1
|
Debreceni IL, Barr JY, Upton EM, Chen YG, Lieberman SM. IL-27 promotes pathogenic T cells in a mouse model of Sjögren's disease. Clin Immunol 2024; 264:110260. [PMID: 38788885 PMCID: PMC11203157 DOI: 10.1016/j.clim.2024.110260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/25/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Sjögren's disease (SjD) is a chronic autoimmune disease characterized by focal lymphocytic inflammation in lacrimal and salivary glands. We recently identified IL-27 as a requisite signal for the spontaneous SjD-like manifestations in nonobese diabetic (NOD) mice. Here, we define T cell-intrinsic effects of IL-27 in lacrimal gland disease in NOD mice. IL-27 receptor was required by both CD4 T effector (Te) cells and CD8 T cells to mediate focal inflammation. Intrinsic IL-27 signaling was associated with PD-1 and ICOS expressing T follicular helper (Tfh)-like CD4 Te cells within lacrimal glands, including subsets defined by CD73 or CD39 expression. CD8 T cells capable of IL-27 signaling also expressed PD-1 with subsets expressing ICOS and CD73 demonstrating a T follicular cytotoxic (Tfc)-like cell phenotype and others expressing a CD39hi exhausted-like phenotype. These findings suggest IL-27 is a key early signal driving a follicular-type response in lacrimal gland inflammation in NOD mice.
Collapse
Affiliation(s)
- Ivy L Debreceni
- Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, 500 Newton Road, 2191 Medical Laboratories, Iowa City, IA 52242, USA; Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, 500 Newton Road, 2191 Medical Laboratories, Iowa City, IA 52242, USA.
| | - Jennifer Y Barr
- Scientific Editing and Research Communication Core, Carver College of Medicine, University of Iowa, 451 Newton Road, 130 Medicine Administration Building, Iowa City, IA 52242, USA.
| | - Ellen M Upton
- Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, 500 Newton Road, 2191 Medical Laboratories, Iowa City, IA 52242, USA; Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, 451 Newton Road, 200 Medicine Administration Building, Iowa City, IA 52242, USA.
| | - Yi-Guang Chen
- Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | - Scott M Lieberman
- Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, 500 Newton Road, 2191 Medical Laboratories, Iowa City, IA 52242, USA; Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, 500 Newton Road, 2191 Medical Laboratories, Iowa City, IA 52242, USA.
| |
Collapse
|
2
|
Xu WD, Wang DC, Zhao M, Huang AF. An updated advancement of bifunctional IL-27 in inflammatory autoimmune diseases. Front Immunol 2024; 15:1366377. [PMID: 38566992 PMCID: PMC10985211 DOI: 10.3389/fimmu.2024.1366377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Interleukin-27 (IL-27) is a member of the IL-12 family. The gene encoding IL-27 is located at chromosome 16p11. IL-27 is considered as a heterodimeric cytokine, which consists of Epstein-Barr virus (EBV)-induced gene 3 (Ebi3) and IL-27p28. Based on the function of IL-27, it binds to receptor IL-27rα or gp130 and then regulates downstream cascade. To date, findings show that the expression of IL-27 is abnormal in different inflammatory autoimmune diseases (including systemic lupus erythematosus, rheumatoid arthritis, Sjogren syndrome, Behcet's disease, inflammatory bowel disease, multiple sclerosis, systemic sclerosis, type 1 diabetes, Vogt-Koyanagi-Harada, and ankylosing spondylitis). Moreover, in vivo and in vitro studies demonstrated that IL-27 is significantly in3volved in the development of these diseases by regulating innate and adaptive immune responses, playing either an anti-inflammatory or a pro-inflammatory role. In this review, we comprehensively summarized information about IL-27 and autoimmunity based on available evidence. It is hoped that targeting IL-27 will hold great promise in the treatment of inflammatory autoimmune disorders in the future.
Collapse
Affiliation(s)
- Wang-Dong Xu
- Department of Evidence-Based Medicine, School of Public Health, Southwest Medical University, Luzhou, Sichuan, China
| | - Da-Cheng Wang
- Department of Evidence-Based Medicine, School of Public Health, Southwest Medical University, Luzhou, Sichuan, China
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
3
|
Bohat R, Liang X, Chen Y, Xu C, Zheng N, Guerrero A, Hou J, Jaffery R, Egan NA, Li Y, Tang Y, Unsal E, Robles A, Chen S, Major AM, Elldakli H, Chung SH, Liang H, Hicks MJ, Du Y, Lin JS, Chen X, Mohan C, Peng W. Fas lpr gene dosage tunes the extent of lymphoproliferation and T cell differentiation in lupus. Clin Immunol 2024; 258:109874. [PMID: 38113962 DOI: 10.1016/j.clim.2023.109874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/23/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Sle1 and Faslpr are two lupus susceptibility loci that lead to manifestations of systemic lupus erythematosus. To evaluate the dosage effects of Faslpr in determining cellular and serological phenotypes associated with lupus, we developed a new C57BL/6 (B6) congenic lupus strain, B6.Sle1/Sle1.Faslpr/+ (Sle1homo.lprhet) and compared it with B6.Faslpr/lpr (lprhomo), B6.Sle1/Sle1 (Sle1homo), and B6.Sle1/Sle1.Faslpr/lpr (Sle1homo.lprhomo) strains. Whereas Sle1homo.lprhomo mice exhibited profound lymphoproliferation and early mortality, Sle1homo.lprhet mice had a lifespan comparable to B6 mice, with no evidence of splenomegaly or lymphadenopathy. Compared to B6 monogenic lupus strains, Sle1homo.lprhet mice exhibited significantly elevated serum ANA antibodies and increased proteinuria. Additionally, Sle1homo.lprhet T cells had an increased propensity to differentiate into Th1 cells. Gene dose effects of Faslpr were noted in upregulating serum IL-1⍺, IL-2, and IL-27. Taken together, Sle1homo.lprhet strain is a new C57BL/6-based model of lupus, ideal for genetic studies, autoantibody repertoire investigation, and for exploring Th1 effector cell skewing without early-age lymphoproliferative autoimmunity.
Collapse
Affiliation(s)
- Ritu Bohat
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States of America
| | - Xiaofang Liang
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States of America
| | - Yanping Chen
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, United States of America
| | - Chunyu Xu
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States of America
| | - Ningbo Zheng
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States of America
| | - Ashley Guerrero
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States of America
| | - Jiakai Hou
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States of America
| | - Roshni Jaffery
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States of America
| | - Nicholas A Egan
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States of America
| | - Yaxi Li
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, United States of America
| | - Yitao Tang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America; UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson, Houston, TX 77030, United States of America
| | - Esra Unsal
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States of America
| | - Adolfo Robles
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States of America
| | - Si Chen
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States of America
| | - Angela M Major
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, United States of America
| | - Hadil Elldakli
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States of America
| | - Sang-Hyuk Chung
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States of America
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America; Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | - M John Hicks
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, United States of America
| | - Yong Du
- Department of Cellular & Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, United States of America
| | - Jamie S Lin
- Section of Nephrology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | - Xiqun Chen
- Department of Neurology, Mass General Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States of America; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, United States of America; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America
| | - Weiyi Peng
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States of America; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America.
| |
Collapse
|
4
|
Chen H, Zhang N, Li C, Zhang H. Effects of Astragalus membranaceus on systemic lupus erythematosus in a mouse model of pregnancy. Immun Inflamm Dis 2022; 10:e624. [PMID: 35634952 PMCID: PMC9092001 DOI: 10.1002/iid3.624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/16/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND This study used astragalus membranaceus (AM) to treat systemic lupus erythematosus (SLE) model mice during pregnancy, aiming to explore the role of AM in Helper T cell 17 (Th17) differentiation and SLE during pregnancy. METHODS We used lipopolysaccharide to constructed the SLE mouse model. AM decoction given by intragastric administration lasted from the eighth week of the mouse age until the mouse was killed. We estimated the messenger RNA levels of IL-17a and Rorc, counted the Th17 cell number and examined the levels of cytokines including interleukin (IL)-12, tumor necrosis factor α, interferon gamma, IL-17A in mouse serum. Periodic acid-Schiff staining and renal glomerular/tubulointerstitial (TI) score were used to evaluate the progression of lupus nephritis (LN). RESULTS AM treatment improved the conception rate and increased the number and average weight of fetuses in SLE mice. It significantly decreased the urinary albumin/creatinine ratios and reduced the glomerular scores and TI scores in the pregnant SLE mice. AM gavage significantly decreased the weight of spleen, mesenteric lymph node, total splenocytes and T cells, and the expression of proinflammatory factors. Furthermore, AM treatment reduced the ratio of Th17 cells and the expression levels of RORγt and IL-17A. CONCLUSION AM significantly improved pregnancy outcomes and inhibited lupus nephritis during pregnancy in SLE mice.
Collapse
Affiliation(s)
- Hong‐Qing Chen
- Department of ObstetricsHengshui Fourth People's HospitalHengshuiHebeiChina
| | - Na Zhang
- Department of Clinical PharmacyThe Fourth Hospital of ShijiazhuangShijiazhuangHebeiChina
| | - Cai‐Xia Li
- The Fourth Hospital of ShijiazhuangShijiazhuangHebeiChina
| | - Hong‐Xia Zhang
- Department of PharmacyThe Fourth Hospital of ShijiazhuangShijiazhuangHebeiChina
| |
Collapse
|
5
|
Mohammed SA, Al Kady LM, Boghdadi GS, Dawa GA, Gerges MA, El Shafai MA. Immunogenetic Relationship of HLA-G 14 bp Insertion/Deletion Polymorphism and Toll-Like Receptor 9 with Systemic Lupus Erythematosus in Egyptian Patients: A Case-Control Study. Int J Gen Med 2022; 15:661-674. [PMID: 35082516 PMCID: PMC8785136 DOI: 10.2147/ijgm.s344376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/10/2022] [Indexed: 12/18/2022] Open
Abstract
Introduction The level of expression of the immunoregulatory human leukocyte antigen-G (HLA-G) has been suggested to play a role in the immunopathogenesis of systemic lupus erythematosus (SLE). A 14 bp insertion/deletion (ins/del) polymorphism in the 3ˊuntranslated region of HLA-G gene may influence the level of expression. The role of Toll-like receptor 9 (TLR9) in the pathogenesis of SLE has been highlighted. Data among Egyptian patients are quite limited. Purpose To detect the association of HLA-G 14 bp ins/del gene polymorphism with the susceptibility to SLE and to correlate TLR9 serum level with disease activity among Egyptian patients. Patients and Methods A case-control study that included 102 SLE female patients and 102 healthy matched volunteers as controls was carried out. Disease activity in patients was determined using the modified Systemic Lupus Erythematosus Disease Activity Index (SLEDAI). HLA-G 14 bp ins/del genotype was detected by polymerase chain reaction (PCR). TLR9 serum level was estimated using enzyme-linked immunosorbent assay (ELISA) technique. Results The ins/ins genotype was significantly increased among SLE patients compared to healthy subjects (58.8% vs 9.8%; odds ratio [OR] = 11.79, P < 0.001). The 14 bp ins allele was significantly more frequent in SLE patients than in healthy subjects (65.7% vs 27.9%, respectively) and significantly associated with an increased risk of SLE (OR 4.94, P < 0.001). The mean TLR9 serum level showed a significant increase in SLE patients compared to healthy subjects (397.04±137.86 vs 195.22±45.14 ng/L, p < 0.001) and was significantly associated with disease activity as well as to patients’ HLA-G genotypes (p < 0.001). Conclusion Among Egyptian population, HLA-G 14 bp ins/ins homozygous genotype and ins allele may constitute a potential risk for SLE susceptibility, while TLR9 serum level is significantly associated with disease activity.
Collapse
Affiliation(s)
- Shrouk A Mohammed
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Laila M Al Kady
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ghada S Boghdadi
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ghada A Dawa
- Rheumatology and Rehabilitation Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Marian A Gerges
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
- Correspondence: Marian A Gerges, Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt, Tel +20 1003819530, Email
| | - Maher A El Shafai
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|