1
|
Urban MO, Planchon S, Hoštičková I, Vanková R, Dobrev P, Renaut J, Klíma M, Vítámvás P. The Resistance of Oilseed Rape Microspore-Derived Embryos to Osmotic Stress Is Associated With the Accumulation of Energy Metabolism Proteins, Redox Homeostasis, Higher Abscisic Acid, and Cytokinin Contents. FRONTIERS IN PLANT SCIENCE 2021; 12:628167. [PMID: 34177973 PMCID: PMC8231708 DOI: 10.3389/fpls.2021.628167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
The present study aims to investigate the response of rapeseed microspore-derived embryos (MDE) to osmotic stress at the proteome level. The PEG-induced osmotic stress was studied in the cotyledonary stage of MDE of two genotypes: Cadeli (D) and Viking (V), previously reported to exhibit contrasting leaf proteome responses under drought. Two-dimensional difference gel electrophoresis (2D-DIGE) revealed 156 representative protein spots that have been selected for MALDI-TOF/TOF analysis. Sixty-three proteins have been successfully identified and divided into eight functional groups. Data are available via ProteomeXchange with identifier PXD024552. Eight selected protein accumulation trends were compared with real-time quantitative PCR (RT-qPCR). Biomass accumulation in treated D was significantly higher (3-fold) than in V, which indicates D is resistant to osmotic stress. Cultivar D displayed resistance strategy by the accumulation of proteins in energy metabolism, redox homeostasis, protein destination, and signaling functional groups, high ABA, and active cytokinins (CKs) contents. In contrast, the V protein profile displayed high requirements of energy and nutrients with a significant number of stress-related proteins and cell structure changes accompanied by quick downregulation of active CKs, as well as salicylic and jasmonic acids. Genes that were suitable for gene-targeting showed significantly higher expression in treated samples and were identified as phospholipase D alpha, peroxiredoxin antioxidant, and lactoylglutathione lyase. The MDE proteome profile has been compared with the leaf proteome evaluated in our previous study. Different mechanisms to cope with osmotic stress were revealed between the genotypes studied. This proteomic study is the first step to validate MDE as a suitable model for follow-up research on the characterization of new crossings and can be used for preselection of resistant genotypes.
Collapse
Affiliation(s)
- Milan O. Urban
- Crop Research Institute, Plant Stress Biology and Biotechnology, Prague, Czechia
| | - Sébastien Planchon
- Luxembourg Institute of Science and Technology, “Environmental Research and Innovation,” (ERIN) Department, Belvaux, Luxembourg
| | - Irena Hoštičková
- Department of Plant Production and Agroecology, University of South Bohemia in Ceské Budějovice, Ceské Budějovice, Czechia
| | - Radomira Vanková
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Peter Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Jenny Renaut
- Luxembourg Institute of Science and Technology, “Environmental Research and Innovation,” (ERIN) Department, Belvaux, Luxembourg
| | - Miroslav Klíma
- Crop Research Institute, Plant Stress Biology and Biotechnology, Prague, Czechia
| | - Pavel Vítámvás
- Crop Research Institute, Plant Stress Biology and Biotechnology, Prague, Czechia
| |
Collapse
|
2
|
Farhat N, Belghith I, Senkler J, Hichri S, Abdelly C, Braun HP, Debez A. Recovery aptitude of the halophyte Cakile maritima upon water deficit stress release is sustained by extensive modulation of the leaf proteome. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 179:198-211. [PMID: 31048216 DOI: 10.1016/j.ecoenv.2019.04.072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
Among the most intriguing features characterizing extremophile plants is their ability to rapidly recover growth activity upon stress release. Here, we investigated the responses of the halophyte C. maritima to drought and recovery at both physiological and leaf proteome levels. Six week-old plants were either cultivated at 100% or at 25% field capacity. After 12 d of treatment, one lot of dehydrated plants was rewatered to 100% FC for 14 d (stress release). Drought stress impaired shoot hydration, photosynthetic activity and chlorophyll content compared to the control, resulting in severe plant growth restriction. This was concomitant with a marked increase in anthocyanin and proline concentrations. Upon stress release, C. maritima rapidly recovered with respect to all measured parameters. Two-dimensional gel-based proteome analysis of leaves revealed 84 protein spots with significantly changed volumes at the compared conditions: twenty-eight protein spots between normally watered plants and stressed plants but even 70 proteins between stressed and recovered plants. Proteins with higher abundance induced upon rewatering were mostly involved in photosynthesis, glycolytic pathway, TCA cycle, protein biosynthesis, and other metabolic pathways. Overall, C. maritima likely adopts a drought-avoidance strategy, involving efficient mechanisms specifically taking place upon stress release, leading to fast and strong recovery.
Collapse
Affiliation(s)
- Nèjia Farhat
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria, (CBBC), P. O. Box 901, 2050, Hammam-Lif, Tunisia; Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University of Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany.
| | - Ikram Belghith
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria, (CBBC), P. O. Box 901, 2050, Hammam-Lif, Tunisia; Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University of Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Jennifer Senkler
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University of Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Sarra Hichri
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria, (CBBC), P. O. Box 901, 2050, Hammam-Lif, Tunisia; Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University of Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Chedly Abdelly
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria, (CBBC), P. O. Box 901, 2050, Hammam-Lif, Tunisia
| | - Hans-Peter Braun
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University of Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Ahmed Debez
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria, (CBBC), P. O. Box 901, 2050, Hammam-Lif, Tunisia; Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University of Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| |
Collapse
|
3
|
Lee ES, Kang CH, Park JH, Lee SY. Physiological Significance of Plant Peroxiredoxins and the Structure-Related and Multifunctional Biochemistry of Peroxiredoxin 1. Antioxid Redox Signal 2018; 28:625-639. [PMID: 29113450 DOI: 10.1089/ars.2017.7400] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
SIGNIFICANCE Sessile plants respond to oxidative stress caused by internal and external stimuli by producing diverse forms of enzymatic and nonenzymatic antioxidant molecules. Peroxiredoxins (Prxs) in plants, including the Prx1, Prx5, Prx6, and PrxQ isoforms, constitute a family of antioxidant enzymes and play important functions in cells. Each Prx localizes to a specific subcellular compartment and has a distinct function in the control of plant growth, development, cellular metabolism, and various aspects of defense signaling. Recent Advances: Prx1, a typical Prx in plant chloroplasts, has redox-dependent multiple functions. It acts as a hydrogen peroxide (H2O2)-catalyzing peroxidase, a molecular chaperone, and a biological circadian marker. Prx1 undergoes a functional switching from a peroxidase to a molecular chaperone in response to oxidative stress, concomitant with the structural changes from a low-molecular-weight species to high-molecular-weight complexes mediated by the post-translational modification of its active site Cys residues. The redox status of the protein oscillates diurnally between hyperoxidation and reduction, showing a circadian rhythmic output. These dynamic structural and functional transformations mediate the effect of plant Prx1 on protecting plants from a myriad of harsh environmental stresses. CRITICAL ISSUES The multifunctional diversity of plant Prxs and their roles in cellular defense signaling depends on their specific interaction partners, which remain largely unidentified. Therefore, the identification of Prx-interacting proteins is necessary to clarify their physiological significance. FUTURE DIRECTIONS Since the functional specificity of the four plant Prx isoforms remains unclear, future studies should focus on investigating the physiological importance of each Prx isotype. Antioxid. Redox Signal. 28, 625-639.
Collapse
Affiliation(s)
- Eun Seon Lee
- Division of Applied Life Science (BK21+ Program) and PMBBRC, Gyeongsang National University , Jinju, Korea
| | - Chang Ho Kang
- Division of Applied Life Science (BK21+ Program) and PMBBRC, Gyeongsang National University , Jinju, Korea
| | - Joung Hun Park
- Division of Applied Life Science (BK21+ Program) and PMBBRC, Gyeongsang National University , Jinju, Korea
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21+ Program) and PMBBRC, Gyeongsang National University , Jinju, Korea
| |
Collapse
|
4
|
Urban MO, Vašek J, Klíma M, Krtková J, Kosová K, Prášil IT, Vítámvás P. Proteomic and physiological approach reveals drought-induced changes in rapeseeds: Water-saver and water-spender strategy. J Proteomics 2016; 152:188-205. [PMID: 27838467 DOI: 10.1016/j.jprot.2016.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/21/2016] [Accepted: 11/03/2016] [Indexed: 01/05/2023]
Abstract
The cultivar-dependent differences in Brassica napus L. seed yield are significantly affected by drought stress. Here, the response of leaf proteome to long-term drought (28days) was studied in cultivars (cvs): Californium (C), Cadeli (D), Navajo (N), and Viking (V). Analysis of twenty-four 2-D DIGE gels revealed 134 spots quantitatively changed at least 2-fold; from these, 79 proteins were significantly identified by MALDI-TOF/TOF. According to the differences in water use, the cultivars may be assigned to two categories: water-savers or water-spenders. In the water-savers group (cvs C+D), proteins related to nitrogen assimilation, ATP and redox homeostasis were increased under stress, while in the water-spenders category (cvs N+V), carbohydrate/energy, photosynthesis, stress related and rRNA processing proteins were increased upon stress. Taking all data together, we indicated cv C as a drought-adaptable water-saver, cv D as a medium-adaptable water-saver, cv N as a drought-adaptable water-spender, and cv V as a low-adaptable drought sensitive water-spender rapeseed. Proteomic data help to evaluate the impact of drought and the extent of genotype-based adaptability and contribute to the understanding of their plasticity. These results provide new insights into the provenience-based drought acclimation/adaptation strategy of contrasting winter rapeseeds and link data at gasometric, biochemical, and proteome level. SIGNIFICANCE Soil moisture deficit is a real problem for every crop. The data in this study demonstrates for the first time that in stem-prolongation phase cultivars respond to progressive drought in different ways and at different levels. Analysis of physiological and proteomic data showed two different water regime-related strategies: water-savers and spenders. However, not only water uptake rate itself, but also individual protein abundances, gasometric and biochemical parameters together with final biomass accumulation after stress explained genotype-based responses. Interestingly, under a mixed climate profile, both water-use patterns (savers or spenders) can be appropriate for drought adaptation. These data suggest, than complete "acclimation image" of rapeseeds in stem-prolongation phase under drought could be reached only if these characteristics are taken, explained and understood together.
Collapse
Affiliation(s)
- Milan Oldřich Urban
- Crop Research Institute, Department of Genetics and Plant Breeding, Drnovská 507/73, Prague, Czech Republic; Charles University, Department of Experimental Plant Biology, Viničná 5, Prague, Czech Republic.
| | - Jakub Vašek
- Czech University of Life Sciences Prague, Department of Genetics and Breeding, Kamýcká 129, Prague, Czech Republic
| | - Miroslav Klíma
- Crop Research Institute, Department of Genetics and Plant Breeding, Drnovská 507/73, Prague, Czech Republic
| | - Jana Krtková
- Charles University, Department of Experimental Plant Biology, Viničná 5, Prague, Czech Republic
| | - Klára Kosová
- Crop Research Institute, Department of Genetics and Plant Breeding, Drnovská 507/73, Prague, Czech Republic
| | - Ilja Tom Prášil
- Crop Research Institute, Department of Genetics and Plant Breeding, Drnovská 507/73, Prague, Czech Republic
| | - Pavel Vítámvás
- Crop Research Institute, Department of Genetics and Plant Breeding, Drnovská 507/73, Prague, Czech Republic
| |
Collapse
|
5
|
Govender K, Thomson JA, Mundree S, ElSayed AI, Rafudeen MS. Molecular and biochemical characterisation of a novel type II peroxiredoxin (XvPrx2) from the resurrection plant Xerophyta viscosa. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:669-683. [PMID: 32480495 DOI: 10.1071/fp15291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/27/2015] [Indexed: 06/11/2023]
Abstract
A type II peroxiredoxin gene (XvPrx2) was isolated from a Xerophyta viscosa (Baker) cDNA cold-stress library. The polypeptide displayed significant similarity to other plant type II peroxiredoxins, with the conserved amino acid motif (PGAFTPTCS) proposed to constitute the active site of the enzyme. Northern blot analyses showed that XvPrx2 gene was stress-inducible in response to abiotic stresses while gel analyses revealed that XvPrx2 homologues exist within the X. viscosa proteome. Using a yellow fluorescent reporter protein, the XvPrx2 protein localised to the cytosol. A mutated protein (XvV7) was generated by converting the valine at position 76 to a cysteine and an in vitro DNA protection assay showed that, in the presence of either XvPrx2 or XvV7, DNA protection occurred. In addition, an in vivo assay showed that increased protection was conferred to Escherichia coli cells overexpressing either XvPrx2 or XvV7. The XvPrx2 activity was maximal with DTT as electron donor and H2O2 as substrate. Using E. coli thioredoxin, a 2-15-fold lower enzyme activity was observed. The XvPrx2 activity with glutathione was significantly lower and glutaredoxin had no measurable effect on this reaction. The XvV7 protein displayed significantly lower activity compared with XvPrx2 for all substrates assessed.
Collapse
Affiliation(s)
- Kershini Govender
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag, Rondebosch, 7701, South Africa
| | - Jennifer A Thomson
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag, Rondebosch, 7701, South Africa
| | - Sagadevan Mundree
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, PO Box 2434, Brisbane, Qld 4001, Australia
| | | | - Mohammed Suhail Rafudeen
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag, Rondebosch, 7701, South Africa
| |
Collapse
|
6
|
Plant protein 2-Cys peroxiredoxin TaBAS1 alleviates oxidative and nitrosative stresses incurred during cryopreservation of mammalian cells. Biotechnol Bioeng 2016; 113:1511-21. [DOI: 10.1002/bit.25921] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 11/28/2015] [Accepted: 12/28/2015] [Indexed: 12/20/2022]
|
7
|
Sevilla F, Camejo D, Ortiz-Espín A, Calderón A, Lázaro JJ, Jiménez A. The thioredoxin/peroxiredoxin/sulfiredoxin system: current overview on its redox function in plants and regulation by reactive oxygen and nitrogen species. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2945-55. [PMID: 25873657 DOI: 10.1093/jxb/erv146] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In plants, the presence of thioredoxin (Trx), peroxiredoxin (Prx), and sulfiredoxin (Srx) has been reported as a component of a redox system involved in the control of dithiol-disulfide exchanges of target proteins, which modulate redox signalling during development and stress adaptation. Plant thiols, and specifically redox state and regulation of thiol groups of cysteinyl residues in proteins and transcription factors, are emerging as key components in the plant response to almost all stress conditions. They function in both redox sensing and signal transduction pathways. Scarce information exists on the transcriptional regulation of genes encoding Trx/Prx and on the transcriptional and post-transcriptional control exercised by these proteins on their putative targets. As another point of control, post-translational regulation of the proteins, such as S-nitrosylation and S-oxidation, is of increasing interest for its effect on protein structure and function. Special attention is given to the involvement of the Trx/Prx/Srx system and its redox state in plant signalling under stress, more specifically under abiotic stress conditions, as an important cue that influences plant yield and growth. This review focuses on the regulation of Trx and Prx through cysteine S-oxidation and/or S-nitrosylation, which affects their functionality. Some examples of redox regulation of transcription factors and Trx- and Prx-related genes are also presented.
Collapse
Affiliation(s)
- F Sevilla
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - D Camejo
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - A Ortiz-Espín
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - A Calderón
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - J J Lázaro
- Department of Biochemistry, Cellular and Molecular Biology of Plants, EEZ, CSIC, 18007 Granada, Spain
| | - A Jiménez
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| |
Collapse
|
8
|
Park CH, Lee SS, Kim KR, Jung MH, Lee SY, Cho EJ, Singh S, Chung BY. Optimized enzymatic dual functions of PaPrx protein by proton irradiation. JOURNAL OF RADIATION RESEARCH 2014; 55:17-24. [PMID: 23753570 PMCID: PMC3885114 DOI: 10.1093/jrr/rrt081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We investigated the effects of proton irradiation on the function and structure of the Pseudomonas aeruginosa peroxiredoxin (PaPrx). Polyacrylamide gel demonstrated that PaPrx proteins exposed to proton irradiation at several doses exhibited simultaneous formation of high molecular weight (HMW) complexes and fragmentation. Size-exclusion chromatography (SEC) analysis revealed that the number of fragments and very low molecular weight (LMW) structures increased as the proton irradiation dose increased. The peroxidase activity of irradiated PaPrx was preserved, and its chaperone activity was significantly increased by increasing the proton irradiation dose. The chaperone activity increased about 3-4 fold after 2.5 kGy proton irradiation, compared with that of non-irradiated PaPrx, and increased to almost the maximum activity after 10 kGy proton irradiation. We previously obtained functional switching in PaPrx proteins, by using gamma rays and electron beams as radiation sources, and found that the proteins exhibited increased chaperone activity but decreased peroxidase activity. Interestingly, in this study we newly found that proton irradiation could enhance both peroxidase and chaperone activities. Therefore, we can suggest proton irradiation as a novel protocol for conserved 2-Cys protein engineering.
Collapse
Affiliation(s)
- Chul-Hong Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea
- School of Biological Sciences and Biotechnology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Seung Sik Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea
| | - Kye Ryung Kim
- Proton Engineering Frontier Project, Korea Atomic Energy Research Institute, Gyeongju 780-904, Republic of Korea
| | - Myung Hwan Jung
- Proton Engineering Frontier Project, Korea Atomic Energy Research Institute, Gyeongju 780-904, Republic of Korea
| | - Sang Yeol Lee
- Division of Applied Life Sciences (BK21 Program), Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Eun Ju Cho
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea
| | - Sudhir Singh
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea
| | - Byung Yeoup Chung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea
- Corresponding author. Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), 29 Geumgu-gil, Jeongeup 580-185, Republic of Korea. Tel: +82-63-570-3331; Fax: +82-63-570-3339;
| |
Collapse
|