1
|
Liu Y, Niu Y, Ma X, Xiang Y, Wu D, Li W, Wang T, Niu D. Porcine endogenous retrovirus: classification, molecular structure, regulation, function, and potential risk in xenotransplantation. Funct Integr Genomics 2023; 23:60. [PMID: 36790562 DOI: 10.1007/s10142-023-00984-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023]
Abstract
Xenotransplantation with porcine organs has been recognized as a promising solution to alleviate the shortage of organs for human transplantation. Porcine endogenous retrovirus (PERV), whose proviral DNAs are integrated in the genome of all pig breeds, is a main microbiological risk for xenotransplantation. Over the last decades, some advances on PERVs' studies have been achieved. Here, we reviewed the current progress of PERVs including the classification, molecular structure, regulation, function in immune system, and potential risk in xenotransplantation. We also discussed the problem of insufficient study on PERVs as well as the questions need to be answered in the future work.
Collapse
Affiliation(s)
- Yu Liu
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Yifan Niu
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Xiang Ma
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.,College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.,Jinhua Jinfan Feed Co., Ltd, Jinhua, Zhejiang, 321000, China
| | - Yun Xiang
- Jinhua Academy of Agricultural Sciences, Jinhua, Zhejiang, 321000, China
| | - De Wu
- Postdoctoral Research Station, Jinhua Development Zone, Jinhua, Zhejiang, 321000, China
| | - Weifen Li
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Tao Wang
- Nanjing Kgene Genetic Engineering Co., Ltd, Nanjing, Jiangsu, 211300, China.
| | - Dong Niu
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
2
|
Xi J, Zheng W, Chen M, Zou Q, Tang C, Zhou X. Genetically engineered pigs for xenotransplantation: Hopes and challenges. Front Cell Dev Biol 2023; 10:1093534. [PMID: 36712969 PMCID: PMC9878146 DOI: 10.3389/fcell.2022.1093534] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/31/2022] [Indexed: 01/14/2023] Open
Abstract
The shortage of donor resources has greatly limited the application of clinical xenotransplantation. As such, genetically engineered pigs are expected to be an ideal organ source for xenotransplantation. Most current studies mainly focus on genetically modifying organs or tissues from donor pigs to reduce or prevent attack by the human immune system. Another potential organ source is interspecies chimeras. In this paper, we reviewed the progress of the genetically engineered pigs from the view of immunologic barriers and strategies, and discussed the possibility and challenges of the interspecies chimeras.
Collapse
|
3
|
Chen C, Wang W, Wang X, Shen D, Wang S, Wang Y, Gao B, Wimmers K, Mao J, Li K, Song C. Retrotransposons evolution and impact on lncRNA and protein coding genes in pigs. Mob DNA 2019; 10:19. [PMID: 31080521 PMCID: PMC6501411 DOI: 10.1186/s13100-019-0161-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/11/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Retrotransposons are the major determinants of genome sizes and they have shaped both genes and genomes in mammalian organisms, but their overall activity, diversity, and evolution dynamics, particularly their impact on protein coding and lncRNA genes in pigs remain largely unknown. RESULTS In the present study, we performed de novo detection of retrotransposons in pigs by using multiple pipelines, four distinct families of pig-specific L1 s classified into 51 distinct subfamilies and representing four evolution models and three expansion waves of pig-specific SINEs represented by three distinct families were identified. ERVs were classified into 18 families and found two most "modern" subfamilies in the pig genome. The transposition activity of pig L1 was verified by experiment, the sense and antisense promoter activities of young L1 5'UTRs and ERV LTRs and expression profiles of young retrotransposons in multiple tissues and cell lines were also validated. Furthermore, retrotransposons had an extensive impact on lncRNA and protein coding genes at both the genomic and transcriptomic levels. Most protein coding and lncRNA (> 80%) genes contained retrotransposon insertions, and about half of protein coding genes (44.30%) and one-fourth (24.13%) of lncRNA genes contained the youngest retrotransposon insertions. Nearly half of protein coding genes (43.78%) could generate chimeric transcripts with retrotransposons. Significant distribution bias of retrotransposon composition, location, and orientation in lncRNA and protein coding genes, and their transcripts, were observed. CONCLUSIONS In the current study, we characterized the classification and evolution profile of retrotransposons in pigs, experimentally proved the transposition activity of the young pig L1 subfamily, characterized the sense and antisense expression profiles and promoter activities of young retrotransposons, and investigated their impact on lncRNA and protein coding genes by defining the mobilome landscapes at the genomic and transcriptomic levels. These findings help provide a better understanding of retrotransposon evolution in mammal and their impact on the genome and transcriptome.
Collapse
Affiliation(s)
- Cai Chen
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Wei Wang
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Xiaoyan Wang
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Dan Shen
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Saisai Wang
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Yali Wang
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Bo Gao
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Jiude Mao
- Life Science Center, University of Missouri, Columbia, MO 65211 USA
| | - Kui Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengyi Song
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| |
Collapse
|
4
|
Chung HC, Nguyen VG, Oh WT, Huynh TML, Moon HJ, Lee JH, Kim HK, Park SJ, Park BK. Inhibition of Porcine Endogenous Retrovirus by Multi-Targeting Micro RNA Against Long Terminal Region. Transplant Proc 2018; 49:2225-2232. [PMID: 29149987 DOI: 10.1016/j.transproceed.2017.09.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/21/2017] [Accepted: 09/02/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND There might be much benefit in xenotransplantation, however, the risk of infections across species barriers remains, especially porcine endogenous retrovirus (PERV). To date, many attempts have been made to knock down active PERVs by inhibitory RNA (RNAi) and micro RNA (miRNA), which target different genes of PERV. There are a few studies that have explored whether targeting promoter regions of PERV could exert an inhibition effect. METHODS miRNAs were automatically selected based on an online program BLOCK-iT RNAi Designer. The inhibition efficiency between miRNAs was compared based on their inhibition of different PERV genes: long terminal repeats (LTR), gag, and pol. Both relative quantitative real-time polymerase chain reaction (PCR) and C-type reverse transcriptase activity were performed. RESULTS The results demonstrated that miRNA targeting the LTR region degraded the target sequence, and simultaneously inhibited the mRNA expression of both gag and pol genes of PERV. The LTR1, LTR2, and dual LTR1 + LTR2 miRNA inhibited 76.2%, 22%, and 76.8% of gag gene expression, respectively. Similarly, the miRNA was found to knock down the pol gene expression of 69.8%, 25.5%, and 77.7% for single targeting miRNA (LTR1 and LTR2) and multi-targeting miRNA (LTR1 + LTR2), respectively. A stable PK15 clone constitutively expressed dual LTR1 + LTR2 miRNA and exhibited higher inhibitory up to 82.8% and 92.7% of the expressions of the gag and pol genes, respectively. Also, the result of co-cultivation of dual LTR1 + LTR2 miRNA transfected PK15 cell with a human cell line inhibited expression of LTR, gag, and pol genes of PERV. CONCLUSIONS In conclusion, this study suggested that the LTR might be an alternative target for gene silencing of PERV, and that multi-targeting miRNA had better inhibitory effect than single- targeting miRNA. In an in vitro model, the presence of miRNA was able to reduce PERV infectivity in a human cell line.
Collapse
Affiliation(s)
- H-C Chung
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - V-G Nguyen
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - W-T Oh
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - T-M-L Huynh
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - H-J Moon
- Research Unit, Green Cross Veterinary Products, Yongin, Republic of Korea
| | - J-H Lee
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - H-K Kim
- Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - S-J Park
- Forensic Medicine Division, Daegu Institute, National Forensic Service, Chilgok, Korea
| | - B-K Park
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea.
| |
Collapse
|
5
|
Łopata K, Wojdas E, Nowak R, Łopata P, Mazurek U. Porcine Endogenous Retrovirus (PERV) - Molecular Structure and Replication Strategy in the Context of Retroviral Infection Risk of Human Cells. Front Microbiol 2018; 9:730. [PMID: 29755422 PMCID: PMC5932395 DOI: 10.3389/fmicb.2018.00730] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 03/28/2018] [Indexed: 12/28/2022] Open
Abstract
The xenotransplantation of porcine tissues may help overcome the shortage of human organs for transplantation. However, there are some concerns about recipient safety because the risk of porcine endogenous retrovirus (PERV) transmission to human cells remains unknown. Although, to date, no PERV infections have been noted in vivo, the possibility of such infections has been confirmed in vitro. Better understanding of the structure and replication cycle of PERVs is a prerequisite for determining the risk of infection and planning PERV-detection strategies. This review presents the current state of knowledge about the structure and replication cycle of PERVs in the context of retroviral infection risk.
Collapse
Affiliation(s)
- Krzysztof Łopata
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Emilia Wojdas
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland.,Department of Instrumental Analysis, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Roman Nowak
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Paweł Łopata
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Urszula Mazurek
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
6
|
Jung YD, Lee HE, Jo A, Hiroo I, Cha HJ, Kim HS. Activity analysis of LTR12C as an effective regulatory element of the RAE1 gene. Gene 2017; 634:22-28. [PMID: 28867566 DOI: 10.1016/j.gene.2017.08.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/24/2017] [Indexed: 10/18/2022]
Abstract
Ribonucleic acid export 1 (RAE1) plays an important role in the export of mature mRNAs from the nucleus to the cytoplasm. Long terminal repeats (LTRs) became integrated into the human genome during primate evolution. One such repeat element, LTR12C, lies within a predicted regulatory region located upstream of the RAE1 gene. We examined the transcriptional activity of LTR12C by using the luciferase assay, and showed that the tandem repeat region (TRR) located within LTR12C was required for its regulatory function. A bioinformatics analysis revealed that the LTR12C element had multiple transcription factor binding sites specific for nuclear transcription factor Y (NF-Y), and the promoter activity of LTR12C was significantly decreased after NF-Y knockdown. Additionally, we discovered novel data indicating that LTR12C was initially inserted into the gorilla genome. Taken together, our results reveal that the TRR of LTR12C has powerful regulatory activity due to its NF-Y binding sites, and the integration of the LTR12C element into the primate genome during evolution may have affected RAE1 transcription.
Collapse
Affiliation(s)
- Yi-Deun Jung
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Republic of Korea
| | - Hee-Eun Lee
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea; Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Ara Jo
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea; Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Imai Hiroo
- Molecular Biology Section, Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, College of Medicine, Kosin University, Busan, Republic of Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea; Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
7
|
Nam GH, Gim JA, Lee HE, Kim WJ, Jung H, Kim W, Kim HS. Expression and promoter activity of endogenous retroviruses in the Olive flounder (Paralichthys olivaceus). Genes Genomics 2016. [DOI: 10.1007/s13258-016-0404-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Lee G, Cho S, Hoang PM, Kim D, Lee Y, Kil EJ, Byun SJ, Lee TK, Kim DH, Kim S, Lee S. Therapeutic Strategy for the Prevention of Pseudorabies Virus Infection in C57BL/6 Mice by 3D8 scFv with Intrinsic Nuclease Activity. Mol Cells 2015; 38:773-80. [PMID: 26255831 PMCID: PMC4588720 DOI: 10.14348/molcells.2015.0073] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/09/2015] [Accepted: 06/22/2015] [Indexed: 11/27/2022] Open
Abstract
3D8 single chain variable fragment (scFv) is a recombinant monoclonal antibody with nuclease activity that was originally isolated from autoimmune-prone MRL mice. In a previous study, we analyzed the nuclease activity of 3D8 scFv and determined that a HeLa cell line expressing 3D8 scFv conferred resistance to herpes simplex virus type 1 (HSV-1) and pseudorabies virus (PRV). In this study, we demonstrate that 3D8 scFv could be delivered to target tissues and cells where it exerted a therapeutic effect against PRV. PRV was inoculated via intramuscular injection, and 3D8 scFv was injected intraperitoneally. The observed therapeutic effect of 3D8 scFv against PRV was also supported by results from quantitative reverse transcription polymerase chain reaction, southern hybridization, and immunohistochemical assays. Intraperitoneal injection of 5 and 10 μg 3D8 scFv resulted in no detectable toxicity. The survival rate in C57BL/6 mice was 9% after intramuscular injection of 10 LD50 PRV. In contrast, the 3D8 scFv-injected C57BL/6 mice showed survival rates of 57% (5 μg) and 47% (10 μg). The results indicate that 3D8 scFv could be utilized as an effective antiviral agent in several animal models.
Collapse
Affiliation(s)
- Gunsup Lee
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746,
Korea
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Suwon 440-706,
Korea
| | - SeungChan Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746,
Korea
| | - Phuong Mai Hoang
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746,
Korea
| | - Dongjun Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746,
Korea
| | - Yongjun Lee
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746,
Korea
| | - Eui-Joon Kil
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746,
Korea
| | - Sung-June Byun
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Suwon 441-706,
Korea
| | - Taek-Kyun Lee
- South Sea Environment Research Department, Korea Institute of Ocean Science and Technology, Geoje 656-834,
Korea
| | - Dae-Hyun Kim
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Suwon 440-706,
Korea
| | - Sunghan Kim
- Department of Plant Science, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921,
Korea
| | - Sukchan Lee
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746,
Korea
| |
Collapse
|
9
|
Porcine endogenous retroviruses in xenotransplantation--molecular aspects. Viruses 2014; 6:2062-83. [PMID: 24828841 PMCID: PMC4036542 DOI: 10.3390/v6052062] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/15/2014] [Accepted: 04/26/2014] [Indexed: 02/06/2023] Open
Abstract
In the context of the shortage of organs and other tissues for use in human transplantation, xenotransplantation procedures with material taken from pigs have come under increased consideration. However, there are unclear consequences of the potential transmission of porcine pathogens to humans. Of particular concern are porcine endogenous retroviruses (PERVs). Three subtypes of PERV have been identified, of which PERV-A and PERV-B have the ability to infect human cells in vitro. The PERV-C subtype does not show this ability but recombinant PERV-A/C forms have demonstrated infectivity in human cells. In view of the risk presented by these observations, the International Xenotransplantation Association recently indicated the existence of four strategies to prevent transmission of PERVs. This article focuses on the molecular aspects of PERV infection in xenotransplantation and reviews the techniques available for the detection of PERV DNA, RNA, reverse transcriptase activity and proteins, and anti-PERV antibodies to enable carrying out these recommendations. These methods could be used to evaluate the risk of PERV transmission in human recipients, enhance the effectiveness and reliability of monitoring procedures, and stimulate discussion on the development of improved, more sensitive methods for the detection of PERVs in the future.
Collapse
|
10
|
Jung YD, Lee JR, Kim YJ, Ha HS, Oh KB, Im GS, Choi BH, Kim HS. Promoter activity analysis and methylation characterization of LTR elements of PERVs in NIH miniature pig. Genes Genet Syst 2014; 88:135-42. [PMID: 23832305 DOI: 10.1266/ggs.88.135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The potential risk of porcine endogenous retrovirus (PERV) transmission is an important issue in xenotransplantation (pig-to-human transplantation). Long terminal repeats (LTRs) in PERV elements show promoter activity that could affect neighboring functional genes. The methylation status and promoter activities of 3 LTR structures (PERV-LTR1, LTR2, and LTR3 elements) belonging to the PERV-A family were examined using luciferase reporter genes in human liver cell lines (HepG2 and Hep3B). The PERV LTR3 element exhibited hypomethylation and stronger promoter activity than the other LTR elements in human liver cells. We also performed comparative sequences analysis of the PERV LTR elements by using bioinformatics tools. Our findings showed that several transcription factors such as Nkx2-2 and Elk-1 positively influenced the high transcriptional activity of the PERV LTR3 element.
Collapse
Affiliation(s)
- Yi-Deun Jung
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|