1
|
Liao W, Zhang X, Jia C, Chen W, Cai Y, Zhang H, Wei J, Chen T. Lactobacillus rhamnosus LC-STH-13 ameliorates the progression of SLE in MRL/lpr mice by inhibiting the TLR9/NF-κB signaling pathway. Food Funct 2025; 16:475-486. [PMID: 39744924 DOI: 10.1039/d4fo03966a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease often treated with glucocorticoids, which can lead to complications such as osteoporosis and an increased infection risk. Hence, identifying safe and effective treatment strategies is crucial. Lactobacillus has shown promise in improving immune disorders. We investigated Lactobacillus rhamnosus LC-STH-13 for its probiotic properties. Female MRL/lpr mice, prone to lupus, were used to assess its impact on SLE development. The results showed that the intervention with L. rhamnosus LC-STH-13 significantly reduced the level of circulating anti-autoantibodies (p < 0.05) and rebalanced Th17/Treg cells (p < 0.05). Kidney tissue analysis revealed reduced immune cell infiltration and immune complex deposition in glomeruli. L. rhamnosus LC-STH-13 mitigated kidney inflammation via the TLR9/NF-κB pathway (p < 0.05) and attenuated complement-induced renal damage (p < 0.05). Furthermore, 16S rRNA sequencing data analysis indicated that L. rhamnosus LC-STH-13 can restore intestinal microecological imbalance caused by the development of SLE. These findings suggested that L. rhamnosus LC-STH-13 improves the development of SLE by regulating the TLR9/NF-κB pathway and intestinal microbiota, offering a foundation for exploring safe and effective treatments.
Collapse
Affiliation(s)
- Wen Liao
- School of Life Sciences, Nanchang University, Nanchang 330031, China.
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| | - Xinyi Zhang
- Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Chunjian Jia
- Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Wenjing Chen
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yujie Cai
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Hongyan Zhang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Nanchang, 330006, China.
| | - Jing Wei
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| | - Tingtao Chen
- School of Life Sciences, Nanchang University, Nanchang 330031, China.
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
2
|
Mohammadi S, Al-Harrasi A. Macrophage modulation with dipeptidyl peptidase-4 inhibitors: A new frontier for treating diabetic cardiomyopathy? World J Diabetes 2024; 15:1847-1852. [PMID: 39280186 PMCID: PMC11372644 DOI: 10.4239/wjd.v15.i9.1847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/13/2024] [Accepted: 06/13/2024] [Indexed: 08/27/2024] Open
Abstract
This editorial introduces the potential of targeting macrophage function for diabetic cardiomyopathy (DCM) treatment by dipeptidyl peptidase-4 (DPP-4) inhibitors. Zhang et al studied teneligliptin, a DPP-4 inhibitor used for diabetes management, and its potential cardioprotective effects in a diabetic mouse model. They suggested teneligliptin administration may reverse established markers of DCM, including cardiac hypertrophy and compromised function. It also inhibited the NLRP3 inflammasome and reduced inflammatory cytokine production in diabetic mice. Macrophages play crucial roles in DCM pathogenesis. Chronic hyperglycemia disturbs the balance between pro-inflammatory (M1) and anti-inflammatory (M2) macrophages, favoring a pro-inflammatory state contributing to heart damage. Here, we highlight the potential of DPP-4 inhibitors to modulate macrophage function and promote an anti-inflammatory environment. These compounds may achieve this by elevating glucagon-like peptide-1 levels and potentially inhibiting the NLRP3 inflammasome. Further studies on teneligliptin in combination with other therapies targeting different aspects of DCM could be suggested for developing more effective treatment strategies to improve cardiovascular health in diabetic patients.
Collapse
Affiliation(s)
- Saeed Mohammadi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
- Department of Biological Sciences and Chemistry, University of Nizwa, Nizwa 616, Oman
| |
Collapse
|
3
|
Mu Y, Zhang X, Zhang L, Luo R, Zhang Y, Wang M. MSC Exosomes Containing Valproic Acid Promote Wound Healing by Modulating Inflammation and Angiogenesis. Molecules 2024; 29:4281. [PMID: 39275128 PMCID: PMC11397650 DOI: 10.3390/molecules29174281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024] Open
Abstract
PURPOSE Chronic wounds that are difficult to heal pose a major challenge for clinicians and researchers. Currently, common treatment methods focus on isolating the wound from the outside world, relying on the tissue at the wound site to grow and heal unaided. Umbilical cord mesenchymal stem cell (MSC) exosomes can promote wound healing by enhancing new blood vessel growth at the wound site. Valproic acid (VPA) reduces the inflammatory response and acts on macrophages to accelerate wound closure. In this study, VPA was loaded into umbilical cord MSC exosomes to form a drug carrier exosome (VPA-EXO) with the aim of investigating the effect of VPA-EXO on wound healing. METHODS This study first isolated and obtained umbilical cord MSC exosomes, then added VPA to the exosomes and explored the ability of VPA-EXO to promote the proliferation and migration of human skin fibroblasts (HSFs) and human umbilical vein endothelial cells (HUVECs), as well as the ability to promote the angiogenesis of HUVECs, by using scratch, Transwell, and angiogenesis assays. An in vitro cell model was established and treated with VPA-EXO, and the expression levels of inflammation and pro-angiogenesis-related proteins and genes were examined using Western blot and qRT-PCR. The therapeutic effect of VPA-EXO on promoting wound healing in a whole skin wound model was investigated using image analysis of the wound site, H&E staining, and immunohistochemical staining experiments in a mouse wound model. RESULTS The in vitro model showed that VPA-EXO effectively promoted the proliferation and migration of human skin fibroblast cells and human umbilical vein endothelial cells; significantly inhibited the expression of MMP-9, IL-1β, IL-8, TNF-α, and PG-E2; and promoted the expression of vascular endothelial growth factors. In the mouse wound model, VPA-EXO reduced inflammation at the wound site, accelerated wound healing, and significantly increased the collagen content of tissue at the wound site. CONCLUSIONS As a complex with dual efficacy in simultaneously promoting tissue regeneration and inhibiting inflammation, VPA-EXO has potential applications in tissue wound healing and vascular regeneration. In future studies, we will further investigate the mechanism of action and application scenarios of drug-loaded exosome complexes in different types of wound healing and vascular regeneration.
Collapse
Affiliation(s)
- Yujie Mu
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaona Zhang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Linfeng Zhang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Ruting Luo
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yin Zhang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Min Wang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
4
|
Lun H, Li P, Li J, Liu F. The effect of intestinal flora metabolites on macrophage polarization. Heliyon 2024; 10:e35755. [PMID: 39170251 PMCID: PMC11337042 DOI: 10.1016/j.heliyon.2024.e35755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Intestinal flora metabolites played a crucial role in immunomodulation by influencing host immune responses through various pathways. Macrophages, as a type of innate immune cell, were essential in chemotaxis, phagocytosis, inflammatory responses, and microbial elimination. Different macrophage phenotypes had distinct biological functions, regulated by diverse factors and mechanisms. Advances in intestinal flora sequencing and metabolomics have enhanced understanding of how intestinal flora metabolites affect macrophage phenotypes and functions. These metabolites had varying effects on macrophage polarization and different mechanisms of influence. This study summarized the impact of gut microbiota metabolites on macrophage phenotype and function, along with the underlying mechanisms associated with different metabolites produced by intestinal flora.
Collapse
Affiliation(s)
- Hengzhong Lun
- Department of Clinical Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Peilong Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fenfen Liu
- Department of Nephrology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| |
Collapse
|
5
|
Eyre M, Thomas T, Ferrarin E, Khamis S, Zuberi SM, Sie A, Newlove-Delgado T, Morton M, Molteni E, Dale RC, Lim M, Nosadini M. Treatments and Outcomes Among Patients with Sydenham Chorea: A Meta-Analysis. JAMA Netw Open 2024; 7:e246792. [PMID: 38625703 PMCID: PMC11022117 DOI: 10.1001/jamanetworkopen.2024.6792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/17/2024] [Indexed: 04/17/2024] Open
Abstract
IMPORTANCE Sydenham chorea is the most common acquired chorea of childhood worldwide; however, treatment is limited by a lack of high-quality evidence. OBJECTIVES To evaluate historical changes in the clinical characteristics of Sydenham chorea and identify clinical and treatment factors at disease onset associated with chorea duration, relapsing disease course, and functional outcome. DATA SOURCES The systematic search for this meta-analysis was conducted in PubMed, Embase, CINAHL, Cochrane Library, and LILACS databases and registers of clinical trials from inception to November 1, 2022 (search terms: [Sydenham OR Sydenham's OR rheumatic OR minor] AND chorea). STUDY SELECTION Published articles that included patients with a final diagnosis of Sydenham chorea (in selected languages). DATA EXTRACTION AND SYNTHESIS This study followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guideline. Individual patient data on clinical characteristics, treatments, chorea duration, relapse, and final outcome were extracted. Data from patients in the modern era (1945 through 2022) were entered into multivariable models and stratified by corticosteroid duration for survival analysis of chorea duration. MAIN OUTCOMES AND MEASURES The planned study outcomes were chorea duration at onset, monophasic course (absence of relapse after ≥24 months), and functional outcome (poor: modified Rankin Scale score 2-6 or persisting chorea, psychiatric, or behavioral symptoms at final follow-up after ≥6 months; good: modified Rankin Scale score 0-1 and no chorea, psychiatric, or behavioral symptoms at final follow-up). RESULTS In total, 1479 patients were included (from 307 articles), 1325 since 1945 (median [IQR] age at onset, 10 [8-13] years; 875 of 1272 female [68.8%]). Immunotherapy was associated with shorter chorea duration (hazard ratio for chorea resolution, 1.51 [95% CI, 1.05-2.19]; P = .03). The median chorea duration in patients receiving 1 or more months of corticosteroids was 1.2 months (95% CI, 1.2-2.0) vs 2.8 months (95% CI, 2.0-3.0) for patients receiving none (P = .004). Treatment factors associated with monophasic disease course were antibiotics (odds ratio [OR] for relapse, 0.28 [95% CI, 0.09-0.85]; P = .02), corticosteroids (OR, 0.32 [95% CI, 0.15-0.67]; P = .003), and sodium valproate (OR, 0.33 [95% CI, 0.15-0.71]; P = .004). Patients receiving at least 1 month of corticosteroids had significantly lower odds of relapsing course (OR, 0.10 [95% CI, 0.04-0.25]; P < .001). No treatment factor was associated with good functional outcome. CONCLUSIONS AND RELEVANCE In this meta-analysis of treatments and outcomes in patients with Sydenham chorea, immunotherapy, in particular corticosteroid treatment, was associated with faster resolution of chorea. Antibiotics, corticosteroids and sodium valproate were associated with a monophasic disease course. This synthesis of retrospective data should support the development of evidence-based treatment guidelines for patients with Sydenham chorea.
Collapse
Affiliation(s)
- Michael Eyre
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Children’s Neurosciences, Evelina London Children’s Hospital at Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Terrence Thomas
- Department of Paediatrics, Neurology Service, KK Women’s and Children’s Hospital, Singapore
| | | | - Sonia Khamis
- Children’s Neurosciences, Evelina London Children’s Hospital at Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Sameer M. Zuberi
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, United Kingdom
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, United Kingdom
| | - Adrian Sie
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, United Kingdom
- NHS Lanarkshire, Bothwell, United Kingdom
| | - Tamsin Newlove-Delgado
- Children and Young People’s Mental Health (ChYMe) Research Collaboration, University of Exeter Medical School, Exeter, United Kingdom
| | - Michael Morton
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, United Kingdom
| | - Erika Molteni
- School of Biomedical Engineering and Imaging Sciences, King’s College London, United Kingdom
| | - Russell C. Dale
- Kids Neuroscience Centre, The Children’s Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Westmead, Australia
| | - Ming Lim
- Faculty of Life Sciences and Medicine, King’s College London, United Kingdom
- Children’s Neurosciences, Evelina London Children’s Hospital at Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Margherita Nosadini
- Paediatric Neurology and Neurophysiology Unit, Department of Women’s and Children’s Health, University Hospital of Padova, Padova, Italy
- Neuroimmunology Group, Paediatric Research Institute “Città della Speranza,” Padova, Italy
| |
Collapse
|
6
|
Zhang L, Chai R, Tai Z, Miao F, Shi X, Chen Z, Zhu Q. Noval advance of histone modification in inflammatory skin diseases and related treatment methods. Front Immunol 2024; 14:1286776. [PMID: 38235133 PMCID: PMC10792063 DOI: 10.3389/fimmu.2023.1286776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/08/2023] [Indexed: 01/19/2024] Open
Abstract
Inflammatory skin diseases are a group of diseases caused by the disruption of skin tissue due to immune system disorders. Histone modification plays a pivotal role in the pathogenesis and treatment of chronic inflammatory skin diseases, encompassing a wide range of conditions, including psoriasis, atopic dermatitis, lupus, systemic sclerosis, contact dermatitis, lichen planus, and alopecia areata. Analyzing histone modification as a significant epigenetic regulatory approach holds great promise for advancing our understanding and managing these complex disorders. Additionally, therapeutic interventions targeting histone modifications have emerged as promising strategies for effectively managing inflammatory skin disorders. This comprehensive review provides an overview of the diverse types of histone modification. We discuss the intricate association between histone modification and prevalent chronic inflammatory skin diseases. We also review current and potential therapeutic approaches that revolve around modulating histone modifications. Finally, we investigated the prospects of research on histone modifications in the context of chronic inflammatory skin diseases, paving the way for innovative therapeutic interventions and improved patient outcomes.
Collapse
Affiliation(s)
- Lichen Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Rongrong Chai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Fengze Miao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Xinwei Shi
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Mohammadi M, Kohan L, Saeidi M, Saghaeian Jazi M, Mohammadi S. The antifibrotic effects of naringin in a hypochlorous acid (HOCl)-induced mouse model of skin fibrosis. Immunopharmacol Immunotoxicol 2022; 44:704-711. [PMID: 35583493 DOI: 10.1080/08923973.2022.2077217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/07/2022] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Fibrosis is a chronic inflammation caused by the loss of innate compensational mechanisms. Naringin (NR) is a flavonoid with antineoplastic and anti-inflammatory effects. Here, we aimed to investigate the antifibrotic effects of NR and underlying mechanisms in a Hypochlorous acid (HOCl)-induced mouse model of skin fibrosis. MATERIALS AND METHODS A total of 24 six-week-old female BALB/c mice were randomly allocated into five groups: HOCl, Sham, PBS, HOCl + NR and DMSO and selected skin regions were treated for 6 weeks, until sacrifice. The histopathologic and collagenesis of skin resections were analyzed using H&E and PR staining. The mRNA levels of COL1, COL3 and αSMA genes were quantified. Serum samples were also used to evaluate TGF-β levels and LDH activity. RESULTS HOCl could increase the relative collagen content, while NR administration on HOCl-treated biopsies decreased collagenesis. COL1, COL3 and αSMA mRNA levels were significantly increased among HOCl-treated skin samples, while NR treatment could decrease these mRNA levels of genes to the extent equal to the levels in the Sham group. Similarly, Naringin-treated samples could decrease TGF-β levels. CONCLUSIONS We demonstrated that Naringin could exert protective effects against fibrotic complications of HOCL in skin tissue in vivo, by reducing the collagenesis and decreasing the levels of fibrosis-associated genes.
Collapse
Affiliation(s)
- Mahmoud Mohammadi
- Department of Biology, Islamic Azad University, Arsanjan Branch, Arsanjan, Iran
| | - Leila Kohan
- Department of Biology, Islamic Azad University, Arsanjan Branch, Arsanjan, Iran
| | - Mohsen Saeidi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Medical Immunology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Marie Saghaeian Jazi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Saeed Mohammadi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
8
|
Ghasemi H, Jamshidi A, Ghatee MA, Mazhab-Jafari K, Khorasani M, Rahmati M, Mohammadi S. PPARγ activation by pioglitazone enhances the anti-proliferative effects of doxorubicin on pro-monocytic THP-1 leukemia cells via inducing apoptosis and G2/M cell cycle arrest. J Recept Signal Transduct Res 2022; 42:429-438. [PMID: 34645362 DOI: 10.1080/10799893.2021.1988972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE Doxorubicin (DOX) is a common chemotherapeutic agent, with toxic side effects, and chemoresistance. Combination chemotherapy is a successful approach to overcome these limitations. Here, we investigated the effects of pioglitazone (PGZ), a PPARγ agonist, and/or DOX on the viability, cell cycle, apoptosis on THP-1 cells and normal human monocytes (NHMs). METHODS MTT assay was used to evaluate the cytotoxicity of DOX and/or PGZ. Cell cycle progression and apoptosis induction were examined by PI or Annexin V-PI double staining, and analyzed by flow cytometry. Quantitative RT-PCR was used to evaluate the changes in the mRNA expression of cell cycle progression or apoptosis-associated genes including P27, P21, CDK2, P53, BCL2 and FasR. RESULTS DOX, PGZ and DOX + PGZ exerted their cytotoxic effects in a dose- and time-dependent manner with low toxicity on NHMs. The cell growth inhibitory effects of DOX were in association with G2/M arrest, while PGZ executed S phase arrest. PGZ treatment enhanced G2/M among DOX-treated combinations with moderate elevation in the S phase. DOX, PGZ and combined treatments induced apoptosis (mostly late phase) in a dose-dependent manner. All treatments resulted in the significant overexpression of p21, p27, p53 and FasR genes and downregulation of CDK2. DOX + PGZ combined treatments exhibited the most significant changes in mRNA expression. CONCLUSION We demonstrated that the antiproliferative, cell cycle regulation and apoptosis-inducing capacity of DOX was enhanced by PGZ in THP-1 leukemia cells in a dose-dependent manner. Therefore, the combination of DOX + PGZ could be used as a novel combination to target AML.
Collapse
Affiliation(s)
- Hassan Ghasemi
- Department of Clinical Biochemistry, Abadan Faculty of Medical Sciences, Abadan, Iran
| | - Ali Jamshidi
- Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Mohammad Amin Ghatee
- Department of Medical Parasitology and Mycology, School of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Komeil Mazhab-Jafari
- Department of Laboratory Sciences, Abadan Faculty of Medical Sciences, Abadan, Iran
| | - Milad Khorasani
- Department of Clinical Biochemistry, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mina Rahmati
- Metabolic Disorders Research Center, Department of Biochemistry, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Saeed Mohammadi
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
9
|
Yaigoub H, Fath N, Tirichen H, Wu C, Li R, Li Y. Bidirectional crosstalk between dysbiotic gut microbiota and systemic lupus erythematosus: What is new in therapeutic approaches? Clin Immunol 2022; 244:109109. [PMID: 36087683 DOI: 10.1016/j.clim.2022.109109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022]
Abstract
Systemic lupus erythematosus is an autoimmune disease characterized by chronic inflammation and multiple organs damage. Its pathogenesis is complex and involves multiple factors including gut microbiota. Accumulating evidence indicates the interaction of microbial communities with the host immune system to maintain a state of homeostasis. Imbalances within the gut microbial composition and function may contribute to the development of many autoimmune diseases including SLE. In this review, we aim to highlight the dysregulation of commensal bacteria and their metabolites in the gastrointestinal tract and the resulting autoimmune responses in lupus and to decrypt the cross-link between the altered gut microbiota and the immune system in the SLE condition. We also provide new insights into targeting gut microbiota as a promising therapeutic approach to treat and manage SLE.
Collapse
Affiliation(s)
- Hasnaa Yaigoub
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Nada Fath
- Comparative Anatomy Unit, Department of Biological and Pharmacological Veterinary Sciences, Hassan II Agronomy and Veterinary Medicine Institute, Rabat-Instituts, Rabat, Morocco
| | - Hasna Tirichen
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Rongshan Li
- Department of Nephrology, The Fifth Hospital (Shanxi Provincial People's Hospital) of Shanxi Medical University, Taiyuan, China; Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, China
| | - Yafeng Li
- Department of Nephrology, The Fifth Hospital (Shanxi Provincial People's Hospital) of Shanxi Medical University, Taiyuan, China; Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, China; Academy of Microbial Ecology, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
10
|
Xu Y, Chen Y, Zhang X, Ma J, Liu Y, Cui L, Wang F. Glycolysis in Innate Immune Cells Contributes to Autoimmunity. Front Immunol 2022; 13:920029. [PMID: 35844594 PMCID: PMC9284233 DOI: 10.3389/fimmu.2022.920029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022] Open
Abstract
Autoimmune diseases (AIDs) refer to connective tissue inflammation caused by aberrant autoantibodies resulting from dysfunctional immune surveillance. Most of the current treatments for AIDs use non-selective immunosuppressive agents. Although these therapies successfully control the disease process, patients experience significant side effects, particularly an increased risk of infection. There is a great need to study the pathogenesis of AIDs to facilitate the development of selective inhibitors for inflammatory signaling to overcome the limitations of traditional therapies. Immune cells alter their predominant metabolic profile from mitochondrial respiration to glycolysis in AIDs. This metabolic reprogramming, known to occur in adaptive immune cells, i.e., B and T lymphocytes, is critical to the pathogenesis of connective tissue inflammation. At the cellular level, this metabolic switch involves multiple signaling molecules, including serine-threonine protein kinase, mammalian target of rapamycin, and phosphoinositide 3-kinase. Although glycolysis is less efficient than mitochondrial respiration in terms of ATP production, immune cells can promote disease progression by enhancing glycolysis to satisfy cellular functions. Recent studies have shown that active glycolytic metabolism may also account for the cellular physiology of innate immune cells in AIDs. However, the mechanism by which glycolysis affects innate immunity and participates in the pathogenesis of AIDs remains to be elucidated. Therefore, we reviewed the molecular mechanisms, including key enzymes, signaling pathways, and inflammatory factors, that could explain the relationship between glycolysis and the pro-inflammatory phenotype of innate immune cells such as neutrophils, macrophages, and dendritic cells. Additionally, we summarize the impact of glycolysis on the pathophysiological processes of AIDs, including systemic lupus erythematosus, rheumatoid arthritis, vasculitis, and ankylosing spondylitis, and discuss potential therapeutic targets. The discovery that immune cell metabolism characterized by glycolysis may regulate inflammation broadens the avenues for treating AIDs by modulating immune cell metabolism.
Collapse
Affiliation(s)
- Yue Xu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yongkang Chen
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Ma
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yudong Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Fang Wang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Shen J, Zhang M, Peng M. Progress of exosome research in systemic lupus erythematosus. Cytokine X 2022; 4:100066. [PMID: 35656386 PMCID: PMC9151726 DOI: 10.1016/j.cytox.2022.100066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/27/2022] [Accepted: 05/14/2022] [Indexed: 02/08/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a global chronic autoimmune disease that invades most organs of the body, with kidney injury being the most prominent feature. Exosomes are extracellular vesicles that carry a variety of proteins, lipids and genetic material, participate in the exchange of local and intersystem information, and play an important immunoregulatory role in a variety of autoimmune diseases. At the same time, the use of exosomes as disease biomarkers and drug delivery carriers also shows great application prospects. This article reviews current progress in the application of exosomes in the pathogenesis, diagnosis and treatment of SLE.
Collapse
Key Words
- CfDNA, Circulating free DNA
- Diagnostic role
- Exosomes
- HMGB1, High mobility group box 1
- Immunomodulation
- LN, Lupus nephritis
- MSC, Mesenchymal stem cells (MSC)
- MiRNAs, Microribonucleic acids
- Microribonucleic acid
- PAMPs, Pathogen-associated molecular patterns
- PDCs, Plasmacytoid dendritic cells
- SLE, Systemic lupus erythematosus
- Systemic lupus erythematosus
- TLR, Recombinant Toll Like Receptor
- Therapeutic potential
- Treg, Regulatory T cells
Collapse
Affiliation(s)
- Jie Shen
- Weifang Medical University, Weifang 261053, China
| | - Mengyu Zhang
- Weifang Medical University, Weifang 261053, China
| | - Meiyu Peng
- Weifang Medical University, Weifang 261053, China
- Department of Immunology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
12
|
Sun W, Yan S, Yang C, Yang J, Wang H, Li C, Zhang L, Zhao L, Zhang J, Cheng M, Li X, Xu D. Mesenchymal Stem Cells-derived Exosomes Ameliorate Lupus by Inducing M2 Macrophage Polarization and Regulatory T Cell Expansion in MRL/lpr Mice. Immunol Invest 2022; 51:1785-1803. [PMID: 35332841 DOI: 10.1080/08820139.2022.2055478] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Previous studies have implicated that the transplantation of human umbilical cord mesenchymal stem cells (hUC-MSCs) effectively alleviates systemic lupus erythematosus (SLE) primarily due to immunomodulatory effects. However, little is known about the role of hUC-MSC-derived exosomes in SLE. This study is carried out to investigate the modifying effects of hUC-MSC-exosomes on the differentiation and function of immune cells in SLE. hUC-MSC-derived exosomes were extracted from the cultural supernatant of hUC-MSCs by ultrahigh speed centrifugation. Quantitative real-time polymerase chain reaction, western blot, enzyme-linked immunosorbent assay, and flow cytometry were performed to estimate the effect of hUC-MSC-derived exosomes on macrophage and regulatory T cell (Treg) polarization. In vivo, hUC-MSC-exosomes were injected intravenously into 28-week-old MRL/lpr mice. We had found that exosomes derived from hUC-MSC restrained the proliferation and inflammation of macrophages in vitro. Besides, MSC-exosomes inhibited CD68+M1 and HLA-DR+M1 but promoted CD206+M2 and CD163+M2 in vitro. Moreover, MRL/lpr mice administrated by intravenous injection of MSC-exosomes had less infiltration of CD14+CD11c+M1 cells but more CD14+CD163+M2 cells as well as Tregs in spleens compared with those in MRL/lpr mice treated by PBS. Additionally, MSC-exosomes could alleviate nephritis, liver and lung injuries of MRL/lpr mice. The survival of lupus mice could be improved after MSC-exosome treatment. This study has suggested that MSC-derived exosomes exert anti-inflammatory and immunomodulatory effects in SLE. MSC-exosomes ameliorate nephritis and other key organ injuries by inducing M2 macrophages and Tregs polarization. As natural nanocarriers, MSC-exosomes may serve as a promising cell-free therapeutic strategy for SLE.Abbreviations: SLE: Systemic lupus erythematosus; hUC-MSCs: Human umbilical cord mesenchymal stem cells; MSCs: Mesenchymal stem cells; qRT-PCR: Quantitative real-time polymerase chain reaction; ELISA: Enzyme-linked immunosorbent assay; Tregs: Regulatory cells; TNF-α: Tumor necrosis factor alfa; IL: Interleukin; COVID-19: Coronavirus disease 2019; pTHP-1: PMA-induced THP-1 macrophages; TEM: Transmission electron microscopy; LPS: Lipopolysaccharide; EVs: Extracellular vesicles; TRAF1: Tumor necrosis factor receptor-associated factor 1; IRAK1: Interferon-α-interleukin-1 receptor-associated kinase 1; NF-κB: Nuclear factor-κB; BLyS: B lymphocyte stimulator; APRIL: A proliferation-inducing ligand.
Collapse
Affiliation(s)
- Wenchang Sun
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China
| | - Shushan Yan
- Department of Gastrointestinal and Anal Diseases Surgery of the Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China
| | - Chunjuan Yang
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China.,Department of Rheumatology of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China
| | - Jinghan Yang
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China.,Department of Rheumatology of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China
| | - Hui Wang
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China
| | - Chaoran Li
- Department of Rheumatology of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China
| | - Lili Zhang
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China
| | - Lu Zhao
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China
| | - Jiaojiao Zhang
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China
| | - Min Cheng
- Department of Physiology, Weifang Medical University, Weifang, Shandong, China
| | - Xiangling Li
- Department of Nephrology of Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China
| | - Donghua Xu
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China.,Department of Rheumatology of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
13
|
Ahamada MM, Jia Y, Wu X. Macrophage Polarization and Plasticity in Systemic Lupus Erythematosus. Front Immunol 2022; 12:734008. [PMID: 34987500 PMCID: PMC8721097 DOI: 10.3389/fimmu.2021.734008] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that attacks almost every organ. The condition mostly happens to adults but is also found in children, and the latter have the most severe manifestations. Among adults, females, especially non-Caucasian, are mostly affected. Even if the etiology of SLE remains unclear, studies show a close relation between this disease and both genetics and environment. Despite the large number of published articles about SLE, we still do not have a clear picture of its pathogenesis, and no specific drug has been found to treat this condition effectively. The implication of macrophages in SLE development is gaining ground, and studying it could answer these gaps. Indeed, both in vivo and in vitro studies increasingly report a strong link between this disease and macrophages. Hence, this review aims to explore the role of macrophages polarization and plasticity in SLE development. Understanding this role is of paramount importance because in-depth knowledge of the connection between macrophages and this systemic disease could clarify its pathogenesis and provide a foundation for macrophage-centered therapeutic approaches.
Collapse
Affiliation(s)
- Mariame Mohamed Ahamada
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yang Jia
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaochuan Wu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Samiei H, Ajam F, Gharavi A, Abdolmaleki S, Kokhaei P, Mohammadi S, Memarian A. Simultaneous disruption of circulating miR-21 and cytotoxic T lymphocytes (CTLs): Prospective diagnostic and prognostic markers for esophageal squamous cell carcinoma (ESCC). J Clin Lab Anal 2022; 36:e24125. [PMID: 34799871 PMCID: PMC8761409 DOI: 10.1002/jcla.24125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) as the most prominent type of esophageal cancer (EC) in developing countries encompasses a substantial contribution of cancer-related mortalities and morbidities. Cytotoxic T lymphocytes (CTLs) are the major subset of effector T cells against cancer. However, the microRNAs involved in the development and regulation of CTLs could be disrupted in cancers such as EC. METHODS Here, we evaluated the population of IL-10, TGF-β, IFN-γ, and IL-17a-producing CD3+CD8+ T cells, their association with the circulating levels of miR-21 and miR-29b, and their diagnostic and/or prognostic (after 160 weeks of follow-up) utilities in 34 ESCC patients (12 newly diagnosed: ND, 24 under-treatment: UT) and 34 matched healthy donors. RESULTS The population of IL-10 and TGF-β-producing CTLs (CD8+ Tregs) were considerably expanded, in addition to the overexpression of miR-21 in both groups (ND and UT) of ESCC patients, while the frequency of Tc17 and CD8+ Treg cells increased only in UT patients. The expression means of TGF-β and IL-10 in CTLs were considered to be excellent biomarkers (1 ≥ area under the curve: AUC ≥0.9) in distinguishing ESCC patients and associated subgroups from healthy subjects. Moreover, the lower expressions of TGF-β, IL-17a, IL-10, and IFN-γ in CTLs were associated with ESCC better prognosis. CONCLUSIONS The association between the impaired function of CD3+ CD8+ T cell subsets and miR-21 expression could be introduced as novel therapeutic targets and powerful diagnostic and prognostic markers for ESCC.
Collapse
Affiliation(s)
- Hadiseh Samiei
- Immunology DepartmentFaculty of MedicineSemnan University of Medical SciencesSemnanIran
| | - Faezeh Ajam
- Immunology DepartmentFaculty of MedicineGolestan University of Medical SciencesGorganIran
| | - Abdolsamad Gharavi
- Digestive Diseases Research InstituteTehran University of Medical SciencesTehranIran
- Golestan Research Center of Gastroenterology and HepatologyGolestan University of Medical SciencesGorganIran
| | - Sara Abdolmaleki
- Clinical Immunology LaboratoryDeziani Specialized and Advanced ClinicGolestan University of Medical SciencesGorganIran
| | - Parviz Kokhaei
- Immune and Gene Therapy LaboratoryCancer Centre KarolinskaDepartment of Oncology and PathologyKarolinska InstituteStockholmSweden
- Cancer Research Center and Department of ImmunologySemnan University of Medical SciencesSemnanIran
| | - Saeed Mohammadi
- Stem Cell Research CenterGolestan University of Medical SciencesGorganIran
- Infectious Diseases Research CenterGolestan University of Medical SciencesGorganIran
| | - Ali Memarian
- Golestan Research Center of Gastroenterology and HepatologyGolestan University of Medical SciencesGorganIran
- Department of ImmunologySchool of MedicineGolestan University of Medical SciencesGorganIran
| |
Collapse
|
15
|
Babania O, Mohammadi S, Yaghoubi E, Sohrabi A, Sadat Seyedhosseini F, Abdolahi N, Yazdani Y. The expansion of CD14+ CD163+ subpopulation of monocytes and myeloid cells-associated cytokine imbalance; candidate diagnostic biomarkers for celiac disease (CD). J Clin Lab Anal 2021; 35:e23984. [PMID: 34449925 PMCID: PMC8529138 DOI: 10.1002/jcla.23984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/27/2021] [Accepted: 08/17/2021] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED Celiac disease (CD) is a chronic autoimmune disorder of small intestine against dietary gluten, among genetically predisposed individuals. Monocytes are versatile innate immune cells involved in the regulation of inflammation, and strongly involved in the intestinal immunity. However, the role of monocytes and their subtypes in CD is not well demonstrated. METHODS Here, we assessed the polarization of CD14+ monocytes by evaluating the M1 (CD16) and M2 (CD163) markers by flowcytometry, their soluble forms (sCD16 and sCD163), and the serum levels of IL-10, IL-12, TGF-β, and TNF-α cytokines using ELISA method, among 30 CD patients and 30 sex- and age-matched healthy subjects (HS). We also analyzed the diagnostic values of all variables with significant differences. RESULTS CD14+CD163+ monocytes were more frequent in CD patients than HS, while CD14+CD16+ monocytes were higher in HS. IL-10and TNF-α increased, and TGF-β expression was decreased among CD patients. The sCD16 serum levels were elevated in patients, while sCD163 was higher but not significant among CD patients. CD163+/CD16+ and IL-10/IL-12 ratios were higher in CD patients, and TGFβ/TNFα ratio was higher in HS group. IL-10, CD14+CD163+, TNF-α, and IL-10/IL-12 ratios with the AUC over 0.7 were introduced as fair diagnostic markers. Our findings revealed that the M2 (CD14+CD163+) monocytes were more frequent among CD patients, and the cytokine balance was disturbed. CONCLUSION According to the significant functional diversities of monocyte subtypes between CD patients and HS group, these immunologic markers could be introduced as specific diagnostic biomarkers for CD.
Collapse
Affiliation(s)
- Omid Babania
- Department of ImmunologySchool of MedicineGolestan University of Medical SciencesGorganIran
- Amirkola Shafizadeh Pediatric HospitalBabol University of Medical SciencesBabolIran
- Razi Pathobiology and Genetics LaboratoryBabolIran
| | - Saeed Mohammadi
- Infectious Diseases Research CenterGolestan University of Medical SciencesGorganIran
- Stem Cell Research centerGolestan University of Medical SciencesGorganIran
| | | | - Ahmad Sohrabi
- Infectious Diseases Research CenterGolestan University of Medical SciencesGorganIran
| | | | - Nafiseh Abdolahi
- Golestan Rheumatology Research CenterGolestan University of Medical SciencesGorganIran
| | - Yaghoub Yazdani
- Department of ImmunologySchool of MedicineGolestan University of Medical SciencesGorganIran
- Stem Cell Research centerGolestan University of Medical SciencesGorganIran
| |
Collapse
|
16
|
Dou R, Zhang X, Xu X, Wang P, Yan B. Mesenchymal stem cell exosomal tsRNA-21109 alleviate systemic lupus erythematosus by inhibiting macrophage M1 polarization. Mol Immunol 2021; 139:106-114. [PMID: 34464838 DOI: 10.1016/j.molimm.2021.08.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/09/2021] [Accepted: 08/22/2021] [Indexed: 12/12/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with M1-type macrophage activation. Mesenchymal stem cells (MSCs) therapies have shown promise in models of pathologies relevant to SLE, while the function and mechanism of MSC-derived exosomes (MSC-exo) were still unclear. We aimed to interrogate the effect of MSC-exo on M1-type polarization of macrophage and investigate mechanisms underlying MSC-exo. Exosomes were isolated from MSC and the effect of MSC-exo on macrophage polarization was evaluated. The key tRNA-derived fragments (tRFs) carried by exosomes were identified by small RNA sequencing and verified in clinical samples. The effect of exosomal-tRFs on macrophage polarization was examined. In this study, MSC-exo dramatically suppressed expression of M1 markers, and reduced the levels of TNF-α and IL-1β, while increased M2 markers in macrophages. A total of 243 differently expressed tRFs (DEtRFs) were identified between MSC-exo treated and untreated macrophage, among which 103 DEtRFs were up-regulated in response to MSC-exo treatment, including tsRNA-21109. The target genes of tsRNA-21109 were mainly enriched in DNA transcription-related GO function, and mainly involved in inflammatory-related pathways, including Rap1, Ras, Hippo, Wnt, MAPK, TGF-beta signaling pathway. The tsRNA-21109 was lowly expressed in clinical samples and was associated with the patient data in SLE. Compared to the normal MSC-exo, the tsRNA-21109-privative MSC-exo up-regulated M1 marker (CD80, NOS2, MCP1) and down-regulated M2 marker (CD206, ARG1, MRC2), also increased the levels of TNF-α and IL-1β in macrophages. Western blot and immunofluorescence confirmed that the proportion of CD80/ARG-1 was increased in macrophages treated with tsRNA-21109-privatived MSC-exo compared to that with control MSC-exo. In conclusion, MSC-exo inhibited the M1-type polarization of macrophages, possibly through transferring tsRNA-21109, which may develop as a novel therapeutic target for SLE.
Collapse
Affiliation(s)
- Rui Dou
- Department of Blood Transfusion, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, China.
| | - Xiulei Zhang
- Department of Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, China.
| | - Xiangdong Xu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| | - Pei Wang
- Department of Rheumatology and Immunology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, China.
| | - Beizhan Yan
- Department of Blood Transfusion, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, China.
| |
Collapse
|
17
|
Abdolahi M, Karimi E, Sarraf P, Tafakhori A, Siri G, Salehinia F, Sedighiyan M, Asanjarani B, Badeli M, Abdollahi H, Yoosefi N, Yousefi A, Rad AS, Djalali M. The omega-3 and Nano-curcumin effects on vascular cell adhesion molecule (VCAM) in episodic migraine patients: a randomized clinical trial. BMC Res Notes 2021; 14:283. [PMID: 34301320 PMCID: PMC8305494 DOI: 10.1186/s13104-021-05700-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
Objective The purpose of this clinical trial was to examine the effect of omega-3 fatty acids (W-3 FAs), nanocurcumin and their combination on serum levels and gene expression of VCAM in patients with episodic migraine. Results In this study, 80 patients were randomly divided in to 4 groups to receive for 2 months. Both serum levels and gene expression of VCAM showed remarkable decreases after single W-3 and after combined W-3 and nanocurcumin interventions. However, a borderline significant change and no remarkable change were observed after single nanocurcumin supplementation and in control group, respectively. While a significant difference between study groups in VCAM concentrations existed, there was no meaningful difference in VCAM gene expression among groups. It appears that the W-3 and combined W-3 and nanocurcumin can relieve VCAM serum level and its gene expression in patients with episodic migraine. Moreover, the combination of W-3 with nanocurcumin might cause more significant declines in VCAM level in the serum of migraine patients than when W-3 is administered alone. Trial Registration: This study was registered in Iranian Registry of Clinical Trials (IRCT) with ID number: NCT02532023. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05700-x.
Collapse
Affiliation(s)
- Mina Abdolahi
- Amir Alam Hospital Complexes, Tehran University of Medical Sciences, Sa'adi Street, Tehran, Iran
| | - Elmira Karimi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Poursina Street, Tehran, Iran
| | - Payam Sarraf
- Iranian Centre of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.,Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Tafakhori
- Iranian Centre of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.,Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Goli Siri
- Department of Internal Medicine, Amiralam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farahnaz Salehinia
- Department of Internal Medicine, Amiralam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Sedighiyan
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Poursina Street, PO Box: 14155-6446, Tehran, Iran
| | - Behzad Asanjarani
- Department of Internal Medicine, Amiralam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Badeli
- Department of Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Poursina Street, Tehran, Iran
| | - Hamed Abdollahi
- Department of Anesthesiology, Amir Alam Hospital Complexes, Tehran University of Medical Sciences, Sa'adi Street, Tehran, Iran
| | - Niyoosha Yoosefi
- Honours Cellular Anatomical Physiology, University of British Columbia, Vancouver, BC, Canada
| | - Abolghasem Yousefi
- Department of Anesthesiology, Amir Alam Hospital Complexes, Tehran University of Medical Sciences, Sa'adi Street, Tehran, Iran
| | - Amir Shayegan Rad
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Poursina Street, PO Box: 14155-6446, Tehran, Iran
| | - Mahmoud Djalali
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Poursina Street, PO Box: 14155-6446, Tehran, Iran.
| |
Collapse
|
18
|
Bruserud Ø, Tsykunova G, Hernandez-Valladares M, Reikvam H, Tvedt THA. Therapeutic Use of Valproic Acid and All-Trans Retinoic Acid in Acute Myeloid Leukemia-Literature Review and Discussion of Possible Use in Relapse after Allogeneic Stem Cell Transplantation. Pharmaceuticals (Basel) 2021; 14:ph14050423. [PMID: 34063204 PMCID: PMC8147490 DOI: 10.3390/ph14050423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022] Open
Abstract
Even though allogeneic stem cell transplantation is the most intensive treatment for acute myeloid leukemia (AML), chemo-resistant leukemia relapse is still one of the most common causes of death for these patients, as is transplant-related mortality, i.e., graft versus host disease, infections, and organ damage. These relapse patients are not always candidates for additional intensive therapy or re-transplantation, and many of them have decreased quality of life and shortened expected survival. The efficiency of azacitidine for treatment of posttransplant AML relapse has been documented in several clinical trials. Valproic acid is an antiepileptic fatty acid that exerts antileukemic activity through histone deacetylase inhibition. The combination of valproic acid and all-trans retinoic acid (ATRA) is well tolerated even by unfit or elderly AML patients, and low-toxicity chemotherapy (e.g., azacitidine) can be added to this combination. The triple combination of azacitidine, valproic acid, and ATRA may therefore represent a low-intensity and low-toxicity alternative for these patients. In the present review, we review and discuss the general experience with valproic acid/ATRA in AML therapy and we discuss its possible use in low-intensity/toxicity treatment of post-allotransplant AML relapse. Our discussion is further illustrated by four case reports where combined treatments with sequential azacitidine/hydroxyurea, valproic acid, and ATRA were used.
Collapse
Affiliation(s)
- Øystein Bruserud
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway;
- Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway; (G.T.); (T.H.A.T.)
- Correspondence:
| | - Galina Tsykunova
- Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway; (G.T.); (T.H.A.T.)
| | - Maria Hernandez-Valladares
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, N-5021 Bergen, Norway;
| | - Hakon Reikvam
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway;
- Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway; (G.T.); (T.H.A.T.)
| | | |
Collapse
|
19
|
|
20
|
Liu Y, Luo S, Zhan Y, Wang J, Zhao R, Li Y, Zeng J, Lu Q. Increased Expression of PPAR-γ Modulates Monocytes Into a M2-Like Phenotype in SLE Patients: An Implicative Protective Mechanism and Potential Therapeutic Strategy of Systemic Lupus Erythematosus. Front Immunol 2021; 11:579372. [PMID: 33584646 PMCID: PMC7873911 DOI: 10.3389/fimmu.2020.579372] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/23/2020] [Indexed: 12/02/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a spectrum of autoimmune disorders characterized by continuous inflammation and the production of autoantibodies. Monocytes, as precursors of dendritic cells and macrophages, are involved in the pathogenesis of SLE, particularly in the inflammatory reactions. Previous studies have proved that Pam3CSK4, as a synthetic ligand of TLR2, could stimulate monocytes to differentiated into a M2-like phenotype which presented immunosuppressive functions. However, the underlying mechanisms remain to be further studied. Here, we reported an increased expression of PPAR-γ in the CD14+ monocytes from SLE patients, particularly in the treated group of SLE patients and the group with positive anti-dsDNA antibodies. Additionally, PPAR-γ expression decreased in the SLE patients with skin lesion. Furthermore, we demonstrated that Pam3CSK4 stimulation can decrease the expression of CCR7, CD80, IL-1β, IL-6, IL-12, and NF-κB which were related to the M1-like subset of monocytes and increased the expression of ARG1 which was related to the M2-like subset through upregulated PPAR-γ expression and consequently downregulated NF-κB expression in the CD14+ monocytes in a time-dependent manner. ChIP-qPCR results further demonstrated that Pam3CSK4 pretreatment could modulate PPAR-γ expression by regulating histone modification through the inhibition of Sirt1 binding to the PPAR-γ promoter. Taken together, our study indicated a protective role of TLR2/Sirt1/PPAR-γ pathway in the pathogenesis of SLE which provided potential therapeutic strategies.
Collapse
Affiliation(s)
- Yu Liu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, China
| | - Shuangyan Luo
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, China
| | - Yi Zhan
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, China
| | - Jiayu Wang
- Xiangya Medical School of Central South University, Changsha, China
| | - Rui Zhao
- Xiangya Medical School of Central South University, Changsha, China
| | - Yingjie Li
- Xiangya Medical School of Central South University, Changsha, China
| | - Jinrong Zeng
- Department of Dermatology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Qianjin Lu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, China
| |
Collapse
|
21
|
Ajam F, Aghaei M, Mohammadi S, Samiei H, Behnampour N, Memarian A. PD-1 Expression on CD8+CD28- T cells within inflammatory synovium is associated with Relapse: A cohort of Rheumatoid Arthritis. Immunol Lett 2020; 228:76-82. [PMID: 33069765 DOI: 10.1016/j.imlet.2020.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/01/2020] [Accepted: 10/10/2020] [Indexed: 02/08/2023]
Abstract
Defect in T lymphocyte homeostasis could implicate initiation and development of rheumatoid arthritis (RA). Since PD-1 plays a key role in the regulation of T lymphocytes, its expression pattern in various CD8+ T cell subsets could be so effective in RA pathogenesis. Here, we investigated the expression of PD-1 and CXCR3 on CD8+CD28- T cells in association with the IFN-γ levels in patients with RA. A total of 42 RA patients, including 10 newly-diagnosed (ND) and 32 relapsed (RL) cases and also 20 healthy donors were enrolled. Phenotypic characterization of CD8+ T cells derived from peripheral blood (PB) and synovial fluid (SF) was performed by flow cytometry. The plasma and SF IFN-γ levels were also assessed by ELISA. The frequency of CD8+CD28- T cells showed no significant differences between patients and controls while its higher levels were observed in PB, versus SF of RL patients. Relapsed patients also showed higher CXCR3 and especially PD-1 expression on their CD8+CD28- T cells. The IFN-γ concentration was elevated in SF of ND patients while its plasma level was significantly lower in RL subgroup than controls. Although PD-1 could induce immune suppression in effector T cells, it is upregulated during inflammation and its overexpression on CD8+CD28- T cells within inflammatory synovium is associated with severity of disease in our cohort of RA patients.
Collapse
Affiliation(s)
- Faezeh Ajam
- Student Research Committee, Department of Immunology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehrdad Aghaei
- Golestan Rheumatology Research Center (GRRC), Golestan University of Medical Sciences, Gorgan, Iran
| | - Saeed Mohammadi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hadiseh Samiei
- Student Research Committee, Department of Immunology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Nasser Behnampour
- Public Health Department, Faculty of Health, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Memarian
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Immunology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
22
|
Angiotensin II induces RAW264.7 macrophage polarization to the M1‑type through the connexin 43/NF‑κB pathway. Mol Med Rep 2020; 21:2103-2112. [PMID: 32186758 PMCID: PMC7115186 DOI: 10.3892/mmr.2020.11023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/28/2020] [Indexed: 02/07/2023] Open
Abstract
Angiotensin II (AngII) serves an important inflammatory role in cardiovascular disease; it can induce macrophages to differentiate into the M1-type, produce inflammatory cytokines and resist pathogen invasion, and can cause a certain degree of damage to the body. Previous studies have reported that connexin 43 (Cx43) and NF-κB (p65) are involved in the AngII-induced inflammatory pathways of macrophages; however, the mechanisms underlying the effects of Cx43 and NF-κB (p65) on AngII-induced macrophage polarization have not been determined. Thus, the present study aimed to investigate the effects of Cx43 and NF-κB (p65) on the polarization process of AngII-induced macrophages. The macrophage polarization-related proteins and mRNAs were examined by flow cytometry, western blotting, immunofluorescence, ELISA and reverse transcription-quantitative PCR analyses. RAW264.7 macrophages were treated with AngII to simulate chronic inflammation and it was subsequently found that AngII promoted RAW 264.7 macrophage polarization towards the M1-type by such effects as the release of inducible nitric oxide synthase (iNOS), tumour necrosis factor (TNF)-α, IL-1β, the secretion of IL-6, and the expression of M1-type indicators, such as CD86. Simultaneously, compared with the control group, the protein expression levels of Cx43 and phosphorylated (p)-p65 were significantly increased following AngII treatment. The M1-related phenotypic indicators, iNOS, TNF-α, IL-1β, IL-6 and CD86, were inhibited by the NF-κB (p65) signalling pathway inhibitor BAY117082. Similarly, the Cx43 inhibitors, Gap26 and Gap19, also inhibited the expression of M1-related factors, and the protein expression levels of p-p65 in the Gap26/Gap19 groups were significantly decreased compared with the AngII group. Altogether, these findings suggested that AngII may induce the polarization of RAW264.7 macrophages to the M1-type through the Cx43/NF-κB (p65) signalling pathway.
Collapse
|
23
|
He W, Kapate N, Shields CW, Mitragotri S. Drug delivery to macrophages: A review of targeting drugs and drug carriers to macrophages for inflammatory diseases. Adv Drug Deliv Rev 2019; 165-166:15-40. [PMID: 31816357 DOI: 10.1016/j.addr.2019.12.001] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022]
Abstract
Macrophages play a key role in defending against foreign pathogens, healing wounds, and regulating tissue homeostasis. Driving this versatility is their phenotypic plasticity, which enables macrophages to respond to subtle cues in tightly coordinated ways. However, when this coordination is disrupted, macrophages can aid the progression of numerous diseases, including cancer, cardiovascular disease, and autoimmune disease. The central link between these disorders is aberrant macrophage polarization, which misguides their functional programs, secretory products, and regulation of the surrounding tissue microenvironment. As a result of their important and deterministic roles in both health and disease, macrophages have gained considerable attention as targets for drug delivery. Here, we discuss the role of macrophages in the initiation and progression of various inflammatory diseases, summarize the leading drugs used to regulate macrophages, and review drug delivery systems designed to target macrophages. We emphasize strategies that are approved for clinical use or are poised for clinical investigation. Finally, we provide a prospectus of the future of macrophage-targeted drug delivery systems.
Collapse
Affiliation(s)
- Wei He
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Neha Kapate
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - C Wyatt Shields
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
24
|
Mohammadi S. Hypoxia and Macrophages Polarization Defecets via AhR Perturbation. JORJANI BIOMEDICINE JOURNAL 2019. [DOI: 10.29252/jorjanibiomedj.7.4.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
25
|
Ma WT, Gao F, Gu K, Chen DK. The Role of Monocytes and Macrophages in Autoimmune Diseases: A Comprehensive Review. Front Immunol 2019; 10:1140. [PMID: 31178867 PMCID: PMC6543461 DOI: 10.3389/fimmu.2019.01140] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/07/2019] [Indexed: 12/19/2022] Open
Abstract
Monocytes (Mo) and macrophages (Mϕ) are key components of the innate immune system and are involved in regulation of the initiation, development, and resolution of many inflammatory disorders. In addition, these cells also play important immunoregulatory and tissue-repairing roles to decrease immune reactions and promote tissue regeneration. Several lines of evidence have suggested a causal link between the presence or activation of these cells and the development of autoimmune diseases. In addition, Mo or Mϕ infiltration in diseased tissues is a hallmark of several autoimmune diseases. However, the detailed contributions of these cells, whether they actually initiate disease or perpetuate disease progression, and whether their phenotype and functional alteration are merely epiphenomena are still unclear in many autoimmune diseases. Additionally, little is known about their heterogeneous populations in different autoimmune diseases. Elucidating the relevance of Mo and Mϕ in autoimmune diseases and the associated mechanisms could lead to the identification of more effective therapeutic strategies in the future.
Collapse
Affiliation(s)
- Wen-Tao Ma
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest A&F University, Yangling, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Fei Gao
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Kui Gu
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - De-Kun Chen
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
26
|
Exploring the Drug Repurposing Versatility of Valproic Acid as a Multifunctional Regulator of Innate and Adaptive Immune Cells. J Immunol Res 2019; 2019:9678098. [PMID: 31001564 PMCID: PMC6437734 DOI: 10.1155/2019/9678098] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/30/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022] Open
Abstract
Valproic acid (VPA) is widely recognized for its use in the control of epilepsy and other neurological disorders in the past 50 years. Recent evidence has shown the potential of VPA in the control of certain cancers, owed in part to its role in modulating epigenetic changes through the inhibition of histone deacetylases, affecting the expression of genes involved in the cell cycle, differentiation, and apoptosis. The direct impact of VPA in cells of the immune system has only been explored recently. In this review, we discuss the effects of VPA in the suppression of some activation mechanisms in several immune cells that lead to an anti-inflammatory response. As expected, immune cells are not exempt from the effect of VPA, as it also affects the expression of genes of the cell cycle and apoptosis through epigenetic modifications. In addition to inhibiting histone deacetylases, VPA promotes RNA interference, activates histone methyltransferases, or represses the activation of transcription factors. However, during the infectious process, the effectiveness of VPA is subject to the biological nature of the pathogen and the associated immune response; this is because VPA can promote the control or the progression of the infection. Due to its various effects, VPA is a promising alternative for the control of autoimmune diseases and hypersensitivity and needs to be further explored.
Collapse
|