1
|
Xian W, Chen Y, Yu S, Ye Z, Zhang Y, Yao D. Ubiquitination and ALL: Identifying FBXO8 as a prognostic biomarker and therapeutic target. Front Immunol 2025; 16:1554231. [PMID: 40375984 PMCID: PMC12078231 DOI: 10.3389/fimmu.2025.1554231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 04/02/2025] [Indexed: 05/18/2025] Open
Abstract
Background Acute lymphoblastic leukemia (ALL) is a hematological malignancy with high survival rates in children; however, certain high-risk subtypes pose significant challenges due to poor prognosis and frequent relapse. Ubiquitination, a post-translational modification critical for protein regulation, has been implicated in various cancer processes, yet its role in ALL remains poorly understood. Methods Using the TARGET database, we identified molecular subtypes of ALL through consensus clustering based on ubiquitination-related genes (URGs). A nine-gene prognostic model was constructed using LASSO and Cox regression analyses. The immunological landscape variations between high- and low-risk groups were assessed using immune cell infiltration analysis and functional enrichment studies. FBXO8 was further explored through functional experiments in vitro and in vivo. Results Four ALL subtypes with distinct survival outcomes were identified, with Cluster D representing the high-risk group. Patients were divided into high- and low-risk groups using the nine-gene predictive model, and FBXO8 was found to be a significant protective factor. According to immune landscape analysis, high-risk groups had an immunosuppressive microenvironment that was correlated with FBXO8 expression and marked by an increase in regulatory T cells and M2 macrophage infiltration. In vitro functional assays, FBXO8 knockdown notably enhanced cell proliferation and suppressed apoptosis in ALL cells. In FBXO8-knockdown mouse models, in vivo investigations demonstrated increased tumor growth, reduced apoptosis, and diminished survival rates. Conclusion This work identifies FBXO8 as a crucial therapeutic target and prognostic biomarker for ALL. Knockdown of FBXO8 led to the suppression of apoptosis and increased tumor growth, suggesting potential therapeutic applications. These results highlight the need for more investigation into ubiquitination-related pathways and offer important new insights into high-risk ALL.
Collapse
Affiliation(s)
- Wei Xian
- Department of Pediatric Allergy, Immunology and Rheumatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yinting Chen
- Department of Hematology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Shuiqing Yu
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Zhitao Ye
- Department of Pediatric Allergy, Immunology and Rheumatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Nephrology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yu Zhang
- Department of Pediatric, Zhujiang Hospital, Southern Medical University, Guangdong, Guangzhou, China
| | - Danlin Yao
- Department of Pediatric Allergy, Immunology and Rheumatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Luo Z, Wu X, Xie J, Tang H, Chen J, Ye D, Dou S, Chen S. Diagnostic and prognostic potential of FBXO8 expression in kidney renal clear cell carcinoma and its regulation of renal adenocarcinoma cells. Cancer Genet 2025; 290-291:6-15. [PMID: 39647237 DOI: 10.1016/j.cancergen.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND The F-box protein 8 Gene (FBXO8) has been shown to suppress invasion and metastasis in various cancer types. Recurrence and drug resistance pose significant challenges in renal cell carcinoma (RCC). Identifying novel biomarkers is crucial for addressing these issues. METHODS Data on RNA sequencing and patient survival for KIRC was obtained from The Cancer Genome Atlas (TCGA), UALCAN, and Gene Expression Omnibus (GEO) databases. We confirmed FBXO8 gene expression and its impact on survival. Clinical characteristics were classified, and FBXO8 expression differences among various categories were observed. We conducted biofunctional predictions and analyzed the tumor microenvironment (TME), immune cell infiltration, and immune checkpoints in relation to FBXO8 expression. FBXO8 was overexpressed using a plasmid, and we assessed Kidney renal clear cell carcinoma (KIRC) cell proliferation, migration, and apoptosis through CCK8, wound healing tests, and western blot analysis. RESULTS Our findings revealed decreased FBXO8 expression in KIRC, with patients exhibiting low FBXO8 expression experiencing shorter survival times. The low expression group showed elevated TME immune and estimate scores. Biofunctional analyses indicated that FBXO8 expression was notably linked to drug metabolism cytochrome P450, nutrition disease, receptor-ligand activity, and neuroactive ligand-receptor interaction. Furthermore, we discovered significant correlations between FBXO8 expression and immune cell infiltration, as well as checkpoints such as CD274. Overexpression (OE) of FBXO8 led to a marked reduction in cell proliferation and migration, along with increased apoptosis, as evidenced by apoptosis-related protein expression. CONCLUSION This study demonstrates that FBXO8 serves as a biomarker for KIRC and plays a role in regulating cell proliferation, migration, and apoptosis.
Collapse
Affiliation(s)
- Zhouan Luo
- Department of Urology, Zhanjiang Central Hospital, Guangdong Medical University, No.236, Yuanzhu Road, Zhanjiang, Guangdong, 524045, China
| | - Xiaoping Wu
- Department of Geriatrics, Zhanjiang Central Hospital, Guangdong Medical University, China
| | - Juanxia Xie
- Department of Rehabilitation Medicine, Zhanjiang Central Hospital, Guangdong Medical University, China
| | - Hao Tang
- Department of Urology, Zhanjiang Central Hospital, Guangdong Medical University, No.236, Yuanzhu Road, Zhanjiang, Guangdong, 524045, China
| | - Jingqi Chen
- Department of Urology, Zhanjiang Central Hospital, Guangdong Medical University, No.236, Yuanzhu Road, Zhanjiang, Guangdong, 524045, China
| | - Dongcai Ye
- Department of Urology, Zhanjiang Central Hospital, Guangdong Medical University, No.236, Yuanzhu Road, Zhanjiang, Guangdong, 524045, China
| | - Shangwen Dou
- Department of Urology, Zhanjiang Central Hospital, Guangdong Medical University, No.236, Yuanzhu Road, Zhanjiang, Guangdong, 524045, China
| | - Songning Chen
- Department of Urology, Zhanjiang Central Hospital, Guangdong Medical University, No.236, Yuanzhu Road, Zhanjiang, Guangdong, 524045, China.
| |
Collapse
|
3
|
Zhu X, Wang F, Wu X, Li Z, Wang Z, Ren X, Zhou Y, Song F, Liang Y, Zeng Z, Liao W, Ding Y, Liao W, Liang L. FBX8 promotes metastatic dormancy of colorectal cancer in liver. Cell Death Dis 2020; 11:622. [PMID: 32796813 PMCID: PMC7427987 DOI: 10.1038/s41419-020-02870-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022]
Abstract
Patients with colorectal cancer (CRC) often develop malignant regrowth of metastatic dormant tumor cells in liver years after primary treatment. FBX8 is involved in suppressing tumor metastasis. Short-term chemotherapy experiments and liver metastasis mice model of orthotopic injection into the cecum were performed to construct the dormant models. GST-pull-down assay, Co-IP and immunofluorescence were used to confirm the bindings among FBX8 and its substrates. FBX8 upregulated the expression of epithelial and stemness markers, while downregulated the expression of mesenchymal and proliferative markers associated with tumor cell dormancy. FBX8 promoted the maintenance of metastatic dormancy of CRC cells. Mechanistically, FBX8 directly bound to HIF-1α, CDK4 and C-myc through its Sec7 domain and led to the ubiquitin degradation of these proteins, thereby inhibiting cell cycle progression, proliferation, angiogenesis, and metastasis. Clinically, FBX8 expression was negatively correlated with the HIF-1α, CDK4, and c-Myc in CRC tissues. Our study reveals a novel mechanism of FBX8 in regulating tumor metastatic dormancy in liver and provides new strategies for the treatment of CRC metastasis.
Collapse
Affiliation(s)
- Xiaohui Zhu
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, 510515, Guangzhou, Guangdong Province, People's Republic of China
| | - Feifei Wang
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, 510515, Guangzhou, Guangdong Province, People's Republic of China
| | - Xuehui Wu
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, 510515, Guangzhou, Guangdong Province, People's Republic of China
| | - Zhou Li
- The First Clinical Medical Department, Southern Medical University, 510515, Guangzhou, Guangdong Province, People's Republic of China
| | - Zhizhi Wang
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong Province, People's Republic of China
| | - Xiaoli Ren
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, 510515, Guangzhou, Guangdong Province, People's Republic of China
| | - Yangshu Zhou
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, 510515, Guangzhou, Guangdong Province, People's Republic of China
| | - Fuyao Song
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, 510515, Guangzhou, Guangdong Province, People's Republic of China
| | - Yunshi Liang
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, 510515, Guangzhou, Guangdong Province, People's Republic of China
| | - Zhicheng Zeng
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, 510515, Guangzhou, Guangdong Province, People's Republic of China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong Province, People's Republic of China
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, 510515, Guangzhou, Guangdong Province, People's Republic of China
| | - Wenting Liao
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China. .,Guangdong Province Key Laboratory of Molecular Tumor Pathology, 510515, Guangzhou, Guangdong Province, People's Republic of China.
| | - Li Liang
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China. .,Guangdong Province Key Laboratory of Molecular Tumor Pathology, 510515, Guangzhou, Guangdong Province, People's Republic of China.
| |
Collapse
|
4
|
Lin M, Xu Y, Gao Y, Pan C, Zhu X, Wang ZW. Regulation of F-box proteins by noncoding RNAs in human cancers. Cancer Lett 2019; 466:61-70. [DOI: 10.1016/j.canlet.2019.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/11/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022]
|
5
|
FBX8 degrades GSTP1 through ubiquitination to suppress colorectal cancer progression. Cell Death Dis 2019; 10:351. [PMID: 31024008 PMCID: PMC6484082 DOI: 10.1038/s41419-019-1588-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 12/25/2018] [Accepted: 01/18/2019] [Indexed: 12/19/2022]
Abstract
F-box only protein 8 (FBX8), as a critical component of the SKP1-CUL1-F-box (SCF) E3 ubiquitin ligases, has been associated with several malignancies through interacting with a member of proteins. However, the substrates of FBX8 for destruction in the progression of colorectal carcinoma (CRC) need to be explored. Here, we show that loss of FBX8 accelerates chemical-induced colon tumorigenesis. FBX8 directly targets GSTP1 for ubiquitin-mediated proteasome degradation in CRC. GSTP1 promotes the proliferation, invasion, and metastasis of CRC cells. Furthermore, GSTP1 is upregulated in CRC tissue samples and predicts poor prognosis of CRC patients. The inactivation of FBX8 negatively correlated with increased levels and stability of GSTP1 in clinical CRC tissues and FBX8 knockout transgenic mice. These findings identify a novel ubiquitination pathway as FBX8-GSTP1 axis that regulates the progression of CRC, which might be a potential prognostic biomarker for CRC patients.
Collapse
|
6
|
Wang FF, Zhang XJ, Yan YR, Zhu XH, Yu J, Ding Y, Hu JL, Zhou WJ, Zeng ZC, Liao WT, Ding YQ, Liang L. FBX8 is a metastasis suppressor downstream of miR-223 and targeting mTOR for degradation in colorectal carcinoma. Cancer Lett 2016; 388:85-95. [PMID: 27916606 DOI: 10.1016/j.canlet.2016.11.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/23/2016] [Accepted: 11/24/2016] [Indexed: 12/30/2022]
Abstract
F-box proteins are critical components of the SKP1-CUL1-F-box (SCF) E3 ubiquitin ligases and involved in the ubiquitin-dependent proteolytic pathway. Dysregulation of F-box protein-mediated proteolysis often leads to human malignancies. F-box only protein 8 (FBX8), a novel component of F-box proteins, is down-regulated in several tumors and closely correlates with tumor progression. However, little is known about its function, regulatory mechanisms and substrates in the progression of colorectal carcinoma (CRC). Combining microRNA (miRNA) assay, functional characterization, mechanistic studies with clinical validation, we identify FBX8 as a CRC metastasis suppressor downstream of miR-223, a metastasis promoting miRNA that is transcriptionally regulated by Myocyte enhancer factor (MEF2A). mTOR is a substrate of FBX8 for ubiquitin-mediated degradation and is required for FBX8 induced cell proliferation and invasion in CRC cells. FBX8 is down-regulated in human CRC tissues and correlates with MEF2A, miR-223 and mTOR expression levels. Notably, low FBX8 expression status in CRC tissues was a significant prognostic factor for poor overall survival of patients. These findings illustrate FBX8 as a metastasis suppressor that functions through mTOR signaling pathway and has significant prognostic power.
Collapse
Affiliation(s)
- F F Wang
- Department of Pathology, Southern Medical University, Guangzhou 510515, Guangdong Province, People's Republic of China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, Guangdong Province, People's Republic of China
| | - X J Zhang
- Department of Pathology, Southern Medical University, Guangzhou 510515, Guangdong Province, People's Republic of China; Department of Pathology, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Y R Yan
- Department of Pathology, Southern Medical University, Guangzhou 510515, Guangdong Province, People's Republic of China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, Guangdong Province, People's Republic of China
| | - X H Zhu
- Department of Pathology, Southern Medical University, Guangzhou 510515, Guangdong Province, People's Republic of China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, Guangdong Province, People's Republic of China
| | - J Yu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, People's Republic of China
| | - Y Ding
- Department of Radiotherapy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, People's Republic of China
| | - J L Hu
- Department of Pathology, Southern Medical University, Guangzhou 510515, Guangdong Province, People's Republic of China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, Guangdong Province, People's Republic of China
| | - W J Zhou
- Department of Pathology, Southern Medical University, Guangzhou 510515, Guangdong Province, People's Republic of China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, Guangdong Province, People's Republic of China
| | - Z C Zeng
- Department of Pathology, Southern Medical University, Guangzhou 510515, Guangdong Province, People's Republic of China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, Guangdong Province, People's Republic of China
| | - W T Liao
- Department of Pathology, Southern Medical University, Guangzhou 510515, Guangdong Province, People's Republic of China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, Guangdong Province, People's Republic of China
| | - Y Q Ding
- Department of Pathology, Southern Medical University, Guangzhou 510515, Guangdong Province, People's Republic of China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, Guangdong Province, People's Republic of China
| | - L Liang
- Department of Pathology, Southern Medical University, Guangzhou 510515, Guangdong Province, People's Republic of China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, Guangdong Province, People's Republic of China.
| |
Collapse
|
7
|
Chung HJ, Park JE, Lee NS, Kim H, Jang CY. Phosphorylation of Astrin Regulates Its Kinetochore Function. J Biol Chem 2016; 291:17579-92. [PMID: 27325694 PMCID: PMC5016155 DOI: 10.1074/jbc.m115.712745] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 06/16/2016] [Indexed: 01/09/2023] Open
Abstract
The error-free segregation of chromosomes, which requires the precisely timed search and capture of chromosomes by spindles during early mitotic and meiotic cell division, is responsible for genomic stability and is achieved by the spindle assembly checkpoint in the metaphase-anaphase transition. Mitotic kinases orchestrate M phase events, such as the reorganization of cell architecture and kinetochore (KT) composition with the exquisite phosphorylation of mitotic regulators, to ensure timely and temporal progression. However, the molecular mechanisms underlying the changes of KT composition for stable spindle attachment during mitosis are poorly understood. Here, we show that the sequential action of the kinase Cdk1 and the phosphatase Cdc14A control spindle attachment to KTs. During prophase, the mitotic spindle protein Spag5/Astrin is transported into centrosomes by Kinastrin and phosphorylated at Ser-135 and Ser-249 by Cdk1, which, in prometaphase, is loaded onto the spindle and targeted to KTs. We also demonstrate that Cdc14A dephosphorylates Astrin, and therefore the overexpression of Cdc14A sequesters Astrin in the centrosome and results in aberrant chromosome alignment. Mechanistically, Plk1 acts as an upstream kinase for Astrin phosphorylation by Cdk1 and targeting phospho-Astrin to KTs, leading to the recruitment of outer KT components, such as Cenp-E, and the stable attachment of spindles to KTs. These comprehensive findings reveal a regulatory circuit for protein targeting to KTs that controls the KT composition change of stable spindle attachment and chromosome integrity.
Collapse
Affiliation(s)
- Hee Jin Chung
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Republic of Korea and
| | - Ji Eun Park
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Nam Soo Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Republic of Korea and
| | - Hongtae Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Republic of Korea and From the Center for Neuroscience Imaging Research, Institute for Basic Science and
| | - Chang-Young Jang
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| |
Collapse
|
8
|
Chen P, Yao GD. The role of cullin proteins in gastric cancer. Tumour Biol 2015; 37:29-37. [PMID: 26472722 DOI: 10.1007/s13277-015-4154-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/23/2015] [Indexed: 01/09/2023] Open
Abstract
The cullin proteins are a family of scaffolding proteins that associate with RING proteins and ubiquitin E3 ligases and mediate substrate-receptor bindings. Thus, cullin proteins regulate the specificity of ubiquitin targeting in the regulation of proteins involved in various cellular processes, including proliferation, differentiation, and apoptosis. There are seven cullin proteins that have been identified in eukaryotes: CUL1, CUL2, CUL3, CUL4A, CUL4B, CUL5, and CUL7/p53-associated parkin-like cytoplasmic protein. All of these proteins contain a conserved cullin homology domain that binds to RING box proteins. Cullin-RING ubiquitin ligase complexes are activated upon post-translational modification by neural precursor cell-expressed, developmentally downregulated protein 8. The aberrant expression of several cullin proteins has been implicated in many cancers though the significance in gastric cancer has been less well investigated. This review provides the first systematic discussion of the associations between all members of the cullin protein family and gastric cancer. Functional and regulatory mechanisms of cullin proteins in gastric carcinoma progression are also summarized along with a discussion concerning future research areas. Accumulating evidence suggests a critical role of cullin proteins in tumorigenesis, and a better understanding of the function of these individual cullin proteins and their targets will help identify potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Peng Chen
- Department of General Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Tong-Dao-Bei Street, Hohhot, Inner Mongolia, 010050, People's Republic of China
| | - Guo-Dong Yao
- Department of General Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Tong-Dao-Bei Street, Hohhot, Inner Mongolia, 010050, People's Republic of China.
| |
Collapse
|
9
|
Wu P, Wang F, Wang Y, Men H, Zhu X, He G, Ma W, Xin S, Wu J, Liao W, Ding Y, He M, Liang L. Significance of FBX8 in progression of gastric cancer. Exp Mol Pathol 2015; 98:360-6. [PMID: 25801334 DOI: 10.1016/j.yexmp.2015.03.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/11/2015] [Indexed: 11/27/2022]
Abstract
F-box only protein 8 (FBX8), a novel component of F-box proteins, has recently been observed in several malignancies. However, its clinical implication in the progression of gastric cancer still remains unclear. The aim of this study was to explore the role of FBX8 in gastric cancer (GC) and analyze its correlation with tumor progression and prognosis. The expression of FBX8 in GC cell lines and matched pairs of fresh gastric cancer tissues were detected by real-time RT-PCR and Western blotting. Immunohistochemistry was used to analyze clinicopathological patterns of FBX8 in 136 cases of clinical paraffin-embedded GC tissues. A series of functional assays were conducted to evaluate the effect of FBX8 on proliferation and invasion in vitro and metastasis in vivo. FBX8 was markedly down-regulated in GC tissues compared to adjacent normal tissues. Patients with low FBX8 had shorter overall survival time and poor prognosis. Knocking down FBX8 obviously promoted proliferation and invasion in BGC823 cells, while over-expression of FBX8 in SGC7901 and AGS cells had the opposite effects. Moreover, FBX8 was sufficient to suppress metastasis in nude mice. Down-regulation of FBX8 significantly correlates with invasion, metastasis and poor survival time in GC patients. FBX8 may serve as a promising therapeutic target for inhibition of GC metastasis.
Collapse
Affiliation(s)
- Pingxiang Wu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou City 510515, Guangdong Province, People's Republic of China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, Guangdong province, People's Republic of China
| | - Feifei Wang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou City 510515, Guangdong Province, People's Republic of China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, Guangdong province, People's Republic of China
| | - Yi Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou City 510515, Guangdong Province, People's Republic of China
| | - Hui Men
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou City 510515, Guangdong Province, People's Republic of China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, Guangdong province, People's Republic of China
| | - Xiaohui Zhu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou City 510515, Guangdong Province, People's Republic of China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, Guangdong province, People's Republic of China
| | - Guoyang He
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou City 510515, Guangdong Province, People's Republic of China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, Guangdong province, People's Republic of China
| | - Wenhui Ma
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou City 510515, Guangdong Province, People's Republic of China
| | - Sainan Xin
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou City 510515, Guangdong Province, People's Republic of China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, Guangdong province, People's Republic of China
| | - Jianhua Wu
- First School of Clinical Medicine, Southern Medical University, Guangzhou city 510515, Guangdong province, People's Republic of China
| | - Wenting Liao
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou City 510515, Guangdong Province, People's Republic of China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, Guangdong province, People's Republic of China
| | - Yanqing Ding
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou City 510515, Guangdong Province, People's Republic of China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, Guangdong province, People's Republic of China
| | - Meirong He
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou City 510515, Guangdong Province, People's Republic of China..
| | - Li Liang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou City 510515, Guangdong Province, People's Republic of China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, Guangdong province, People's Republic of China.
| |
Collapse
|
10
|
A CULLINary ride across the secretory pathway: more than just secretion. Trends Cell Biol 2014; 24:389-99. [PMID: 24630736 DOI: 10.1016/j.tcb.2014.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/07/2014] [Accepted: 02/10/2014] [Indexed: 12/14/2022]
Abstract
Mulitmeric cullin-RING ubiquitin ligases (CRLs) represent the largest class of ubiquitin ligases in eukaryotes. However, most CRL ubiquitylation pathways remain uncharacterized. CRLs control a myriad of functions by catalyzing mono- or poly-ubiquitylation of target proteins. Recently, novel CRLs have been identified along the secretory pathway where they modify substrates involved in diverse cellular processes such as vesicle coat assembly and cell cycle progression. This review discusses our current understanding of CRL ubiquitylation within the secretory pathway, with special emphasis on the emerging role of the Golgi as a ubiquitylation platform. CRLs are also implicated in endosome function, where their specific roles are less well understood.
Collapse
|
11
|
Wang F, Qiao Y, Yu J, Ren X, Wang J, Ding Y, Zhang X, Ma W, Ding Y, Liang L. FBX8 Acts as an Invasion and Metastasis Suppressor and Correlates with Poor Survival in Hepatocellular Carcinoma. PLoS One 2013; 8:e65495. [PMID: 23826080 PMCID: PMC3694991 DOI: 10.1371/journal.pone.0065495] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 04/25/2013] [Indexed: 02/06/2023] Open
Abstract
Background F-box only protein 8 (FBX8), a novel component of F-box proteins, is lost in several cancers and has been associated with invasiveness of cancer cells. However, its expression pattern and role in the progression of hepatocellular carcinoma remain unclear. This study investigated the prognostic significance of FBX8 in hepatocellular carcinoma samples and analyzed FBX8 function in hepatocellular carcinoma cells by gene manipulation. Methodology The expression of FBX8 was detected in 120 cases of clinical paraffin-embedded hepatocellular carcinoma tissues, 20 matched pairs of fresh tissues and five hepatocellular carcinoma cell lines by immunohistochemistry with clinicopathological analyses, real-time RT-PCR or Western blot. The correlation of FBX8 expression with cell proliferation and invasion in five HCC cell lines was analyzed. Moreover, loss of function and gain of function assays were performed to evaluate the effect of FBX8 on cell proliferation, motility, invasion in vitro and metastasis in vivo. Conclusions We found that FBX8 was obviously down-regulated in HCC tissues and cell lines (P<0.05). The FBX8 down-regulation correlated significantly with poor prognosis, and FBX8 status was identified as an independent significant prognostic factor. Over-expression of FBX8 decreased proliferation, migration and invasion in HepG2 and 97H cells, while knock-down of FBX8 in 7721 cells showed the opposite effect. FBX8 negatively correlated with cell proliferation and invasion in 7701, M3, HepG2 and 97H cell lines. In vivo functional assays showed FBX8 suppressed tumor growth and pulmonary metastatic potential in mice. Our results indicate that down-regulation of FBX8 significantly correlates with invasion, metastasis and poor survival in hepatocellular carcinoma patients. It may be a useful biomarker for therapeutic strategy and control in hepatocellular carcinoma treatment.
Collapse
Affiliation(s)
- Feifei Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou City, Guangdong Province, People's Republic of China
| | - Yudan Qiao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou City, Guangdong Province, People's Republic of China
| | - Jiang Yu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Xiaoli Ren
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou City, Guangdong Province, People's Republic of China
| | - Jianmei Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou City, Guangdong Province, People's Republic of China
| | - Yi Ding
- Department of Radiotherapy, Nanfang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, People's Republic of China
| | - Xiaojing Zhang
- Department of Pathology, Shenzhen University, Shenzhen City, Guangdong Province, People's Republic of China
| | - Wenhui Ma
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou City, Guangdong Province, People's Republic of China
| | - Li Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou City, Guangdong Province, People's Republic of China
- * E-mail:
| |
Collapse
|
12
|
Cho HJ, Oh YJ, Han SH, Chung HJ, Kim CH, Lee NS, Kim WJ, Choi JM, Kim H. Cdk1 protein-mediated phosphorylation of receptor-associated protein 80 (RAP80) serine 677 modulates DNA damage-induced G2/M checkpoint and cell survival. J Biol Chem 2012; 288:3768-76. [PMID: 23264621 DOI: 10.1074/jbc.m112.401299] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Post-translational phosphorylation plays critical roles in the assembly of signaling and repair proteins in the DNA damage response pathway. RAP80, a component of the BRCA1-A complex, is crucial in cell cycle checkpoint activation and DNA damage repair. However, its molecular mechanism is unclear. In this study, we identified Cdk1 as a new RAP80-binding protein and demonstrated that the Cdk1-cyclin B(1) complex phosphorylates RAP80 at Ser-677 using an in vitro kinase assay and a phosphopeptide-specific antibody against phospho-Ser-677 of RAP80. RAP80 Ser-677 phosphorylation occurred in the M phase of the cell cycle when Cdk1 was in an active state. In addition, ionizing radiation (IR) induced RAP80 phosphorylation at Ser-677. Mutation of Ser-677 to alanine sensitized cells to IR and functioned in G(2)/M checkpoint control. These results suggest that post-translational phosphorylation of RAP80 by the Cdk1-cyclin B(1) complex is important for RAP80 functional sensitivity to IR and G(2)/M checkpoint control.
Collapse
Affiliation(s)
- Hyun Jung Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Hanyang University, Seoul 133-791, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Wang Q, Zhang Y, Yang HS. Pdcd4 knockdown up-regulates MAP4K1 expression and activation of AP-1 dependent transcription through c-Myc. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1807-14. [PMID: 22801218 DOI: 10.1016/j.bbamcr.2012.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 07/03/2012] [Accepted: 07/06/2012] [Indexed: 12/16/2022]
Abstract
Programmed cell death 4 (Pdcd4) is a novel tumor suppressor, whose expression is frequently down-regulated in several types of cancers. In the present study, we demonstrated that Pdcd4 knockdown up-regulates MAP kinase kinase kinase kinase 1 (MAP4K1) expression and increases phosphorylation of c-Jun. Over-expression of c-Myc in HEK293 cells increases the levels of MAP4K1, MAP4K1 promoter activity, and phospho-c-Jun. Mutation analysis showed that the c-Myc binding site at -536bp (relative to the initiation ATG) of map4k1 promoter responds to c-Myc regulation. In addition, chromatin immunoprecipitation demonstrated that c-Myc directly binds to map4k1 promoter at this site. Down-regulation of c-Myc reverses MAP4K1 expression and AP-1 activation in Pdcd4 knockdown cells. Moreover, over-expression of dominant negative Tcf4 decreases expression of c-Myc and MAP4K1, JNK activation, and AP-1 dependent transcription. Thus, activation of β-catenin/Tcf dependent transcription in Pdcd4 knockdown cells up-regulates MAP4K1 expression and AP-1 activity via c-Myc. The study presented here further reveals in detail the mechanism of how Pdcd4 inhibits tumor cell invasion and provides a functional connection between β-catenin/Tcf and AP-1 dependent transcription.
Collapse
Affiliation(s)
- Qing Wang
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | | | | |
Collapse
|
14
|
Hwang IY, Roe JS, Seol JH, Kim HR, Cho EJ, Youn HD. pVHL-mediated transcriptional repression of c-Myc by recruitment of histone deacetylases. Mol Cells 2012; 33:195-201. [PMID: 22286234 PMCID: PMC3887712 DOI: 10.1007/s10059-012-2268-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 11/29/2011] [Indexed: 01/22/2023] Open
Abstract
The biological functions of Myc are to regulate cell growth,apoptosis, cell differentiation and stem-cell self-renewal. Abnormal accumulation of c-Myc is able to induce excessive proliferation of normal cells. von Hippel-Lindau protein(pVHL) is a key regulator of hypoxia-inducible factor 1α(HIF1α), thus accumulation and hyperactivation of HIF1α is the most prominent feature of VHL-mutated renal cell carcinoma. Interestingly, the Myc pathway is reported to be activated in renal cell carcinoma even though the precise molecular mechanism still remains to be established. Here, we demonstrated that pVHL locates at the c-Myc promoter region through physical interaction with Myc. Furthermore, pVHL reinforces HDAC1/2 recruitment to the Myc promoter, which leads to the auto-suppression of Myc. Therefore, one possible mechanism of Myc auto-suppression by pVHL entails removing histone acetylation. Our study identifies a novel mechanism for pVHL-mediated negative regulation of c-Myc transcription.
Collapse
Affiliation(s)
- In-Young Hwang
- National Research Laboratory for Metabolic Checkpoint, Departments of Biomedical Sciences and Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Jae-Seok Roe
- National Research Laboratory for Metabolic Checkpoint, Departments of Biomedical Sciences and Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Ja-Hwan Seol
- National Research Laboratory for Chromatin Dynamics, School of Pharmacy, Sungkyunkwan University, Suwon 440-746,
Korea
| | - Hwa-Ryeon Kim
- National Research Laboratory for Metabolic Checkpoint, Departments of Biomedical Sciences and Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Eun-Jung Cho
- National Research Laboratory for Chromatin Dynamics, School of Pharmacy, Sungkyunkwan University, Suwon 440-746,
Korea
| | - Hong-Duk Youn
- National Research Laboratory for Metabolic Checkpoint, Departments of Biomedical Sciences and Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 110-799,
Korea
- World Class University (WCU) Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science, Seoul National University, Seoul 151-742,
Korea
| |
Collapse
|
15
|
Li Y, Kong D, Wang Z, Ahmad A, Bao B, Padhye S, Sarkar FH. Inactivation of AR/TMPRSS2-ERG/Wnt signaling networks attenuates the aggressive behavior of prostate cancer cells. Cancer Prev Res (Phila) 2011; 4:1495-506. [PMID: 21680704 DOI: 10.1158/1940-6207.capr-11-0077] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The development of prostate cancer and its progression to castrate-resistant prostate cancer (CRPC) after antiandrogen ablation therapy are driven by persistent biological activity of androgen receptor (AR) signaling. Moreover, studies have shown that more than 50% of human prostate cancers overexpress ERG (v-ets avian erythroblastosis virus E26 oncogene related gene) due to AR-regulated TMPRSS2-ERG fusion gene. However, the reported roles of TMPRSS2-ERG fusion in cancer progression are not clear. In this study, we investigated the signal transduction in the AR/TMPRSS2-ERG/Wnt signaling network for studying the aggressive behavior of prostate cancer cells and further assessed the effects of BR-DIM and CDF [natural agents-derived synthetic formulation and analogue of 3,3'-diindolylmethane (DIM) and curcumin, respectively, with improved bioavailability] on the regulation of AR/TMPRSS2-ERG/Wnt signaling. We found that activation of AR resulted in the induction of ERG expression through TMPRSS2-ERG fusion. Moreover, we found that ERG overexpression and nuclear translocation activated the activity of Wnt signaling. Furthermore, forced overexpression of ERG promoted invasive capacity of prostate cancer cells. More important, we found that BR-DIM and CDF inhibited the signal transduction in the AR/TMPRSS2-ERG/Wnt signaling network, leading to the inactivation of Wnt signaling consistent with inhibition of prostate cancer cell invasion. In addition, BR-DIM and CDF inhibited proliferation of prostate cancer cells and induced apoptotic cell death. On the basis of our findings, we conclude that because BR-DIM and CDF downregulate multiple signaling pathways including AR/TMPRSS2-ERG/Wnt signaling, these agents could be useful for designing novel strategies for the prevention and/or treatment of prostate cancer.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | | | |
Collapse
|