1
|
Xu H, Song X, Zhang X, Wang G, Cheng X, Zhang L, Wang Z, Li R, Ai C, Wang X, Pu L, Chen Z, Liu W. SIRT1 regulates mitochondrial fission to alleviate high altitude hypoxia inducedcardiac dysfunction in rats via the PGC-1α-DRP1/FIS1/MFF pathway. Apoptosis 2024; 29:1663-1678. [PMID: 38678130 DOI: 10.1007/s10495-024-01954-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 04/29/2024]
Abstract
High-altitude exposure has been linked to cardiac dysfunction. Silent information regulator factor 2-related enzyme 1 (sirtuin 1, SIRT1), a nicotinamide adenine dinucleotide-dependent deacetylase, plays a crucial role in regulating numerous cardiovascular diseases. However, the relationship between SIRT1 and cardiac dysfunction induced by hypobaric hypoxia (HH) remains unexplored. This study aims to assess the impact of SIRT1 on HH-induced cardiac dysfunction and delve into the underlying mechanisms, both in vivo and in vitro. In this study, we have demonstrated that exposure to HH results in cardiomyocyte injury, along with the downregulation of SIRT1 and mitochondrial dysfunction. Upregulating SIRT1 significantly inhibits mitochondrial fission, improves mitochondrial function, reduces cardiomyocyte injury, and consequently enhances cardiac function in HH-exposed rats. Additionally, HH exposure triggers aberrant expression of mitochondrial fission-regulated proteins, with a decrease in PPARγ coactivator 1 alpha (PGC-1α) and mitochondrial fission factor (MFF) and an increase in mitochondrial fission 1 (FIS1) and dynamin-related protein 1 (DRP1), all of which are mitigated by SIRT1 upregulation. Furthermore, inhibiting PGC-1α diminishes the positive effects of SIRT1 regulation on the expression of DRP1, MFF, and FIS1, as well as mitochondrial fission. These findings demonstrate that SIRT1 alleviates HHinduced cardiac dysfunction by preventing mitochondrial fission through the PGC-1α-DRP1/FIS1/MFF pathway.
Collapse
Affiliation(s)
- Hongbao Xu
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiaona Song
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiaoru Zhang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Guangrui Wang
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiaoling Cheng
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Ling Zhang
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zirou Wang
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Ran Li
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Chongyi Ai
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xinxing Wang
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Lingling Pu
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.
| | - Zhaoli Chen
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.
| | - Weili Liu
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.
| |
Collapse
|
2
|
Huang L, Wei B, Zhao Y, Gong X, Chen L. DYNLT1 promotes mitochondrial metabolism to fuel breast cancer development by inhibiting ubiquitination degradation of VDAC1. Mol Med 2023; 29:72. [PMID: 37280526 DOI: 10.1186/s10020-023-00663-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/04/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Mitochondrial metabolism has been proposed as an attractive target for breast cancer therapy. The discovery of new mechanisms underlying mitochondrial dysfunction will facilitate the development of new metabolic inhibitors to improve the clinical treatment of breast cancer patients. DYNLT1 (Dynein Light Chain Tctex-Type 1) is a key component of the motor complex that transports cellular cargo along microtubules in the cell, but whether and how DYNLT1 affects mitochondrial metabolism and breast cancer has not been reported. METHODS The expression levels of DYNLT1 were analyzed in clinical samples and a panel of cell lines. The role of DYNLT1 in breast cancer development was investigated using in vivo mouse models and in vitro cell assays, including CCK-8, plate cloning and transwell assay. The role of DYNLT1 in regulating mitochondrial metabolism in breast cancer development is examined by measuring mitochondrial membrane potential and ATP levels. To investigate the underlying molecular mechanism, many methods, including but not limited to Co-IP and ubiquitination assay were used. RESULTS First, we found that DYNLT1 was upregulated in breast tumors, especially in ER + and TNBC subtypes. DYNLT1 promotes the proliferation, migration, invasion and mitochondrial metabolism in breast cancer cells in vitro and breast tumor development in vivo. DYNLT1 colocalizes with voltage-dependent anion channel 1 (VDAC1) on mitochondria to regulate key metabolic and energy functions. Mechanistically, DYNLT1 stabilizes the voltage-dependent anion channel 1 (VDAC1) by hindering E3 ligase Parkin-mediated VDAC1 ubiquitination and degradation. CONCLUSION Our data demonstrate that DYNLT1 promotes mitochondrial metabolism to fuel breast cancer development by inhibiting Parkin-mediated ubiquitination degradation of VDAC1. This study suggests that mitochondrial metabolism can be exploited by targeting the DYNLT1-Parkin-VDAC1 axis to improve the ability of metabolic inhibitors to suppress cancers with limited treatment options, such as triple-negative breast cancer (TNBC).
Collapse
Affiliation(s)
- Ling Huang
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Cancer Institute, School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Bo Wei
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Cancer Institute, School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yuran Zhao
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Cancer Institute, School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Xue Gong
- Nanjing Maternal and Child Health Institute, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China.
| | - Liming Chen
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
- Cancer Institute, School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
3
|
Talà A, Guerra F, Calcagnile M, Romano R, Resta SC, Paiano A, Chiariello M, Pizzolante G, Bucci C, Alifano P. HrpA anchors meningococci to the dynein motor and affects the balance between apoptosis and pyroptosis. J Biomed Sci 2022; 29:45. [PMID: 35765029 PMCID: PMC9241232 DOI: 10.1186/s12929-022-00829-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In Neisseria meningitidis the HrpA/HrpB two-partner secretion system (TPS) was implicated in diverse functions including meningococcal competition, biofilm formation, adherence to epithelial cells, intracellular survival and vacuolar escape. These diverse functions could be attributed to distinct domains of secreted HrpA. METHODS A yeast two-hybrid screening, in vitro pull-down assay and immunofluorescence microscopy experiments were used to investigate the interaction between HrpA and the dynein light-chain, Tctex-type 1 (DYNLT1). In silico modeling was used to analyze HrpA structure. Western blot analysis was used to investigate apoptotic and pyroptotic markers. RESULTS The HrpA carboxy-terminal region acts as a manganese-dependent cell lysin, while the results of a yeast two-hybrid screening demonstrated that the HrpA middle region has the ability to bind the dynein light-chain, Tctex-type 1 (DYNLT1). This interaction was confirmed by in vitro pull-down assay and immunofluorescence microscopy experiments showing co-localization of N. meningitidis with DYNLT1 in infected epithelial cells. In silico modeling revealed that the HrpA-M interface interacting with the DYNLT1 has similarity with capsid proteins of neurotropic viruses that interact with the DYNLT1. Indeed, we found that HrpA plays a key role in infection of and meningococcal trafficking within neuronal cells, and is implicated in the modulation of the balance between apoptosis and pyroptosis. CONCLUSIONS Our findings revealed that N. meningitidis is able to effectively infect and survive in neuronal cells, and that this ability is dependent on HrpA, which establishes a direct protein-protein interaction with DYNLTI in these cells, suggesting that the HrpA interaction with dynein could be fundamental for N. meningitidis spreading inside the neurons. Moreover, we found that the balance between apoptotic and pyroptotic pathways is heavily affected by HrpA.
Collapse
Affiliation(s)
- Adelfia Talà
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Matteo Calcagnile
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Roberta Romano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Silvia Caterina Resta
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Aurora Paiano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Mario Chiariello
- Core Research Laboratory-Siena, Institute for Cancer Research and Prevention (ISPRO), 53100, Siena, Italy.,Institute of Clinical Physiology (IFC), National Research Council (CNR), 53100, Siena, Italy
| | - Graziano Pizzolante
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy.
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy.
| |
Collapse
|
4
|
Ayanlaja AA, Hong X, Cheng B, Zhou H, Kanwore K, Alphayo-Kambey P, Zhang L, Tang C, Adeyanju MM, Gao D. Susceptibility of cytoskeletal-associated proteins for tumor progression. Cell Mol Life Sci 2021; 79:13. [PMID: 34964908 PMCID: PMC11072373 DOI: 10.1007/s00018-021-04101-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/11/2021] [Accepted: 12/16/2021] [Indexed: 10/19/2022]
Abstract
The traditional functions of cytoskeletal-associated proteins (CAPs) in line with polymerization and stabilization of the cytoskeleton have evolved and are currently underrated in oncology. Although therapeutic drugs have been developed to target the cytoskeletal components directly in cancer treatment, several recently established therapeutic agents designed for new targets block the proliferation of cancer cells and suppress resistance to existing target agents. It would seem like these targets only work toward inhibiting the polymerization of cytoskeletal components or hindering mitotic spindle formation in cancer cells, but a large body of literature points to CAPs and their culpability in cell signaling, molecular conformation, organelle trafficking, cellular metabolism, and genomic modifications. Here, we review those underappreciated functions of CAPs, and we delineate the implications of cellular signaling instigated by evasive properties induced by aberrant expression of CAPs in response to stress or failure to exert normal functions. We present an analogy establishing CAPs as vulnerable targets for cancer systems and credible oncotargets. This review establishes a paradigm in which the cancer machinery may commandeer the conventional functions of CAPs for survival, drug resistance, and energy generation; an interesting feature overdue for attention.
Collapse
Affiliation(s)
- Abiola Abdulrahman Ayanlaja
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Department of Neurology, Johns Hopkins University School of Medicine, 201 N Broadway, Baltimore, MD, 21287, USA
| | - Xiaoliang Hong
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Bo Cheng
- The Affiliated Oriental Hospital of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Han Zhou
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Kouminin Kanwore
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Piniel Alphayo-Kambey
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Lin Zhang
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Chuanxi Tang
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | | | - Dianshuai Gao
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
5
|
Lu D, Zhang Y, Xue W, Sun J, Yang C, Lin C, Li Y, Liu T. Shenxiong Glucose Injection Protects H9c2 Cells From CoCl 2-Induced Oxidative Damage via Antioxidant and Antiapoptotic Pathways. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20920054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cardiovascular disease has become one of the main diseases that endanger humans, and oxidative damage plays an important role in this. Shenxiong glucose injection (SGI) is a common clinical treatment in China for the treatment of this condition. To understand further the protective effects and related mechanisms of SGI on cardiovascular diseases, H9c2 cells were treated with SGI at different concentrations (0.5%, 1%, 2% [v/v]) before hypoxic damage was induced by treatment with CoCl2). In CoCl2-induced H9c2 cells, SGI treatment increased cell viability and the activity of superoxide dismutase, glutathione peroxidase, catalase, elevated mitochondrial membrane potential, and decreased the rate of cellular apoptosis, lactic dehydrogenase release, and the content of malondialdehyde and reactive oxygen species, while also upregulating Bcl-2 expression and downregulating Bax, Cyt-c, and cleaved caspase-3 expression. Together, these results suggested that SGI has a protective effect on CoCl2-induced damage, and its mechanism may be related to increased antioxidant and antiapoptosis capacity in H9c2 cells. This study provides the basis for further research and potential practical applications of SGI.
Collapse
Affiliation(s)
- Dingyan Lu
- State Key Laboratory of Functions and Applications of Medicinal Plants & Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou, P. R. China
- School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Yubin Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants & Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou, P. R. China
- School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Weina Xue
- School of Medicine and Health Management, Guizhou Medical University, Guiyang, Guizhou, P.R. China
| | - Jia Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants & Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Chang Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants & Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Changhu Lin
- State Key Laboratory of Functions and Applications of Medicinal Plants & Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Yongjun Li
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants & Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou, P. R. China
| |
Collapse
|
6
|
Ding M, Feng N, Tang D, Feng J, Li Z, Jia M, Liu Z, Gu X, Wang Y, Fu F, Pei J. Melatonin prevents Drp1-mediated mitochondrial fission in diabetic hearts through SIRT1-PGC1α pathway. J Pineal Res 2018; 65:e12491. [PMID: 29575122 PMCID: PMC6099285 DOI: 10.1111/jpi.12491] [Citation(s) in RCA: 287] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/12/2018] [Indexed: 02/06/2023]
Abstract
Myocardial contractile dysfunction is associated with an increase in mitochondrial fission in patients with diabetes. However, whether mitochondrial fission directly promotes diabetes-induced cardiac dysfunction is still unknown. Melatonin exerts a substantial influence on the regulation of mitochondrial fission/fusion. This study investigated whether melatonin protects against diabetes-induced cardiac dysfunction via regulation of mitochondrial fission/fusion and explored its underlying mechanisms. Here, we show that melatonin prevented diabetes-induced cardiac dysfunction by inhibiting dynamin-related protein 1 (Drp1)-mediated mitochondrial fission. Melatonin treatment decreased Drp1 expression, inhibited mitochondrial fragmentation, suppressed oxidative stress, reduced cardiomyocyte apoptosis, improved mitochondrial function and cardiac function in streptozotocin (STZ)-induced diabetic mice, but not in SIRT1-/- diabetic mice. In high glucose-exposed H9c2 cells, melatonin treatment increased the expression of SIRT1 and PGC-1α and inhibited Drp1-mediated mitochondrial fission and mitochondria-derived superoxide production. In contrast, SIRT1 or PGC-1α siRNA knockdown blunted the inhibitory effects of melatonin on Drp1 expression and mitochondrial fission. These data indicated that melatonin exerted its cardioprotective effects by reducing Drp1-mediated mitochondrial fission in a SIRT1/PGC-1α-dependent manner. Moreover, chromatin immunoprecipitation analysis revealed that PGC-1α directly regulated the expression of Drp1 by binding to its promoter. Inhibition of mitochondrial fission with Drp1 inhibitor mdivi-1 suppressed oxidative stress, alleviated mitochondrial dysfunction and cardiac dysfunction in diabetic mice. These findings show that melatonin attenuates the development of diabetes-induced cardiac dysfunction by preventing mitochondrial fission through SIRT1-PGC1α pathway, which negatively regulates the expression of Drp1 directly. Inhibition of mitochondrial fission may be a potential target for delaying cardiac complications in patients with diabetes.
Collapse
Affiliation(s)
- Mingge Ding
- Department of Cardiology and Department of GeriatricsXi'an Central HospitalXi'an Jiaotong UniversityXi'anChina
| | - Na Feng
- Department of PhysiologyNational Key Discipline of Cell BiologySchool of Basic MedicineFourth Military Medical UniversityXi'anChina
| | - Daishi Tang
- Department of EndocrinologyAffiliated Zhongshan Hospital of Dalian UniversityDalianChina
| | - Jiahao Feng
- Department of PhysiologyNational Key Discipline of Cell BiologySchool of Basic MedicineFourth Military Medical UniversityXi'anChina
| | - Zeyang Li
- Department of PhysiologyNational Key Discipline of Cell BiologySchool of Basic MedicineFourth Military Medical UniversityXi'anChina
| | - Min Jia
- Department of PhysiologyNational Key Discipline of Cell BiologySchool of Basic MedicineFourth Military Medical UniversityXi'anChina
| | - Zhenhua Liu
- Department of PhysiologyNational Key Discipline of Cell BiologySchool of Basic MedicineFourth Military Medical UniversityXi'anChina
| | - Xiaoming Gu
- Department of PhysiologyNational Key Discipline of Cell BiologySchool of Basic MedicineFourth Military Medical UniversityXi'anChina
| | - Yuemin Wang
- Department of PhysiologyNational Key Discipline of Cell BiologySchool of Basic MedicineFourth Military Medical UniversityXi'anChina
| | - Feng Fu
- Department of PhysiologyNational Key Discipline of Cell BiologySchool of Basic MedicineFourth Military Medical UniversityXi'anChina
| | - Jianming Pei
- Department of PhysiologyNational Key Discipline of Cell BiologySchool of Basic MedicineFourth Military Medical UniversityXi'anChina
| |
Collapse
|
7
|
Esdal HCD, Ghbeis MB, Saltzman DA, Hess D, Hume JR, Reed RC, Berry SA, Hoggard E, Hirsch B, Baughn LB, Schimmenti LA. Necrotizing Enterocolitis in Two Siblings and an Unrelated Infant with Overlapping Chromosome 6q25 Deletions. Mol Syndromol 2018; 9:141-148. [PMID: 29928179 DOI: 10.1159/000488817] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2018] [Indexed: 11/19/2022] Open
Abstract
The pathogenesis of necrotizing enterocolitis (NEC) remains poorly understood but is thought to be multifactorial. There are no specific recurring chromosomal abnormalities previously associated with NEC. We report 3 cases of intestinal necrosis associated with large chromosome 6 deletions. The first patient was found to have a 7.9-Mb deletion of chromosome 6 encompassing over 40 genes, arr[GRCh37] 6q25.3q26(155699183_163554531)×1. The second patient had a 19.5-Mb deletion of chromosome 6 generated by an unbalanced translocation with chromosome 18, 46,XY,der(6)t (6;18)(q25.1;p11.23), arr[GRCh37] 6q25.1q27(151639526_ 171115067)×1, 18p11.32p11.23(131700_7694199)×3, which included the whole 7.9-Mb region deleted in the first patient. The third patient was the younger sibling of the second patient with an identical derivative chromosome 6. The shared abnormal chromosome 6 region includes multiple genes of interest, particularly EZR. Mouse models have demonstrated that Ezr is expressed in microvillar epithelium and helps regulate cell-cell adhesion in the gut. We hypothesize that deletion of this shared region of 6q leads to gastrointestinal vulnerability which may predispose patients to intestinal necrosis.
Collapse
Affiliation(s)
- Hannah C D Esdal
- Department of Pediatrics, University of Minnesota, Minneapolis, USA
| | - Muhammad B Ghbeis
- Division of Cardiovascular Critical Care, Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Daniel A Saltzman
- Department of Pediatric Surgery, Divisions of, University of Minnesota Masonic Children's Hospital, Minneapolis, USA
| | - Donavon Hess
- Department of Pediatric Surgery, Divisions of, University of Minnesota Masonic Children's Hospital, Minneapolis, USA
| | - Janet R Hume
- Critical Care, University of Minnesota Masonic Children's Hospital, Minneapolis, USA
| | - Robyn C Reed
- Department of Pathology, Children's Hospitals and Clinics of Minnesota, Minneapolis, MN, USA
| | - Susan A Berry
- Genetics and Metabolism, Department of Pediatrics, University of Minnesota Masonic Children's Hospital, Minneapolis, USA
| | - Eric Hoggard
- Division of Pediatric Radiology, Department of Radiology, University of Minnesota Masonic Children's Hospital, Minneapolis, USA
| | - Betsy Hirsch
- Division of Molecular Pathology and Genomics, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, USA
| | - Linda B Baughn
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Lisa A Schimmenti
- Department of Otorhinolaryngology and Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
8
|
Cao J, Li X, Lv Y. Dynein light chain family genes in 15 plant species: Identification, evolution and expression profiles. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 254:70-81. [PMID: 27964786 DOI: 10.1016/j.plantsci.2016.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/02/2016] [Accepted: 10/31/2016] [Indexed: 05/27/2023]
Abstract
Dynein light chain (DLC) is one important component of the dynein complexes, which have been proved involving in a variety of cellular functions. However, higher plants lack all other components of the complexes except DLCs, suggesting that in plants, the DLC protein does not carry out the same function as it in animals. Therefore, the function of this family in plants is mysterious. In this study, we investigated the DLC gene family in 15 plant species and analyzed their expression profiles. In total, 128 DLC genes were identified from the 15 studied plant species and were divided into eight groups by their phylogenetic relation. Highly conserved gene structure and motif arrangement was discovered within each group, indicating their functional correlation. Genetic variation and recombination events were also detected in DLC genes. Through selection analyses, we also identified some significant site-specific constraints in most of the DLC paralogs. In addition, DLC genes presented various expression profiles in different development stages, or under different abiotic stresses or phytohormone treatments. This may be associated with a variety of cis-elements responding to stress and phytohormone in the upstream sequences of the DLC genes. Functional network analysis exhibited 123 physical or functional interactions. The results provide a foundation for exploring the characterization of the DLC genes in plants and offer insights for additional functional studies.
Collapse
Affiliation(s)
- Jun Cao
- Institute of Life Sciences, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China.
| | - Xiangyang Li
- Industrial Crop Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, PR China
| | - Yueqing Lv
- Institute of Life Sciences, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China
| |
Collapse
|
9
|
Oji S, Nicolussi EM, Kaufmann N, Zeka B, Schanda K, Fujihara K, Illes Z, Dahle C, Reindl M, Lassmann H, Bradl M. Experimental Neuromyelitis Optica Induces a Type I Interferon Signature in the Spinal Cord. PLoS One 2016; 11:e0151244. [PMID: 26990978 PMCID: PMC4798752 DOI: 10.1371/journal.pone.0151244] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/25/2016] [Indexed: 12/15/2022] Open
Abstract
Neuromyelitis optica (NMO) is an acute inflammatory disease of the central nervous system (CNS) which predominantly affects spinal cord and optic nerves. Most patients harbor pathogenic autoantibodies, the so-called NMO-IgGs, which are directed against the water channel aquaporin 4 (AQP4) on astrocytes. When these antibodies gain access to the CNS, they mediate astrocyte destruction by complement-dependent and by antibody-dependent cellular cytotoxicity. In contrast to multiple sclerosis (MS) patients who benefit from therapies involving type I interferons (I-IFN), NMO patients typically do not profit from such treatments. How is I-IFN involved in NMO pathogenesis? To address this question, we made gene expression profiles of spinal cords from Lewis rat models of experimental neuromyelitis optica (ENMO) and experimental autoimmune encephalomyelitis (EAE). We found an upregulation of I-IFN signature genes in EAE spinal cords, and a further upregulation of these genes in ENMO. To learn whether the local I-IFN signature is harmful or beneficial, we induced ENMO by transfer of CNS antigen-specific T cells and NMO-IgG, and treated the animals with I-IFN at the very onset of clinical symptoms, when the blood-brain barrier was open. With this treatment regimen, we could amplify possible effects of the I-IFN induced genes on the transmigration of infiltrating cells through the blood brain barrier, and on lesion formation and expansion, but could avoid effects of I-IFN on the differentiation of pathogenic T and B cells in the lymph nodes. We observed that I-IFN treated ENMO rats had spinal cord lesions with fewer T cells, macrophages/activated microglia and activated neutrophils, and less astrocyte damage than their vehicle treated counterparts, suggesting beneficial effects of I-IFN.
Collapse
Affiliation(s)
- Satoru Oji
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Eva-Maria Nicolussi
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Nathalie Kaufmann
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Bleranda Zeka
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Kathrin Schanda
- Clinical Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Kazuo Fujihara
- Departments of Multiple Sclerosis Therapeutics and Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Zsolt Illes
- Department of Neurology, University of Southern Denmark, Odense, Denmark
| | - Charlotte Dahle
- Department of Clinical Immunology and Transfusion Medicine and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Markus Reindl
- Clinical Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Hans Lassmann
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Monika Bradl
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
10
|
Lan X, Li L, Hu J, Zhang Q, Dang Y, Huang Y. A Quantitative Method for Microtubule Analysis in Fluorescence Images. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2015; 21:1582-1590. [PMID: 26417862 DOI: 10.1017/s1431927615015202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Microtubule analysis is of significant value for a better understanding of normal and pathological cellular processes. Although immunofluorescence microscopic techniques have proven useful in the study of microtubules, comparative results commonly rely on a descriptive and subjective visual analysis. We developed an objective and quantitative method based on image processing and analysis of fluorescently labeled microtubular patterns in cultured cells. We used a multi-parameter approach by analyzing four quantifiable characteristics to compose our quantitative feature set. Then we interpreted specific changes in the parameters and revealed the contribution of each feature set using principal component analysis. In addition, we verified that different treatment groups could be clearly discriminated using principal components of the multi-parameter model. High predictive accuracy of four commonly used multi-classification methods confirmed our method. These results demonstrated the effectiveness and efficiency of our method in the analysis of microtubules in fluorescence images. Application of the analytical methods presented here provides information concerning the organization and modification of microtubules, and could aid in the further understanding of structural and functional aspects of microtubules under normal and pathological conditions.
Collapse
Affiliation(s)
- Xiaodong Lan
- State Key Laboratory of Trauma,Burns and Combined Injury,Institute of Burn Research,Southwest Hospital,The Third Military Medical University,Chongqing 400038,China
| | - Lingfei Li
- State Key Laboratory of Trauma,Burns and Combined Injury,Institute of Burn Research,Southwest Hospital,The Third Military Medical University,Chongqing 400038,China
| | - Jiongyu Hu
- State Key Laboratory of Trauma,Burns and Combined Injury,Institute of Burn Research,Southwest Hospital,The Third Military Medical University,Chongqing 400038,China
| | - Qiong Zhang
- State Key Laboratory of Trauma,Burns and Combined Injury,Institute of Burn Research,Southwest Hospital,The Third Military Medical University,Chongqing 400038,China
| | - Yongming Dang
- State Key Laboratory of Trauma,Burns and Combined Injury,Institute of Burn Research,Southwest Hospital,The Third Military Medical University,Chongqing 400038,China
| | - Yuesheng Huang
- State Key Laboratory of Trauma,Burns and Combined Injury,Institute of Burn Research,Southwest Hospital,The Third Military Medical University,Chongqing 400038,China
| |
Collapse
|
11
|
Dang Y, Lan X, Zhang Q, Li L, Huang Y. Analysis of grayscale characteristics in images of labeled microtubules from cultured cardiac myocytes. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2015; 21:334-342. [PMID: 25772206 DOI: 10.1017/s1431927615000185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Microtubules of cardiac myocytes depolymerize after a hypoxic insult or treatment with colchicine. However, little attention has been paid to quantifying changes in microtubule distribution when using fluorescent images. We converted fluorescence images of labeled microtubules in H9C2 cardiac myocytes to grayscale images, then filtered the images to remove any noise, and used grayscale histograms to quantify features of the images. The results show that parameters such as the mean, variance, skewness, kurtosis, energy, and entropy can be used to quantitatively describe the distribution of microtubules in cells. Quantitative characteristics of microtubule distribution were similar after culturing cells under hypoxic conditions or after treatment with colchicine. These results parallel those described for neonatal rat cardiac myocytes following ischemia and hypoxia. In addition, we provide a method for internal segmentation of the cells, which revealed that microtubular depolymerization was more evident near the cell membrane following hypoxia or colchicine treatment.
Collapse
Affiliation(s)
- Yongming Dang
- State Key Laboratory of Trauma, Burns and Combined Injury,Institute of Burn Research,Southwest Hospital,The Third Military Medical University,Chongqing 400038,China
| | - Xiaodong Lan
- State Key Laboratory of Trauma, Burns and Combined Injury,Institute of Burn Research,Southwest Hospital,The Third Military Medical University,Chongqing 400038,China
| | - Qiong Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury,Institute of Burn Research,Southwest Hospital,The Third Military Medical University,Chongqing 400038,China
| | - Lingfei Li
- State Key Laboratory of Trauma, Burns and Combined Injury,Institute of Burn Research,Southwest Hospital,The Third Military Medical University,Chongqing 400038,China
| | - Yuesheng Huang
- State Key Laboratory of Trauma, Burns and Combined Injury,Institute of Burn Research,Southwest Hospital,The Third Military Medical University,Chongqing 400038,China
| |
Collapse
|
12
|
Parker AL, Kavallaris M, McCarroll JA. Microtubules and their role in cellular stress in cancer. Front Oncol 2014; 4:153. [PMID: 24995158 PMCID: PMC4061531 DOI: 10.3389/fonc.2014.00153] [Citation(s) in RCA: 296] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/03/2014] [Indexed: 01/08/2023] Open
Abstract
Microtubules are highly dynamic structures, which consist of α- and β-tubulin heterodimers, and are involved in cell movement, intracellular trafficking, and mitosis. In the context of cancer, the tubulin family of proteins is recognized as the target of the tubulin-binding chemotherapeutics, which suppress the dynamics of the mitotic spindle to cause mitotic arrest and cell death. Importantly, changes in microtubule stability and the expression of different tubulin isotypes as well as altered post-translational modifications have been reported for a range of cancers. These changes have been correlated with poor prognosis and chemotherapy resistance in solid and hematological cancers. However, the mechanisms underlying these observations have remained poorly understood. Emerging evidence suggests that tubulins and microtubule-associated proteins may play a role in a range of cellular stress responses, thus conferring survival advantage to cancer cells. This review will focus on the importance of the microtubule-protein network in regulating critical cellular processes in response to stress. Understanding the role of microtubules in this context may offer novel therapeutic approaches for the treatment of cancer.
Collapse
Affiliation(s)
- Amelia L Parker
- Tumour Biology and Targeting Program, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales , Sydney, NSW , Australia
| | - Maria Kavallaris
- Tumour Biology and Targeting Program, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales , Sydney, NSW , Australia ; Australian Centre for NanoMedicine, University of New South Wales , Sydney, NSW , Australia
| | - Joshua A McCarroll
- Tumour Biology and Targeting Program, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales , Sydney, NSW , Australia ; Australian Centre for NanoMedicine, University of New South Wales , Sydney, NSW , Australia
| |
Collapse
|