, CO 80206, USA
| | - Francisco Victorino
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, CO 80206, USA
| | - Amin Al-Shami
- Lexicon Pharmaceuticals, Inc, The Woodlands, TX, 77381 USA.,Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Yuko Fujiwara
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Gabor Tigyi
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Tamas Oravecz
- Lexicon Pharmaceuticals, Inc, The Woodlands, TX, 77381 USA
| | - Roberta Pelanda
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, CO 80206, USA
| | - Raul M Torres
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, CO 80206, USA
| |
Collapse
|
9
|
Smyth SS, Mueller P, Yang F, Brandon JA, Morris AJ. Arguing the case for the autotaxin-lysophosphatidic acid-lipid phosphate phosphatase 3-signaling nexus in the development and complications of atherosclerosis. Arterioscler Thromb Vasc Biol 2014; 34:479-86. [PMID: 24482375 DOI: 10.1161/atvbaha.113.302737] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The structurally simple glycero- and sphingo-phospholipids, lysophosphatidic acid (LPA) and sphingosine-1-phosphate, serve as important receptor-active mediators that influence blood and vascular cell function and are positioned to influence the events that contribute to the progression and complications of atherosclerosis. Growing evidence from preclinical animal models has implicated LPA, LPA receptors, and key enzymes involved in LPA metabolism in pathophysiologic events that may underlie atherosclerotic vascular disease. These observations are supported by genetic analysis in humans implicating a lipid phosphate phosphatase as a novel risk factor for coronary artery disease. In this review, we summarize current understanding of LPA production, metabolism, and signaling as may be relevant for atherosclerotic and other vascular disease.
Collapse
Affiliation(s)
- Susan S Smyth
- From the Veterans Affairs Medical Center, Cardiovascular Medicine Service, Lexington, KY (S.S.S., A.J.M.); and Division of Cardiovascular Medicine, Gill Heart Institute, University of Kentucky, Lexington, KY (S.S.S., P.M., F.Y., J.A.B., A.J.M.)
| | | | | | | | | |
Collapse
|
10
|
Magkrioti C, Aidinis V. Autotaxin and lysophosphatidic acid signalling in lung pathophysiology. World J Respirol 2013; 3:77-103. [DOI: 10.5320/wjr.v3.i3.77] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/03/2013] [Accepted: 11/19/2013] [Indexed: 02/06/2023] Open
Abstract
Autotaxin (ATX or ENPP2) is a secreted glycoprotein widely present in biological fluids. ATX primarily functions as a plasma lysophospholipase D and is largely responsible for the bulk of lysophosphatidic acid (LPA) production in the plasma and at inflamed and/or malignant sites. LPA is a phospholipid mediator produced in various conditions both in cells and in biological fluids, and it evokes growth-factor-like responses, including cell growth, survival, differentiation and motility, in almost all cell types. The large variety of LPA effector functions is attributed to at least six G-protein coupled LPA receptors (LPARs) with overlapping specificities and widespread distribution. Increased ATX/LPA/LPAR levels have been detected in a large variety of cancers and transformed cell lines, as well as in non-malignant inflamed tissues, suggesting a possible involvement of ATX in chronic inflammatory disorders and cancer. In this review, we focus exclusively on the role of the ATX/LPA axis in pulmonary pathophysiology, analysing the effects of ATX/LPA on pulmonary cells and leukocytes in vitro and in the context of pulmonary pathophysiological situations in vivo and in human diseases.
Collapse
|
11
|
Blaho VA, Hla T. Regulation of mammalian physiology, development, and disease by the sphingosine 1-phosphate and lysophosphatidic acid receptors. Chem Rev 2011; 111:6299-320. [PMID: 21939239 PMCID: PMC3216694 DOI: 10.1021/cr200273u] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Victoria A. Blaho
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY 10065
| | - Timothy Hla
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY 10065
| |
Collapse
|
12
|
Sun Y, Kim NH, Yang H, Kim SH, Huh SO. Lysophosphatidic acid induces neurite retraction in differentiated neuroblastoma cells via GSK-3β activation. Mol Cells 2011; 31:483-9. [PMID: 21499833 PMCID: PMC3887612 DOI: 10.1007/s10059-011-1036-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 03/10/2011] [Indexed: 11/27/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a lipid growth factor that exerts diverse biological effects, including rapid neurite retraction and cell migration. Alterations in cell morphology, including neurite retraction, in neurodegenerative disorders such as Alzheimer's disease involve hyperphosphorylation of the cytoskeletal protein tau. Since LPA has been shown to induce neurite retraction in various cultured neural cells and the detailed underlying molecular mechanisms have not yet been elucidated, we investigated whether LPA induced neurite retraction through taumediated signaling pathways in differentiated neuroblastoma cells. When Neuro2a cells differentiated with retinoic acid (RA) were exposed to LPA, cells exhibited neurite retraction in a time-dependent manner. The retraction of neurites was accompanied by the phosphorylation of tau. The LPA-induced neurite retraction and tau phosphorylation in differentiated Neuro2a cells were significantly abolished by the glycogen synthase kinase-3β (GSK-3β) inhibitor lithium chloride. Interestingly, the LPA-stimulated tau phosphorylation and neurite retraction were markedly prevented by the administration of H89, an inhibitor of both cyclic-AMP dependent protein kinase (PKA) and cyclic-AMP response element-binding protein (CREB). Transfection of the dominant-negative CREBs, K-CREB and A-CREB, failed to prevent LPA-induced tau phosphorylation and neurite retraction in differentiated Neuro2a cells. Taken together, these results suggest that GSK-3β and PKA, rather than CREB, play important roles in tau phosphorylation and neurite retraction in LPA-stimulated differentiated Neuro2a cells.
Collapse
Affiliation(s)
- Yuanjie Sun
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chunchon 200-702, Korea
- Present address: Chinese Academy of Sciences, Institute of Biophysics, Beijing, 100101, People’s Republic of China
| | - Nam-Ho Kim
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chunchon 200-702, Korea
| | - Haijie Yang
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chunchon 200-702, Korea
| | - Seung-Hyuk Kim
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chunchon 200-702, Korea
| | - Sung-Oh Huh
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chunchon 200-702, Korea
| |
Collapse
|