1
|
Yuan S, Yuan H, Hay DC, Hu H, Wang C. Revolutionizing Drug Discovery: The Impact of Distinct Designs and Biosensor Integration in Microfluidics-Based Organ-on-a-Chip Technology. BIOSENSORS 2024; 14:425. [PMID: 39329800 PMCID: PMC11430660 DOI: 10.3390/bios14090425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024]
Abstract
Traditional drug development is a long and expensive process with high rates of failure. This has prompted the pharmaceutical industry to seek more efficient drug development frameworks, driving the emergence of organ-on-a-chip (OOC) based on microfluidic technologies. Unlike traditional animal experiments, OOC systems provide a more accurate simulation of human organ microenvironments and physiological responses, therefore offering a cost-effective and efficient platform for biomedical research, particularly in the development of new medicines. Additionally, OOC systems enable quick and real-time analysis, high-throughput experimentation, and automation. These advantages have shown significant promise in enhancing the drug development process. The success of an OOC system hinges on the integration of specific designs, manufacturing techniques, and biosensors to meet the need for integrated multiparameter datasets. This review focuses on the manufacturing, design, sensing systems, and applications of OOC systems, highlighting their design and sensing capabilities, as well as the technical challenges they currently face.
Collapse
Affiliation(s)
- Sheng Yuan
- Centre of Biomedical Systems and Informatics, Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), School of Medicine, International Campus, Zhejiang University, Haining 314400, China
| | - Huipu Yuan
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - David C. Hay
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK;
| | - Huan Hu
- Zhejiang University-University of Illinois Urbana-Champaign Institute (ZJU-UIUC Institute), International Campus, Zhejiang University, Haining 314400, China
| | - Chaochen Wang
- Centre of Biomedical Systems and Informatics, Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), School of Medicine, International Campus, Zhejiang University, Haining 314400, China
- Department of Gynecology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310020, China
| |
Collapse
|
2
|
Electromechanical Stimulation of 3D Cardiac Microtissues in a Heart-on-Chip Model. Methods Mol Biol 2021; 2373:133-157. [PMID: 34520011 DOI: 10.1007/978-1-0716-1693-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Modeling human cardiac tissues in vitro is essential to elucidate the biological mechanisms related to the heart physiopathology, possibly paving the way for new treatments. Organs-on-chips have emerged as innovative tools able to recreate tissue-specific microenvironments, guiding the development of miniaturized models and offering the opportunity to directly analyze functional readouts. Here we describe the fabrication and operational procedures for the development of a heart-on-chip model, reproducing cardiac biomimetic microenvironment. The device provides 3D cardiac microtissue with a synchronized electromechanical stimulation to support the tissue development. We additionally describe procedures for characterizing tissue evolution and functionality through immunofluorescence, real time qPCR, calcium imaging and microtissue contractility investigations.
Collapse
|
3
|
Hao Z, Lv H, Tan R, Yang X, Liu Y, Xia YL. A Three-Dimensional Microfluidic Device for Monitoring Cancer and Chemotherapy-Associated Platelet Activation. ACS OMEGA 2021; 6:3164-3172. [PMID: 33553932 PMCID: PMC7860090 DOI: 10.1021/acsomega.0c05572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/13/2021] [Indexed: 05/04/2023]
Abstract
Platelet activation and the risk of thrombosis are increased in cancer patients, especially after chemotherapy. Our previous studies indicated that chemotherapy-induced platelet activation is largely due to endothelial cell damage. Thus, simple in vitro tests, such as aggregometry, are not desirable tests to predict platelet responsiveness to different chemotherapeutic agents because other contributory factors, such as tumor cells, endothelial cells, and the flow rate of platelets, also contribute to the formation of cancer-associated thrombosis. Therefore, developing a platelet detection system, which includes all possible risk parameters, is necessary. In the present study, we described a microengineered microfluidic system that contained a drug concentration generator, cancer cell culture chip, and three-dimensional (3D) circular microvascular model covered with a confluent endothelial layer and perfused with human platelets at a stable flow rate. Doxorubicin was injected through two injection sites. Endothelial cell injury was evaluated by counting, cell cytoskeleton observation, and the level of IACM1 and ET-1 in endothelial cells or a culture medium. Prestained platelets were perfused into the artificial blood vessel, and platelet-endothelial cell adhesion was measured. We found that (i) MCF7 cell-released factors had a cytotoxicity effect on both endothelial cells and platelets. (ii) We confirmed that doxorubicin-induced platelet activation was endothelial cell-dependent. (iii) A lower dosage of doxorubicin (0-2.0 μM) induced platelet activation, while a higher dosage of doxorubicin (2.0-4.0 μM) led to platelet death. Our findings indicated that platelet-endothelial cell adhesion could be used as a diagnostic marker of platelet activation, providing a simple and rapid detective way to predict platelet responsiveness before or during chemotherapy.
Collapse
Affiliation(s)
- Zhujing Hao
- Institute
of Cardiovascular Diseases, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
| | - Haichen Lv
- Department
of Cardiology, The First Affiliated Hospital
of Dalian Medical University, Dalian 116000, China
| | - Ruopeng Tan
- Institute
of Cardiovascular Diseases, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
| | - Xiaolei Yang
- Institute
of Cardiovascular Diseases, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
| | - Yang Liu
- Institute
of Cardiovascular Diseases, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- . Tel: 86-411-83635963-2287
| | - Yun-Long Xia
- Institute
of Cardiovascular Diseases, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Department
of Cardiology, The First Affiliated Hospital
of Dalian Medical University, Dalian 116000, China
- . Tel: 86-411-83635963-3004
| |
Collapse
|
4
|
Advances in Continuous Microfluidics-Based Technologies for the Study of HIV Infection. Viruses 2020; 12:v12090982. [PMID: 32899657 PMCID: PMC7552050 DOI: 10.3390/v12090982] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 12/31/2022] Open
Abstract
HIV-1 is the causative agent of acquired immunodeficiency syndrome (AIDS). It affects millions of people worldwide and the pandemic persists despite the implementation of highly active antiretroviral therapy. A wide spectrum of techniques has been implemented in order to diagnose and monitor AIDS progression over the years. Besides the conventional approaches, microfluidics has provided useful methods for monitoring HIV-1 infection. In this review, we introduce continuous microfluidics as well as the fabrication and handling of microfluidic chips. We provide a review of the different applications of continuous microfluidics in AIDS diagnosis and progression and in the basic study of the HIV-1 life cycle.
Collapse
|
5
|
Akbaridoust F, de Silva CM, Szydzik C, Mitchell A, Marusic I, Nesbitt WS. Experimental fluid dynamics characterization of a novel micropump-mixer. BIOMICROFLUIDICS 2020; 14:044116. [PMID: 32849975 PMCID: PMC7442494 DOI: 10.1063/5.0012240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
The application of lab-on-a-chip systems to biomedical engineering and medical biology is rapidly growing. Reciprocating micropumps show significant promise as automated bio-fluid handling systems and as active reagent-to-sample mixers. Here, we describe a thorough fluid dynamic analysis of an active micro-pump-mixer designed for applications of preclinical blood analysis and clinical diagnostics in hematology. Using high-speed flow visualization and micro-particle image velocimetry measurements, a parametric study is performed to investigate the fluid dynamics of six discrete modes of micropump operation. With this approach, we identify an actuation regime that results in optimal sample flow rates while concomitantly maximizing reagent-to-sample mixing.
Collapse
Affiliation(s)
| | - C. M. de Silva
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - C. Szydzik
- The Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - A. Mitchell
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - I. Marusic
- Department of Mechanical Engineering, University of Melbourne, Parkville, Victoria 3010, Australia
| | - W. S. Nesbitt
- The Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia
| |
Collapse
|
6
|
Youssef K, Tandon A, Rezai P. Studying Parkinson’s disease using Caenorhabditis elegans models in microfluidic devices. Integr Biol (Camb) 2019; 11:186-207. [DOI: 10.1093/intbio/zyz017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/30/2019] [Accepted: 05/16/2019] [Indexed: 12/21/2022]
Abstract
Abstract
Parkinson’s disease (PD) is a progressive neurological disorder associated with the loss of dopaminergic neurons (DNs) in the substantia nigra and the widespread accumulation of α-synuclein (α-syn) protein, leading to motor impairments and eventual cognitive dysfunction. In-vitro cell cultures and in-vivo animal models have provided the opportunity to investigate the PD pathological hallmarks and identify different therapeutic compounds. However, PD pathogenesis and causes are still not well understood, and effective inhibitory drugs for PD are yet to be discovered. Biologically simple but pathologically relevant disease models and advanced screening technologies are needed to reveal the mechanisms underpinning protein aggregation and PD progression. For instance, Caenorhabditis elegans (C. elegans) offers many advantages for fundamental PD neurobehavioral studies including a simple, well-mapped, and accessible neuronal system, genetic homology to humans, body transparency and amenability to genetic manipulation. Several transgenic worm strains that exhibit multiple PD-related phenotypes have been developed to perform neuronal and behavioral assays and drug screening. However, in conventional worm-based assays, the commonly used techniques are equipment-intensive, slow and low in throughput. Over the past two decades, microfluidics technology has contributed significantly to automation and control of C. elegans assays. In this review, we focus on C. elegans PD models and the recent advancements in microfluidic platforms used for manipulation, handling and neurobehavioral screening of these models. Moreover, we highlight the potential of C. elegans to elucidate the in-vivo mechanisms of neuron-to-neuron protein transfer that may underlie spreading Lewy pathology in PD, and its suitability for in-vitro studies. Given the advantages of C. elegans and microfluidics technology, their integration has the potential to facilitate the investigation of disease pathology and discovery of potential chemical leads for PD.
Collapse
Affiliation(s)
- Khaled Youssef
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| | - Anurag Tandon
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Pouya Rezai
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| |
Collapse
|
7
|
Wei XY, Li JH, Wang L, Yang F. Low-voltage electrical cell lysis using a microfluidic device. Biomed Microdevices 2019; 21:22. [PMID: 30790126 DOI: 10.1007/s10544-019-0369-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cell lysis, where cellular material is released, is the basis for the separation and purification of cell contents, biochemical analysis, and other related experiments. It is also a key step in molecular, real-time, and cancer diagnoses as well as in the drug screening of pathogens. The current methods of lysing cells have several limitations, such as damage to the activity of cellular components, the need for a large number of cell samples, time-consuming processes, and the danger of high voltage. Therefore, a simple, fast, and efficient method for the manipulation of micro-volume cells or for single cell lysis is significant for further scientific research and practical application. In this study, a new low-voltage controllable method for cell lysis was established, and a corresponding microfluidic chip was developed. Simple, efficient and rapid micro-volume cells and single cell lysis were successfully achieved under a low-voltage alternating current with a voltage of 16 Vp-p and frequency of 10 kHz. The lysis process was investigated in detail by separately labelling the whole cell, cytoplasm, and nucleus using fluorescent proteins, which indicated that the whole cell was completely lysed. Analysis of voltage and frequency effects revealed that a higher voltage and optimized frequency enhanced the cell lysis efficiency. The presented study provides a new strategy for the lysis of micro-volume cells or a single cell, which is valuable for on-chip real-time diagnostics and point of care (POC) applications.
Collapse
Affiliation(s)
- Xiao-Yu Wei
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.,Changchun Experimental School of the Affiliated High School of Jilin University, Jilin University, Changchun, 130021, China
| | - Jin-Hua Li
- Changchun Experimental School of the Affiliated High School of Jilin University, Jilin University, Changchun, 130021, China
| | - Lei Wang
- Changchun Experimental School of the Affiliated High School of Jilin University, Jilin University, Changchun, 130021, China
| | - Fang Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
8
|
Shinde P, Mohan L, Kumar A, Dey K, Maddi A, Patananan AN, Tseng FG, Chang HY, Nagai M, Santra TS. Current Trends of Microfluidic Single-Cell Technologies. Int J Mol Sci 2018; 19:E3143. [PMID: 30322072 PMCID: PMC6213733 DOI: 10.3390/ijms19103143] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 02/07/2023] Open
Abstract
The investigation of human disease mechanisms is difficult due to the heterogeneity in gene expression and the physiological state of cells in a given population. In comparison to bulk cell measurements, single-cell measurement technologies can provide a better understanding of the interactions among molecules, organelles, cells, and the microenvironment, which can aid in the development of therapeutics and diagnostic tools. In recent years, single-cell technologies have become increasingly robust and accessible, although limitations exist. In this review, we describe the recent advances in single-cell technologies and their applications in single-cell manipulation, diagnosis, and therapeutics development.
Collapse
Affiliation(s)
- Pallavi Shinde
- Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India.
| | - Loganathan Mohan
- Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India.
| | - Amogh Kumar
- Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India.
| | - Koyel Dey
- Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India.
| | - Anjali Maddi
- Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India.
| | - Alexander N Patananan
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095, USA.
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu City 30071, Taiwan.
| | - Hwan-You Chang
- Department of Medical Science, National Tsing Hua University, Hsinchu City 30071, Taiwan.
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan.
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India.
| |
Collapse
|
9
|
Vasileva Wand NI, Bonney LC, Watson RJ, Graham V, Hewson R. Point-of-care diagnostic assay for the detection of Zika virus using the recombinase polymerase amplification method. J Gen Virol 2018; 99:1012-1026. [PMID: 29897329 PMCID: PMC6171711 DOI: 10.1099/jgv.0.001083] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/05/2018] [Indexed: 01/25/2023] Open
Abstract
The sudden and explosive expansion of Zika virus (ZIKV) from the African continent through Oceania and culminating in the outbreak in South America has highlighted the importance of new rapid point-of-care diagnostic tools for the control and prevention of transmission. ZIKV infection has devastating consequences, such as neurological congenital malformations in infants born to infected mothers and Guillain-Barré syndrome in adults. Additionally, its potential for transmission through vector bites, as well as from person to person through blood transfusions and sexual contact, are important considerations for prompt diagnosis. Recombinase polymerase amplification (RPA), an isothermal method, was developed as an alternative field-applicable assay to PCR. Here we report the development of a novel ZIKV real-time reverse transcriptase RPA (RT-RPA) assay capable of detecting a range of different ZIKV strains from a variety of geographical locations. The ZIKV RT-RPA was shown to be highly sensitive, being capable of detecting as few as five copies of target nucleic acid per reaction, and suitable for use with a battery-operated portable device. The ZIKV RT-RPA demonstrated 100 % specificity and 83 % sensitivity in clinical samples. Furthermore, we determined that the ZIKV RT-RPA is a versatile assay that can be applied to crude samples, such as saliva and serum, and can be used as a vector surveillance tool on crude mosquito homogenates. Therefore, the developed ZIKV RT-RPA is a useful diagnostic tool that can be transferred to a resource-limited location, eliminating the need for a specialized and sophisticated laboratory environment and highly trained staff.
Collapse
Affiliation(s)
- Nadina I. Vasileva Wand
- Public Health England, National Infection Service, Microbiology Services Division, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Laura C. Bonney
- Public Health England, National Infection Service, Microbiology Services Division, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Robert J. Watson
- Public Health England, National Infection Service, Microbiology Services Division, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Victoria Graham
- Public Health England, National Infection Service, Microbiology Services Division, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Roger Hewson
- Public Health England, National Infection Service, Microbiology Services Division, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| |
Collapse
|
10
|
Lipponen K, Tähkä S, Sikanen T, Jokinen V, Tatikonda A, Franssila S, Kostiainen R, Kotiaho T. Thiol-ene micropillar array electrospray ionization platform for zeptomole level bioanalysis. Analyst 2018; 142:2552-2557. [PMID: 28617495 DOI: 10.1039/c7an00544j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A micropillar array electrospray ionization (μPESI) platform fabricated from thiol-enes with 56 individual polyethylene glycol coated μPESI chips for bioanalytical mass spectrometry is introduced. Bioanalysis capability is shown by measurement of a protein, a protein digest and a cell lysate sample. The thiol-ene polyethylene glycol (PEG) coated μPESI chip allows the use of a wide range of aqueous-organic solvent compositions and provides a detection limit at 60 zeptomole level (6 × 10-20 mol) for a peptide standard.
Collapse
Affiliation(s)
- K Lipponen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, P.O. Box 56, FI-00014. and University of Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
van Engeland NCA, Pollet AMAO, den Toonder JMJ, Bouten CVC, Stassen OMJA, Sahlgren CM. A biomimetic microfluidic model to study signalling between endothelial and vascular smooth muscle cells under hemodynamic conditions. LAB ON A CHIP 2018; 18:1607-1620. [PMID: 29756630 PMCID: PMC5972738 DOI: 10.1039/c8lc00286j] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/11/2018] [Indexed: 05/24/2023]
Abstract
Cell signalling and mechanics influence vascular pathophysiology and there is an increasing demand for in vitro model systems that enable examination of signalling between vascular cells under hemodynamic conditions. Current 3D vessel wall constructs do not recapitulate the mechanical conditions of the native tissue nor do they allow examination of cell-cell interactions under relevant hemodynamic conditions. Here, we describe a 3D microfluidic chip model of arterial endothelial and smooth muscle cells where cellular organization, composition and interactions, as well as the mechanical environment of the arterial wall are mimicked. The hemodynamic EC-VSMC-signalling-on-a-chip consists of two parallel polydimethylsiloxane (PDMS) cell culture channels, separated by a flexible, porous PDMS membrane, mimicking the porosity of the internal elastic lamina. The hemodynamic EC-VSMC-signalling-on-a-chip allows co-culturing of human aortic endothelial cells (ECs) and human aortic vascular smooth muscle cells (VSMCs), separated by a porous membrane, which enables EC-VSMC interaction and signalling, crucial for the development and homeostasis of the vessel wall. The device allows real time cell imaging and control of hemodynamic conditions. The culture channels are surrounded on either side by vacuum channels to induce cyclic strain by applying cyclic suction, resulting in mechanical stretching and relaxation of the membrane in the cell culture channels. The blood flow is mimicked by creating a flow of medium at the EC side. Vascular cells remain viable during prolonged culturing, exhibit physiological morphology and organization and make cell-cell contact. During dynamic culturing of the device with a shear stress of 1-1.5 Pa and strain of 5-8%, VSMCs align perpendicular to the given strain in the direction of the flow and EC adopt a cobblestone morphology. To our knowledge, this is the first report on the development of a microfluidic device, which enables a co-culture of interacting ECs and VSMCs under hemodynamic conditions and presents a novel approach to systematically study the biological and mechanical components of the intimal-medial vascular unit.
Collapse
Affiliation(s)
- Nicole C. A. van Engeland
- Eindhoven University of Technology
, Department of Biomedical Engineering
, Soft Tissue Engineering and Mechanobiology (STEM)
,
5600 MB Eindhoven
, The Netherlands
.
;
; Tel: +31 40 247 3047
- Åbo Akademi University
, Faculty of Science and Engineering
, Molecular Biosciences
,
Turku
, Finland
| | - Andreas M. A. O. Pollet
- Eindhoven University of Technology
, Department of Biomedical Engineering
, Soft Tissue Engineering and Mechanobiology (STEM)
,
5600 MB Eindhoven
, The Netherlands
.
;
; Tel: +31 40 247 3047
- Department of Mechanical Engineering
, Eindhoven University of Technology
, Microsystems Group
,
5600 MB Eindhoven
, The Netherlands
| | - Jaap M. J. den Toonder
- Eindhoven University of Technology
, Institute for Complex Molecular Systems (ICMS)
,
5600 MB Eindhoven
, The Netherlands
- Department of Mechanical Engineering
, Eindhoven University of Technology
, Microsystems Group
,
5600 MB Eindhoven
, The Netherlands
| | - Carlijn V. C. Bouten
- Eindhoven University of Technology
, Department of Biomedical Engineering
, Soft Tissue Engineering and Mechanobiology (STEM)
,
5600 MB Eindhoven
, The Netherlands
.
;
; Tel: +31 40 247 3047
- Eindhoven University of Technology
, Institute for Complex Molecular Systems (ICMS)
,
5600 MB Eindhoven
, The Netherlands
| | - Oscar M. J. A. Stassen
- Eindhoven University of Technology
, Department of Biomedical Engineering
, Soft Tissue Engineering and Mechanobiology (STEM)
,
5600 MB Eindhoven
, The Netherlands
.
;
; Tel: +31 40 247 3047
| | - Cecilia M. Sahlgren
- Eindhoven University of Technology
, Department of Biomedical Engineering
, Soft Tissue Engineering and Mechanobiology (STEM)
,
5600 MB Eindhoven
, The Netherlands
.
;
; Tel: +31 40 247 3047
- Åbo Akademi University
, Faculty of Science and Engineering
, Molecular Biosciences
,
Turku
, Finland
- Eindhoven University of Technology
, Institute for Complex Molecular Systems (ICMS)
,
5600 MB Eindhoven
, The Netherlands
| |
Collapse
|
12
|
Current developments and applications of microfluidic technology toward clinical translation of nanomedicines. Adv Drug Deliv Rev 2018; 128:54-83. [PMID: 28801093 DOI: 10.1016/j.addr.2017.08.003] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/21/2017] [Accepted: 08/04/2017] [Indexed: 11/23/2022]
Abstract
Nanoparticulate drug delivery systems hold great potential for the therapy of many diseases, especially cancer. However, the translation of nanoparticulate drug delivery systems from academic research to industrial and clinical practice has been slow. This slow translation can be ascribed to the high batch-to-batch variations and insufficient production rate of the conventional preparation methods, and the lack of technologies for rapid screening of nanoparticulate drug delivery systems with high correlation to the in vivo tests. These issues can be addressed by the microfluidic technologies. For example, microfluidics can not only produce nanoparticles in a well-controlled, reproducible, and high-throughput manner, but also create 3D environments with continuous flow to mimic the physiological and/or pathological processes. This review provides an overview of the microfluidic devices developed to prepare nanoparticulate drug delivery systems, including drug nanosuspensions, polymer nanoparticles, polyplexes, structured nanoparticles and theranostic nanoparticles. We also highlight the recent advances of microfluidic systems in fabricating the increasingly realistic models of the in vivo milieu for rapid screening of nanoparticles. Overall, the microfluidic technologies offer a promise approach to accelerate the clinical translation of nanoparticulate drug delivery systems.
Collapse
|
13
|
Jensen MA, Davis RW. Template-Independent Enzymatic Oligonucleotide Synthesis (TiEOS): Its History, Prospects, and Challenges. Biochemistry 2018. [PMID: 29533604 DOI: 10.1021/acs.biochem.7b00937] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There is a growing demand for sustainable methods in research and development, where instead of hazardous chemicals, an aqueous medium is chosen to perform biological reactions. In this Perspective, we examine the history and current methodology of using enzymes to generate artificial single-stranded DNA. By using traditional solid-phase phosphoramidite chemistry as a metric, we also explore criteria for the method of template-independent enzymatic oligonucleotide synthesis (TiEOS). As its key component, we delve into the biology of one of the most enigmatic enzymes, terminal deoxynucleotidyl transferase (TdT). As TdT is found to exponentially increase antigen receptor diversity in the vertebrate immune system by adding nucleotides in a template-free manner, researchers have exploited this function as an alternative to the phosphoramidite synthesis method. Though TdT is currently the preferred enzyme for TiEOS, its random nucleotide incorporation presents a barrier in synthesis automation. Taking a closer look at the TiEOS cycle, particularly the coupling step, we find it is comprised of additions > n+1 and deletions. By tapping into the physical and biochemical properties of TdT, we strive to further elucidate its mercurial behavior and offer ways to better optimize TiEOS for production-grade oligonucleotide synthesis.
Collapse
Affiliation(s)
- Michael A Jensen
- Stanford Genome Technology Center, Department of Biochemistry , Stanford University , Palo Alto , California 94304 , United States
| | - Ronald W Davis
- Stanford Genome Technology Center, Department of Biochemistry , Stanford University , Palo Alto , California 94304 , United States.,Department of Genetics , Stanford University , Palo Alto , California 94304 , United States
| |
Collapse
|
14
|
Tovar M, Weber T, Hengoju S, Lovera A, Munser AS, Shvydkiv O, Roth M. 3D-glass molds for facile production of complex droplet microfluidic chips. BIOMICROFLUIDICS 2018; 12:024115. [PMID: 29657658 PMCID: PMC5882410 DOI: 10.1063/1.5013325] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/09/2018] [Indexed: 05/07/2023]
Abstract
In order to leverage the immense potential of droplet microfluidics, it is necessary to simplify the process of chip design and fabrication. While polydimethylsiloxane (PDMS) replica molding has greatly revolutionized the chip-production process, its dependence on 2D-limited photolithography has restricted the design possibilities, as well as further dissemination of microfluidics to non-specialized labs. To break free from these restrictions while keeping fabrication straighforward, we introduce an approach to produce complex multi-height (3D) droplet microfluidic glass molds and subsequent chip production by PDMS replica molding. The glass molds are fabricated with sub-micrometric resolution using femtosecond laser machining technology, which allows directly realizing designs with multiple levels or even continuously changing heights. The presented technique significantly expands the experimental capabilities of the droplet microfluidic chip. It allows direct fabrication of multilevel structures such as droplet traps for prolonged observation and optical fiber integration for fluorescence detection. Furthermore, the fabrication of novel structures based on sloped channels (ramps) enables improved droplet reinjection and picoinjection or even a multi-parallelized drop generator based on gradients of confinement. The fabrication of these and other 3D-features is currently only available at such resolution by the presented strategy. Together with the simplicity of PDMS replica molding, this provides an accessible solution for both specialized and non-specialized labs to customize microfluidic experimentation and expand their possibilities.
Collapse
Affiliation(s)
- Miguel Tovar
- Author to whom correspondence should be addressed:
| | | | | | - Andrea Lovera
- FEMTOprint SA, Via Industria 3, 6933 Muzzano, Switzerland
| | - Anne-Sophie Munser
- Fraunhofer Institute for Applied Optics and Precision Engineering-IOF, Albert-Einstein-Str. 7, 07745 Jena, Germany
| | - Oksana Shvydkiv
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Martin Roth
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Beutenbergstr. 11a, 07745 Jena, Germany
| |
Collapse
|
15
|
Ahmed I, Iqbal HMN, Akram Z. Microfluidics Engineering: Recent Trends, Valorization, and Applications. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2018; 43:23-32. [DOI: 10.1007/s13369-017-2662-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
16
|
Cornaglia M, Lehnert T, Gijs MAM. Microfluidic systems for high-throughput and high-content screening using the nematode Caenorhabditis elegans. LAB ON A CHIP 2017; 17:3736-3759. [PMID: 28840220 DOI: 10.1039/c7lc00509a] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In a typical high-throughput drug screening (HTS) process, up to millions of chemical compounds are applied to cells cultured in well plates, aiming to find molecules that exhibit a robust dose-response, as evidenced for example by a fluorescence signal. In high-content screening (HCS), one goes a step further by linking the tested compounds to phenotypic information, obtained, for instance, from microscopic cell images, thereby creating richer data sets that also require more advanced analysis methods. The nematode Caenorhabditis elegans came into the screening picture due to the wide availability of its mutants and human disease models, its relatively easy culture and short life cycle. Being a whole-organism model, it allows drug testing under physiological conditions at multi-tissue levels and provides additional observable phenotypes with respect to cell models, related, for instance, to development, aging, behavior or motility. Worm-based HTS studies in liquid environments on microwell plates have been demonstrated, while microfluidic devices allowed surpassing the performance of plates by enabling more versatile and accurate assays, precise and dynamic dosing of compounds, and readouts down to single-animal resolution. In this review, we discuss microfluidic devices for C. elegans analysis and related studies, published in the period from 2012 to 2017. After an introduction to the different screening approaches, we first focus on microfluidic systems with potential for screening applications. Various enabling technologies, e.g. electrophysiological on-chip recordings or laser axotomy, have been implemented, as well as techniques for reversible worm immobilization and high-resolution imaging, combined with algorithms for automated experimentation and analysis. Several devices for developmental or behavioral assays, and worm sorting based on different phenotypes, have been proposed too. In a subsequent section, we review the application of microfluidic-based systems for medium- and high-throughput screens, including neurobiology and neurodegeneration studies, aging and developmental assays, toxicity and pathogenesis screens, as well as behavioral and motility assays. A thorough analysis of this work reveals a trend towards microfluidic systems more and more capable of offering high-quality analyses of large worm populations, based on multi-phenotypic and/or longitudinal readouts, with clear potential for their application in larger HTS/HCS contexts.
Collapse
Affiliation(s)
- Matteo Cornaglia
- Laboratory of Microsystems, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland.
| | | | | |
Collapse
|
17
|
Shin S, Han D, Park MC, Mun JY, Choi J, Chun H, Kim S, Hong JW. Separation of extracellular nanovesicles and apoptotic bodies from cancer cell culture broth using tunable microfluidic systems. Sci Rep 2017; 7:9907. [PMID: 28855522 PMCID: PMC5577194 DOI: 10.1038/s41598-017-08826-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/14/2017] [Indexed: 12/17/2022] Open
Abstract
Extracellular vesicles (EVs) are the cell-secreted nano- and micro-sized particles consisted of lipid bilayer containing nucleic acids and proteins for diagnosis and therapeutic applications. The inherent complexity of EVs is a source of heterogeneity in various potential applications of the biological nanovesicles including analysis. To diminish heterogeneity, EV should be isolated and separated according to their sizes and cargos. However, current technologies do not meet the requirements. We showed noninvasive and precise separation of EVs based on their sizes without any recognizable damages. We separated atto-liter volumes of biological nanoparticles through operation of the present system showing relatively large volume of sample treatment to milliliters within an hour. We observed distinct size and morphological differences of 30 to 100 nm of exosomes and apoptotic bodies through TEM analysis. Indeed, we confirmed the biological moiety variations through immunoblotting with noninvasively separated EVs opening new windows in study and application of the biological nanoparticles.
Collapse
Affiliation(s)
- Soojeong Shin
- Department of Bionano Engineering, Hanyang University, Ansan, 15588, Korea
| | - Daeyoung Han
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul, 08826, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Technology, College of Pharmacy, Seoul National University, Seoul, 08826, Korea
| | - Min Chul Park
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul, 08826, Korea.,Advanced Institutes of Convergence Technology, Seoul National University, Suwon, 16229, Korea
| | - Ji Young Mun
- Department of Biomedical Laboratory Science, College of Health Sciences, Eulji University, Seongnam, 13135, Korea.,BK21 Plus Program, Department of Senior Healthcare, Graduate School, Eulji University, Daejeon, 34824, Korea
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Korea
| | - Honggu Chun
- Department of Biomedical Engineering, Korea University, Seoul, 02841, Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul, 08826, Korea. .,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Technology, College of Pharmacy, Seoul National University, Seoul, 08826, Korea.
| | - Jong Wook Hong
- Department of Bionano Engineering, Hanyang University, Ansan, 15588, Korea. .,Department of Bionano Technology, Graduate School, Hanyang University, Seoul, 04763, Korea.
| |
Collapse
|
18
|
New nucleic acid testing devices to diagnose infectious diseases in resource-limited settings. Eur J Clin Microbiol Infect Dis 2017; 36:1717-1731. [PMID: 28573472 DOI: 10.1007/s10096-017-3013-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/08/2017] [Indexed: 12/20/2022]
Abstract
Point-of-care diagnosis based on nucleic acid testing aims to incorporate all the analytical steps, from sample preparation to nucleic acid amplification and detection, in a single device. This device needs to provide a low-cost, robust, sensitive, specific, and easily readable analysis. Microfluidics has great potential for handling small volumes of fluids on a single platform. Microfluidic technology has recently been applied to paper, which is already used in low-cost lateral flow tests. Nucleic acid extraction from a biological specimen usually requires cell filtration and lysis on specific membranes, while affinity matrices, such as chitosan or polydiacetylene, are well suited to concentrating nucleic acids for subsequent amplification. Access to electricity is often difficult in resource-limited areas, so the amplification step needs to be equipment-free. Consequently, the reaction has to be isothermal to alleviate the need for a thermocycler. LAMP, NASBA, HDA, and RPA are examples of the technologies available. Nucleic acid detection techniques are currently based on fluorescence, colorimetry, or chemiluminescence. For point-of-care diagnostics, the results should be readable with the naked eye. Nowadays, interpretation and communication of results to health professionals could rely on a smartphone, used as a telemedicine device. The major challenge of creating an "all-in-one" diagnostic test involves the design of an optimal solution and a sequence for each analytical step, as well as combining the execution of all these steps on a single device. This review provides an overview of available materials and technologies which seem to be adapted to point-of-care nucleic acid-based diagnosis, in low-resource areas.
Collapse
|
19
|
Oomen PE, Skolimowski MD, Verpoorte E. Implementing oxygen control in chip-based cell and tissue culture systems. LAB ON A CHIP 2016; 16:3394-414. [PMID: 27492338 DOI: 10.1039/c6lc00772d] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Oxygen is essential in the energy metabolism of cells, as well as being an important regulatory parameter influencing cell differentiation and function. Interest in precise oxygen control for in vitro cultures of tissues and cells continues to grow, especially with the emergence of the organ-on-a-chip and the desire to emulate in vivo conditions. This was recently discussed in this journal in a Critical Review by Brennan et al. (Lab Chip (2014). DOI: ). Microfluidics can be used to introduce flow to facilitate nutrient supply to and waste removal from in vitro culture systems. Well-defined oxygen gradients can also be established. However, cells can quickly alter the oxygen balance in their vicinity. In this Tutorial Review, we expand on the Brennan paper to focus on the implementation of oxygen analysis in these systems to achieve continuous monitoring. Both electrochemical and optical approaches for the integration of oxygen monitoring in microfluidic tissue and cell culture systems will be discussed. Differences in oxygen requirements from one organ to the next are a challenging problem, as oxygen delivery is limited by its uptake into medium. Hence, we discuss the factors determining oxygen concentrations in solutions and consider the possible use of artificial oxygen carriers to increase dissolved oxygen concentrations. The selection of device material for applications requiring precise oxygen control is discussed in detail, focusing on oxygen permeability. Lastly, a variety of devices is presented, showing the diversity of approaches that can be employed to control and monitor oxygen concentrations in in vitro experiments.
Collapse
Affiliation(s)
- Pieter E Oomen
- Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1 (XB20), 9713 AV Groningen, The Netherlands.
| | | | | |
Collapse
|
20
|
Kim D, Rho HS, Jambovane S, Shin S, Hong JW. Evaluation of peristaltic micromixers for highly integrated microfluidic systems. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:035003. [PMID: 27036809 PMCID: PMC5848714 DOI: 10.1063/1.4940927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/13/2016] [Indexed: 06/05/2023]
Abstract
Microfluidic devices based on the multilayer soft lithography allow accurate manipulation of liquids, handling reagents at the sub-nanoliter level, and performing multiple reactions in parallel processors by adapting micromixers. Here, we have experimentally evaluated and compared several designs of micromixers and operating conditions to find design guidelines for the micromixers. We tested circular, triangular, and rectangular mixing loops and measured mixing performance according to the position and the width of the valves that drive nanoliters of fluids in the micrometer scale mixing loop. We found that the rectangular mixer is best for the applications of highly integrated microfluidic platforms in terms of the mixing performance and the space utilization. This study provides an improved understanding of the flow behaviors inside micromixers and design guidelines for micromixers that are critical to build higher order fluidic systems for the complicated parallel bio/chemical processes on a chip.
Collapse
Affiliation(s)
- Duckjong Kim
- Materials Research and Education Center, Department of Mechanical Engineering, Auburn University, Auburn, Alabama 36849, USA
| | - Hoon Suk Rho
- Materials Research and Education Center, Department of Mechanical Engineering, Auburn University, Auburn, Alabama 36849, USA
| | - Sachin Jambovane
- Materials Research and Education Center, Department of Mechanical Engineering, Auburn University, Auburn, Alabama 36849, USA
| | - Soojeong Shin
- Department of Bionano Engineering, Hanyang University, Ansan 15588, South Korea
| | - Jong Wook Hong
- Materials Research and Education Center, Department of Mechanical Engineering, Auburn University, Auburn, Alabama 36849, USA
| |
Collapse
|
21
|
Jastrzębska E, Bazylińska U, Bułka M, Tokarska K, Chudy M, Dybko A, Wilk KA, Brzózka Z. Microfluidic platform for photodynamic therapy cytotoxicity analysis of nanoencapsulated indocyanine-type photosensitizers. BIOMICROFLUIDICS 2016; 10:014116. [PMID: 26909122 PMCID: PMC4752532 DOI: 10.1063/1.4941681] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/27/2016] [Indexed: 05/12/2023]
Abstract
The application of nanotechnology is important to improve research and development of alternative anticancer therapies. In order to accelerate research related to cancer diagnosis and to improve the effectiveness of cancer treatment, various nanomaterials are being tested. The main objective of this work was basic research focused on examination of the mechanism and effectiveness of the introduction of nanoencapsulated photosensitizers to human carcinoma (A549) and normal cells (MRC-5). Newly encapsulated hydrophobic indocyanine-type photosensitizer (i.e., IR-780) was subjected to in vitro studies to determine its release characteristics on a molecular level. The photosensitizers were delivered to carcinoma and normal cells cultured under model conditions using multiwell plates and with the use of the specially designed hybrid (poly(dimethylsiloxane) (PDMS)/glass) microfluidic system. The specific geometry of our microsystem allows for the examination of intercellular interactions between cells cultured in the microchambers connected with microchannels of precisely defined length. Our microsystem allows investigating various therapeutic procedures (e.g., photodynamic therapy) on monoculture, coculture, and mixed culture, simultaneously, which is very difficult to perform using standard multiwell plates. In addition, we tested the cellular internalization of nanoparticles (differing in size, surface properties) in carcinoma and normal lung cells. We proved that cellular uptake of nanocapsules loaded with cyanine IR-780 in carcinoma cells was more significant than in normal cells. We demonstrated non cytotoxic effect of newly synthesized nanocapsules built with polyelectrolytes (PEs) of opposite surface charges: polyanion-polysodium-4-styrenesulphonate and polycation-poly(diallyldimethyl-ammonium) chloride loaded with cyanine IR-780 on human lung carcinoma and normal cell lines. However, the differences observed in the photocytotoxic effect between two types of tested nanocapsules can result from the type of last PE layer and their different surface charge.
Collapse
Affiliation(s)
- Elżbieta Jastrzębska
- Institute of Biotechnology, Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology , Noakowskiego 3, 00-664 Warsaw, Poland
| | - Urszula Bazylińska
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wroclaw University of Technology , Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Magdalena Bułka
- Institute of Biotechnology, Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology , Noakowskiego 3, 00-664 Warsaw, Poland
| | - Katarzyna Tokarska
- Institute of Biotechnology, Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology , Noakowskiego 3, 00-664 Warsaw, Poland
| | - Michał Chudy
- Institute of Biotechnology, Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology , Noakowskiego 3, 00-664 Warsaw, Poland
| | - Artur Dybko
- Institute of Biotechnology, Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology , Noakowskiego 3, 00-664 Warsaw, Poland
| | - Kazimiera Anna Wilk
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wroclaw University of Technology , Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Zbigniew Brzózka
- Institute of Biotechnology, Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology , Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
22
|
Choi J, Lee EK, Choo J, Yuh J, Hong JW. Micro 3D cell culture systems for cellular behavior studies: Culture matrices, devices, substrates, and in-situ sensing methods. Biotechnol J 2015; 10:1682-8. [PMID: 26358782 DOI: 10.1002/biot.201500092] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/19/2015] [Accepted: 07/08/2015] [Indexed: 02/01/2023]
Abstract
Microfabricated systems equipped with 3D cell culture devices and in-situ cellular biosensing tools can be a powerful bionanotechnology platform to investigate a variety of biomedical applications. Various construction substrates such as plastics, glass, and paper are used for microstructures. When selecting a construction substrate, a key consideration is a porous microenvironment that allows for spheroid growth and mimics the extracellular matrix (ECM) of cell aggregates. Various bio-functionalized hydrogels are ideal candidates that mimic the natural ECM for 3D cell culture. When selecting an optimal and appropriate microfabrication method, both the intended use of the system and the characteristics and restrictions of the target cells should be carefully considered. For highly sensitive and near-cell surface detection of excreted cellular compounds, SERS-based microsystems capable of dual modal imaging have the potential to be powerful tools; however, the development of optical reporters and nanoprobes remains a key challenge. We expect that the microsystems capable of both 3D cell culture and cellular response monitoring would serve as excellent tools to provide fundamental cellular behavior information for various biomedical applications such as metastasis, wound healing, high throughput screening, tissue engineering, regenerative medicine, and drug discovery and development.
Collapse
Affiliation(s)
- Jonghoon Choi
- Department of Bionanotechnology, Graduate School, Hanyang University - ERICA, Ansan, Korea
| | - Eun Kyu Lee
- Department of Bionanotechnology, Graduate School, Hanyang University - ERICA, Ansan, Korea
| | - Jaebum Choo
- Department of Bionanotechnology, Graduate School, Hanyang University - ERICA, Ansan, Korea
| | - Junhan Yuh
- New Technology Department, Corporate Technology Division, POSCO, Seoul, Korea
| | - Jong Wook Hong
- Department of Bionanotechnology, Graduate School, Hanyang University - ERICA, Ansan, Korea.
| |
Collapse
|
23
|
Huang H, Densmore D. Integration of microfluidics into the synthetic biology design flow. LAB ON A CHIP 2014; 14:3459-74. [PMID: 25012162 DOI: 10.1039/c4lc00509k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
One goal of synthetic biology is to design and build genetic circuits in living cells for a range of applications. Major challenges in these efforts include increasing the scalability and robustness of engineered biological systems and streamlining and automating the synthetic biology workflow of specification-design-assembly-verification. We present here a summary of the advances in microfluidic technology, particularly microfluidic large scale integration, that can be used to address the challenges facing each step of the synthetic biology workflow. Microfluidic technologies allow precise control over the flow of biological content within microscale devices, and thus may provide more reliable and scalable construction of synthetic biological systems. The integration of microfluidics and synthetic biology has the capability to produce rapid prototyping platforms for characterization of genetic devices, testing of biotherapeutics, and development of biosensors.
Collapse
Affiliation(s)
- Haiyao Huang
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA.
| | | |
Collapse
|
24
|
Lee N, Park JW, Kim HJ, Yeon JH, Kwon J, Ko JJ, Oh SH, Kim HS, Kim A, Han BS, Lee SC, Jeon NL, Song J. Monitoring the differentiation and migration patterns of neural cells derived from human embryonic stem cells using a microfluidic culture system. Mol Cells 2014; 37:497-502. [PMID: 24938227 PMCID: PMC4086344 DOI: 10.14348/molcells.2014.0137] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 05/29/2014] [Accepted: 05/29/2014] [Indexed: 12/28/2022] Open
Abstract
Microfluidics can provide unique experimental tools to visualize the development of neural structures within a microscale device, which is followed by guidance of neurite growth in the axonal isolation compartment. We utilized microfluidics technology to monitor the differentiation and migration of neural cells derived from human embryonic stem cells (hESCs). We co-cultured hESCs with PA6 stromal cells, and isolated neural rosette-like structures, which subsequently formed neurospheres in suspension culture. Tuj1-positive neural cells, but not nestin-positive neural precursor cells (NPCs), were able to enter the microfluidics grooves (microchannels), suggesting that neural cell-migratory capacity was dependent upon neuronal differentiation stage. We also showed that bundles of axons formed and extended into the microchannels. Taken together, these results demonstrated that microfluidics technology can provide useful tools to study neurite outgrowth and axon guidance of neural cells, which are derived from human embryonic stem cells.
Collapse
Affiliation(s)
- Nayeon Lee
- CHA Stem Cell Institute, CHA University, Seoul 135-081,
Korea
| | - Jae Woo Park
- Division of World Class University Multiscale Mechanical Design, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742,
Korea
| | - Hyung Joon Kim
- Division of World Class University Multiscale Mechanical Design, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742,
Korea
| | - Ju Hun Yeon
- Division of World Class University Multiscale Mechanical Design, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742,
Korea
| | - Jihye Kwon
- CHA Stem Cell Institute, CHA University, Seoul 135-081,
Korea
| | - Jung Jae Ko
- CHA Stem Cell Institute, CHA University, Seoul 135-081,
Korea
| | - Seung-Hun Oh
- CHA Stem Cell Institute, CHA University, Seoul 135-081,
Korea
| | - Hyun Sook Kim
- CHA Stem Cell Institute, CHA University, Seoul 135-081,
Korea
| | - Aeri Kim
- CHA Stem Cell Institute, CHA University, Seoul 135-081,
Korea
| | - Baek Soo Han
- Research Center for Integrated Cellulomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806,
Korea
| | - Sang Chul Lee
- Research Center for Integrated Cellulomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806,
Korea
| | - Noo Li Jeon
- Division of World Class University Multiscale Mechanical Design, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742,
Korea
| | - Jihwan Song
- CHA Stem Cell Institute, CHA University, Seoul 135-081,
Korea
| |
Collapse
|