1
|
Feng X, Lu J, Cheng W, Zhao P, Chang X, Wu J. LTK deficiency induces macrophage M2 polarization and ameliorates Sjogren's syndrome by reducing chemokine CXCL13. Cytokine 2025; 190:156905. [PMID: 40154092 DOI: 10.1016/j.cyto.2025.156905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/15/2025] [Accepted: 02/27/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Sjogren's syndrome (SS) is an autoimmune disease involving macrophage infiltration of the exocrine glands. LTK, a receptor tyrosine kinase, is involved in many autoimmune diseases, such as lupus erythematosus. The objectives of this study was to explore the impact of LTK on autophagy in SS. METHODS The NCBI Gene Expression Omnibus (GEO) database was used to screen for differentially expressed genes (DEGs) in SS patients and validated by quantitative reverse transcription PCR (RT-qPCR) in A253 cells with EGF and IFN-γ. Meanwhile, lentiviral vectors were used to transfect A253 cells for stable LTK silencing. CCK-8, flow cytometry, and transmission electron microscopy (TEM), Western blotting (WB) was employed to assess proliferation, apoptosis, autophagy, and autoimmune antigens (Ro52/SSA and La/SSB) in A253 cells. Then, macrophages were treated with 100 ng/ml of LPS to induce the polarization of macrophages towards the M1 phenotype, while macrophages were treated with IL-4 to activate the macrophage M2 phenotype. LTK-silenced A253 cells were co-cultured with macrophages. WB as well as flow cytometry were used to assess macrophage polarization markers. Furthermore, protein-antibody microarrays were utilized to analyze downstream proteins regulated by LTK. Finally, the functionality of LTK was confirmed in NOD/ShiLtJ mice. RESULTS LTK expression in the GEO database was increased in SS patients. And LTK was also significantly increased by EGF and IFN-γ. Knockdown of LTK increased proliferation and autophagy in A253 cells. While LTK deficiency inhibited the expression of Ro52/SSA and La/SSB, and apoptosis in A253 cells. Furthermore, LTK-silenced A253 cells promoted polarization of macrophages towards the M2 phenotype, which is associated with the pathogenesis of SS. Knockdown of LTK resulted in reduced expression of CXCL13, which in turn triggered macrophage M2 polarization. Additionally, LTK deficiency ameliorated submandibular gland tissue damage and inhibited autoimmune antigens secretion in NOD/ShiLtJ mice. In addition, the expression of autophagy markers and M2 polarization markers in the submandibular gland tissue was increased by shLTK. CONCLUSION LTK could promote progressive SS pathogenesis via CXCL13. This discovery indicates that targeting LTK/CXCL13 could be a potential therapeutic strategy for the clinical management of SS.
Collapse
Affiliation(s)
- Xiuyuan Feng
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, China; Department of Rheumatology, Affiliated Huishan Hospital of Xinglin College, Nantong University, Wuxi Huishan District People's Hospital, Wuxi, China
| | - Junhui Lu
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, China; Department of Rheumatology, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, China
| | - Wei Cheng
- Department of Dermatology, The Affiliated Changshu Hospital of Nantong University, Suzhou, China
| | - Ping Zhao
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Xin Chang
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Jian Wu
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Biciusca V, Rosu A, Stan SI, Cioboata R, Biciusca T, Balteanu MA, Florescu C, Camen GC, Cimpeanu O, Bumbea AM, Boldeanu MV, Banicioiu-Covei S. A Practical Multidisciplinary Approach to Identifying Interstitial Lung Disease in Systemic Autoimmune Rheumatic Diseases: A Clinician's Narrative Review. Diagnostics (Basel) 2024; 14:2674. [PMID: 39682582 DOI: 10.3390/diagnostics14232674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Interstitial lung disease (ILD) is one of the common and potentially lethal manifestations of systemic autoimmune rheumatic diseases (SARDs). ILD's prevalence, clinical patterns, imaging, and natural history are variable. Each of the representative diseases-systemic sclerosis (SSc), idiopathic inflammatory myopathies (IIMs), rheumatoid arthritis (RA), Sjӧgren's syndrome (SjS), mixed connective tissue disease (MCTD), systemic lupus erythematosus (SLE)-have distinct clinical, paraclinical and evolutionary features. Risk factors with predictive value for ILD have been identified. This review summarizes, from the clinician's perspective, recent data from the literature regarding the specificity of ILD for each of the autoimmune rheumatic diseases, with an emphasis on the role of the multidisciplinary team in early diagnosis, case management, as well as the particularities of the clinical approach to the progressive phenotype of ILD in SARDs.
Collapse
Affiliation(s)
- Viorel Biciusca
- Department of Internal Medicine-Pneumology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Anca Rosu
- Department of Internal Medicine-Rheumatology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Sorina Ionelia Stan
- Department of Internal Medicine-Pneumology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ramona Cioboata
- Department of Internal Medicine-Pneumology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Teodora Biciusca
- Institute of Diagnostic and Interventional Radiology, Goethe University Hospital Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Mara Amalia Balteanu
- Department of Pneumology, Faculty of Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Cristina Florescu
- Department of Internal Medicine-Cardiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Georgiana Cristiana Camen
- Department of Radiology and Medicine Imaging, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ovidiu Cimpeanu
- Clinical Hospital of Infections Diseases "Victor Babes", 200515 Craiova, Romania
| | - Ana Maria Bumbea
- Department of Medical Rehabilitation, Faculty of Medical Assistance, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Mihail Virgil Boldeanu
- Department of Immunology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Simona Banicioiu-Covei
- Department of Internal Medicine-Rheumatology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
3
|
Hui L, Li Y, Huang MK, Jiang YM, Liu T. CXCL13: a common target for immune-mediated inflammatory diseases. Clin Exp Med 2024; 24:244. [PMID: 39443356 PMCID: PMC11499446 DOI: 10.1007/s10238-024-01508-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
CXCL13 is a chemokine that plays an important role in the regulation and development of secondary lymphoid organs. CXCL13 is also involved in the regulation of pathological processes, particularly inflammatory responses, of many diseases. The function of CXCL13 varies depending on the condition of the host. In a healthy condition, CXCL13 is mainly secreted by mouse stromal cells or human follicular helper T cells, whereas in diseases conditions, they are produced by human peripheral helper T cells and macrophages in non-lymphoid tissues; this is termed ectopic expression of CXCL13. Ectopic CXCL13 expression is involved in the pathogenesis of various immune-mediated inflammatory diseases as it regulates the migration of B lymphocytes, T lymphocytes, and other immune cells in inflammatory sites as well as influences the expression of inflammatory factors. Additionally, ectopic expression of CXCL13 plays a key role in ectopic lymphoid organ formation. In this review, we focused on the sources of CXCL13 in different conditions and its regulatory mechanisms in immune-mediated inflammatory diseases, providing novel ideas for further research on targeting CXCL13 for the treatment of immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Lu Hui
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu, 610041, Sichuan, People's Republic of China
| | - Ye Li
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu, 610041, Sichuan, People's Republic of China
| | - Meng-Ke Huang
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yong-Mei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Ting Liu
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu, 610041, Sichuan, People's Republic of China.
- State Key Laboratory of Biotherapy and Cancer Center/National Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
4
|
Dal Pozzolo R, Cafaro G, Perricone C, Calvacchi S, Bruno L, Colangelo A, Tromby F, Gerli R, Bartoloni E. Salivary gland biopsy as a prognostic tool in Sjögren's syndrome. Expert Rev Clin Immunol 2024; 20:1139-1147. [PMID: 38881375 DOI: 10.1080/1744666x.2024.2368189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
INTRODUCTION Primary Sjögren's syndrome (pSS) is an autoimmune disorder primarily affecting salivary and lacrimal glands, although about 40% of patients experience systemic complications. In this setting, the identification of patient phenotypes characterized by increased risk of extra-glandular involvement still represents an unmet need. AREAS COVERED The aim of this paper is to review the scientific evidence on the utility of salivary gland biopsies in pSS, emphasizing their role in defining prognosis. In latest years, research focused on disease-specific clinical, serological, or histological features able to categorize patient prognosis. Among histopathological features, focus score and ectopic germinal centers exhibit associations with glandular and extraglandular manifestations, including higher rates of lymphomagenesis. EXPERT OPINION Pathological characterization of salivary glands provides information that go beyond a mere diagnostic or classification utility, providing insights for a stratification of disease severity and for predicting systemic manifestations. Thus, a salivary gland biopsy should be offered to all patients and included in routine practice, even when not strictly required for diagnostic purposes. More advanced analysis techniques of the tissue, including immunohistochemistry and 'omics' should be further explored in longitudinal studies to boost the ability to further stratify and predict disease evolution.
Collapse
Affiliation(s)
- Roberto Dal Pozzolo
- Rheumatology Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giacomo Cafaro
- Rheumatology Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Carlo Perricone
- Rheumatology Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Santina Calvacchi
- Rheumatology Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Lorenza Bruno
- Rheumatology Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Anna Colangelo
- Rheumatology Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Francesco Tromby
- Rheumatology Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Roberto Gerli
- Rheumatology Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Elena Bartoloni
- Rheumatology Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
5
|
Huang Y, Liu HM, Mao QY, Wu LL, Xiang RL, Yu GY. Identification of circRNAs expression profiles and functional networks in parotid gland of type 2 diabetes mouse. BMC Genomics 2024; 25:450. [PMID: 38714918 PMCID: PMC11077881 DOI: 10.1186/s12864-024-10290-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are a novel kind of non-coding RNAs proved to play crucial roles in the development of multiple diabetic complications. However, their expression and function in diabetes mellitus (DM)-impaired salivary glands are unknown. RESULTS By using microarray technology, 663 upregulated and 999 downregulated circRNAs companied with 813 upregulated and 525 downregulated mRNAs were identified in the parotid glands (PGs) of type2 DM mice under a 2-fold change and P < 0.05 cutoff criteria. Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analysis of upregulated mRNAs showed enrichments in immune system process and peroxisome proliferator-activated receptor (PPAR) signaling pathway. Infiltration of inflammatory cells and increased inflammatory cytokines were observed in diabetic PGs. Seven differently expressed circRNAs validated by qRT-PCR were selected for coding-non-coding gene co-expression (CNC) and competing endogenous RNA (ceRNA) networks analysis. PPAR signaling pathway was primarily enriched through analysis of circRNA-mRNA networks. Moreover, the circRNA-miRNA-mRNA networks highlighted an enrichment in the regulation of actin cytoskeleton. CONCLUSION The inflammatory response is elevated in diabetic PGs. The selected seven distinct circRNAs may attribute to the injury of diabetic PG by modulating inflammatory response through PPAR signaling pathway and actin cytoskeleton in diabetic PGs.
Collapse
Affiliation(s)
- Yan Huang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, 100081, Beijing, P.R. China
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Xiamen Medical College, Xiamen Key Laboratory of Stomotalogical Disease Diagnosis and Treatment, 361006, Xiamen, P.R. China
| | - Hui-Min Liu
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, 100191, Beijing, P.R. China
| | - Qian-Ying Mao
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, 100081, Beijing, P.R. China
| | - Li-Ling Wu
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, 100191, Beijing, P.R. China
| | - Ruo-Lan Xiang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, 100191, Beijing, P.R. China.
| | - Guang-Yan Yu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, 100081, Beijing, P.R. China.
| |
Collapse
|
6
|
Liao J, Yu X, Huang Z, He Q, Yang J, Zhang Y, Chen J, Song W, Luo J, Tao Q. Chemokines and lymphocyte homing in Sjögren's syndrome. Front Immunol 2024; 15:1345381. [PMID: 38736890 PMCID: PMC11082322 DOI: 10.3389/fimmu.2024.1345381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Sjögren's syndrome (SS) is a chronic systemic autoimmune disease that typically presents with lymphocyte, dendritic cell, and macrophage infiltration of exocrine gland ducts and the formation of ectopic germinal centers. The interactions of lymphocyte homing receptors and addressins and chemokines and their receptors, such as α4β7/MAdCAM-1, LFA-1/ICAM-1, CXCL13/CXCR5, CCL25/CCR9, CX3CL1/CX3CR1, play important roles in the migration of inflammatory cells to the focal glands and the promotion of ectopic germinal center formation in SS. A variety of molecules have been shown to be involved in lymphocyte homing, including tumor necrosis factor-α, interferon (IFN)-α, IFN-β, and B cell activating factor. This process mainly involves the Janus kinase-signal transducer and activator of transcription signaling pathway, lymphotoxin-β receptor pathway, and nuclear factor-κB signaling pathway. These findings have led to the development of antibodies to cell adhesion molecules, antagonists of chemokines and their receptors, compounds interfering with chemokine receptor signaling, and gene therapies targeting chemokines and their receptors, providing new targets for the treatment of SS in humans. The aim of this study was to explore the relationship between lymphocyte homing and the pathogenesis of SS, and to provide a review of recent studies addressing lymphocyte homing in targeted therapy for SS.
Collapse
Affiliation(s)
- Jiahe Liao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Xinbo Yu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Ziwei Huang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Qian He
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Jianying Yang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Yan Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Jiaqi Chen
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Weijiang Song
- Traditional Chinese Medicine Department, Peking University Third Hospital, Beijing, China
| | - Jing Luo
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
- Beijing Key Laboratory of Immune Inflammatory Disease, China-Japan Friendship Hospital, Beijing, China
| | - Qingwen Tao
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
- Beijing Key Laboratory of Immune Inflammatory Disease, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
7
|
Hong J, Cheng H, Wang P, Wu Y, Lu S, Zhou Y, Wang XB, Zhu X. CXCL9 may serve as a potential biomarker for primary Sjögren's syndrome with extra-glandular manifestations. Arthritis Res Ther 2024; 26:26. [PMID: 38229121 PMCID: PMC10792874 DOI: 10.1186/s13075-023-03229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 12/03/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Primary Sjögren's syndrome (pSS) is an autoimmune condition that causes harm to exocrine glands and also has extra-glandular manifestations (EGM). pSS patients with EGM have a worse prognosis than those with only sicca symptoms. Previous studies have shown that the minor salivary glands (MSG) of pSS patients exhibit a unique profile of cytokines and chemokines compared to healthy controls. However, there is a lack of research comparing pSS with EGM (pSS-EGM) and pSS without EGM (pSS-non-EGM). This study aims to explore potential biomarkers associated with pSS, particularly pSS with EGM. METHODS By utilizing RNA sequencing, we conducted an analysis on the gene expression profiles of MSG in 63 patients diagnosed with pSS, as well as 12 non-pSS individuals. Furthermore, we also investigated the MSG of pSS patients, both with and without EGM. Through bioinformatics analysis, we identified genes with differential expression (DEGs) and determined the core hub genes using PPI network. We then analyzed the top 20 DEGs and their correlation with the patients' clinical characteristics, and validated our findings using peripheral blood plasma. RESULTS A total of 725 differentially expressed genes (DEGs) were identified in the comparison between pSS and non-pSS groups, and 727 DEGs were observed between pSS-EGM and pSS-non-EGM. It is noteworthy that the expression levels of CXCL9 were higher in both pSS patients and pSS-EGM when compared to the control group. Taking into consideration the significance of the top 20 DEGs in relation to clinical parameters and the central hub genes, we ultimately chose CXCL9. In comparison to the non-pSS group, pSS patients exhibited notably greater expression of the CXCL9 gene in the MSG, as well as higher levels of CXCL9 protein in their plasma (p < 0.001). Furthermore, the expression of the CXCL9 gene and levels of CXCL9 protein were notably higher in pSS patients accompanied by EGM and those with SSA antibodies. Additionally, a correlation was found between the expression of the CXCL9 gene and the EULAR Sjogren's Syndrome Disease Activity Index (ESSDAI), as well as with immunoglobulin G (IgG) levels and erythrocyte sedimentation rate (ESR). Meanwhile, the protein levels of CXCL9 were found to be correlated with IgG levels and ESSDAI. CONCLUSION CXCL9 proves to be a valuable biomarker in pSS, specifically due to its strong ability to differentiate between pSS patients with EGM and those without EGM. There is a significant correlation between CXCL9 and various clinical parameters both at the gene and protein level. Therefore, CXCL9 could be a potential target for future treatment of pSS.
Collapse
Affiliation(s)
- Jingwei Hong
- Rheumatology Department, First Affiliated Hospital of Wenzhou Medical University, Nanbai Xiang Street, Ouhai District, Wenzhou, China
| | - Hui Cheng
- Rheumatology Department, First Affiliated Hospital of Wenzhou Medical University, Nanbai Xiang Street, Ouhai District, Wenzhou, China
| | - Ping Wang
- Rheumatology Department, First Affiliated Hospital of Wenzhou Medical University, Nanbai Xiang Street, Ouhai District, Wenzhou, China
| | - Yanzhi Wu
- Rheumatology Department, First Affiliated Hospital of Wenzhou Medical University, Nanbai Xiang Street, Ouhai District, Wenzhou, China
| | - Saisai Lu
- Rheumatology Department, First Affiliated Hospital of Wenzhou Medical University, Nanbai Xiang Street, Ouhai District, Wenzhou, China
| | - Yan Zhou
- Rheumatology Department, First Affiliated Hospital of Wenzhou Medical University, Nanbai Xiang Street, Ouhai District, Wenzhou, China
| | - Xiao Bing Wang
- Rheumatology Department, First Affiliated Hospital of Wenzhou Medical University, Nanbai Xiang Street, Ouhai District, Wenzhou, China.
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China.
| | - Xiaofang Zhu
- Rheumatology Department, First Affiliated Hospital of Wenzhou Medical University, Nanbai Xiang Street, Ouhai District, Wenzhou, China.
| |
Collapse
|
8
|
Tang Y, Zhou Y, Wang X, Che N, Tian J, Man K, Rui K, Peng N, Lu L. The role of epithelial cells in the immunopathogenesis of Sjögren's syndrome. J Leukoc Biol 2024; 115:57-67. [PMID: 37134025 DOI: 10.1093/jleuko/qiad049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/04/2023] Open
Abstract
Sjögren's syndrome is a systemic autoimmune disease characterized by dysfunction of the affected exocrine glands. Lymphocytic infiltration within the inflamed glands and aberrant B-cell hyperactivation are the two salient pathologic features in Sjögren's syndrome. Increasing evidence indicates that salivary gland epithelial cells act as a key regulator in the pathogenesis of Sjögren's syndrome, as revealed by the dysregulated innate immune signaling pathways in salivary gland epithelium and increased expression of various proinflammatory molecules as well as their interaction with immune cells. In addition, salivary gland epithelial cells can regulate adaptive immune responses as nonprofessional antigen-presenting cells and promote the activation and differentiation of infiltrated immune cells. Moreover, the local inflammatory milieu can modulate the survival of salivary gland epithelial cells, leading to enhanced apoptosis and pyroptosis with the release of intracellular autoantigens, which further contributes to SG autoimmune inflammation and tissue destruction in Sjögren's syndrome. Herein, we reviewed recent advances in elucidating the role of salivary gland epithelial cells in the pathogenesis of Sjögren's syndrome, which may provide rationales for potential therapeutic targeting of salivary gland epithelial cells to alleviate salivary gland dysfunction alongside treatments with immunosuppressive reagents in Sjögren's syndrome.
Collapse
Affiliation(s)
- Yuan Tang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong, China
| | - Yingbo Zhou
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong, China
| | - Xiaoran Wang
- Department of Rheumatology, The Second People's Hospital of Three Gorges University, College street, Xiling District, Yichang, China
| | - Nan Che
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road, Gulou District, Nanjing, China
| | - Jie Tian
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Jiefang Road, Jingkou District, Zhenjiang, China
| | - Kwan Man
- Department of Surgery, School of Clinical Medicine, Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong, China
| | - Ke Rui
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Jiefang Road, Jingkou District, Zhenjiang, China
| | - Na Peng
- Department of Rheumatology, The Second People's Hospital of Three Gorges University, College street, Xiling District, Yichang, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Sha Tin, New Territories, Hong Kong, China
| |
Collapse
|
9
|
Zhou Y, Liu Z. Saliva biomarkers in oral disease. Clin Chim Acta 2023; 548:117503. [PMID: 37536520 DOI: 10.1016/j.cca.2023.117503] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Saliva is a versatile biofluid that contains a wide variety of biomarkers reflecting both physiologic and pathophysiologic states. Saliva collection is noninvasive and highly applicable for tests requiring serial sampling. Furthermore, advances in test accuracy, sensitivity and precision for saliva has improved diagnostic performance as well as the identification of novel markers especially in oral disease processes. These include dental caries, periodontitis, oral squamous cell carcinoma (OSCC) and Sjögren's syndrome (SS). Numerous growth factors, enzymes, interleukins and cytokines have been identified and are the subject of much research investigation. This review highlights current procedures for successful determination of saliva biomarkers including preanalytical factors associated with sampling, storage and pretreatment as well as subsequent analysis. Moreover, it provides an overview of the diagnostic applications of these salivary biomarkers in common oral diseases.
Collapse
Affiliation(s)
- Yuehong Zhou
- Wenzhou Medical University Renji College, Wenzhou, China
| | - Zhenqi Liu
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
Kivitz A, Wang L, Alevizos I, Gunsior M, Falloon J, Illei G, St Clair EW. The MIDORA trial: a phase II, randomised, double-blind, placebo-controlled, mechanistic insight and dosage optimisation study of the efficacy and safety of dazodalibep in patients with rheumatoid arthritis. RMD Open 2023; 9:e003317. [PMID: 37541743 PMCID: PMC10407378 DOI: 10.1136/rmdopen-2023-003317] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/14/2023] [Indexed: 08/06/2023] Open
Abstract
OBJECTIVES To evaluate the safety, efficacy and response duration of four different dosing regimens of dazodalibep (DAZ), a non-antibody biological antagonist of CD40L, in patients with rheumatoid arthritis (RA). METHODS This double-blind study included adult patients with moderate-to-severe active RA with a positive test for serum rheumatoid factor and/or anticitrullinated protein antibodies, an inadequate response to methotrexate, other conventional disease-modifying antirheumatic drugs or tumour necrosis factor-α inhibitors, and no prior treatment with B-cell depleting agents. Eligible participants were randomised equally to five groups receiving intravenous infusions of DAZ or placebo. The primary endpoint was the change from baseline in the Disease Activity Score-28 with C reactive protein (DAS28-CRP) at day 113. Participants were followed through day 309. RESULTS The study randomised 78 eligible participants. The change from baseline in DAS28-CRP (least squares means±SE) at day 113 was significantly greater for all DAZ groups (-1.83±0.28 to -1.90±0.27; p<0.05) relative to PBO (-1.06±0.26); significant reductions in DAS28-CRP were also observed for all DAZ groups at day 309. The distribution of adverse events was generally balanced among DAZ and PBO groups (74% and 63%, respectively). There were four serious adverse events deemed by investigators to be unrelated to study medication. CONCLUSIONS DAZ treatment for all dosage regimens significantly reduced DAS28-CRP at day 113 relative to PBO. The safety data suggest an acceptable safety and tolerability profile. Treatment effects at day 113 and the prolonged duration of responses after DAZ cessation support the use of longer dosing intervals. TRIAL REGISTRATION NUMBER NCT04163991.
Collapse
Affiliation(s)
- Alan Kivitz
- Department of Rheumatology, Altoona Center for Clinical Research, Altoona, Pennsylvania, USA
| | | | | | | | | | - Gabor Illei
- Horizon Therapeutics plc, Rockville, Maryland, USA
- IRD Biomedical Consulting, LLC, Rockville, Maryland, USA
| | - E William St Clair
- Division of Rheumatology and Immunology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
11
|
Badarinza M, Serban O, Maghear L, Pelea MA, Rosca RI, Fodor D, Stancu B. Diagnostic role of CXCL13 biomarker in primary Sjogren's syndrome patients with parotid non-Hodgkin's lymphoma complication. Med Clin (Barc) 2023:S0025-7753(23)00094-5. [PMID: 37005121 DOI: 10.1016/j.medcli.2023.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 04/03/2023]
Abstract
INTRODUCTION Serum biomarkers are important predictive factors for development of parotid non-Hodgkin's lymphoma (NHL) complication in primary Sjogren's syndrome (pSS) patients. The aim was to evaluate the diagnostic accuracy of serum CXCL13 chemokine in pSS patients with parotid NHL complication. MATERIAL AND METHODS Serum CXCL13 chemokine was assessed in 33 patients with pSS [7 with parotid NHL complication (pSS+NHL subgroup) and 26 without NHL (pSS-NHL subgroup)] and 30 healthy subjects. RESULTS The serum CXCL13 levels in pSS+NHL subgroup [175.2 (107.9-220.4) pg/ml] were significantly higher comparing to the healthy subjects group (p=0.018) and the pSS-NHL subgroup (p=0.048). A cut-off value of 123.45pg/ml (Se=71.4%, Sp=80.8%, AUROC=0.747) was established for parotid lymphoma diagnosis. CONCLUSION The serum CXCL13 biomarker could be considered a valuable tool for the diagnosis of parotid NHL complication in pSS patients.
Collapse
|