1
|
Qi J, Sun Y, Chen Z, Gao R, Song M, Zou T, Gong X, Wang S, Zhang Q, Liu C, Xing S. Sodium butyrate promotes synthesis of testosterone and meiosis of hyperuricemic male mice. Sci Rep 2025; 15:14757. [PMID: 40295597 PMCID: PMC12037722 DOI: 10.1038/s41598-025-95846-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/24/2025] [Indexed: 04/30/2025] Open
Abstract
Hyperuricemia (HUA) impaires spermatogenesis. This study was carried out, aiming to determine whether butyric acid (NaB) avoids the HUA-induced decline of sperm quality HUA mice were developed through intra-peritoneal injection of the potassium oxalate combined with intragastric uric acid (UA) and by tube feeding 300 mg·kg-1·d-1NaB. The effect of NaB on the reproduction of HUA male mice was determined by measuring sperm count, sperm motility and testosterone content. In addition, TM3 and GC-2 cells were treated with a solution containing 30 mg/dl UA and 1mM NaB. The effects of NaB on the sperm quality were evaluated with the expression level of the genes involving in LH/cAMP/PKA signaling pathway and meiosis, and that encoding OPRL1 receptor protein. Results showed that NaB improved sperm count, sperm motility, testosterone synthesis, and impaired spermatocyte meiosis via HUA. In addition, in vitro analysis showed that NaB activated the LH/cAMP/PKA signaling pathway of TM3 cells, promoted the synthesis of testosterone, up-regulated the content of pain-sensitive peptide receptor (OPRL1) on the surface of GC-2 cells, and promoted meiosis. NaB also promoted the utilization of ATP by GC-2 cells. We illustrated a close relationship between HUA and spermatogenesis defects. NaB-promoted the expression of the genes functioning in testis meiosis, and the testosterone content may aid to improving spermatogenesis quality.
Collapse
Affiliation(s)
- Jiaojiao Qi
- Department of Pathogeny Biology, College of Basic Medicine, Qingdao University, Qingdao, 266071, P. R. China
| | - Yu Sun
- Department of Pathogeny Biology, College of Basic Medicine, Qingdao University, Qingdao, 266071, P. R. China
| | - Zeqing Chen
- Municipal Center for Disease Control and Prevention of Qingdao, Qingdao, 266033, China
- Qingdao Municipal Hospital, Qingdao, 266000, Shandong, China
- Medical Integration and Practice Center, Shandong University, Jinan, 250012, China
| | - Ruipeng Gao
- Department of Pathogeny Biology, College of Basic Medicine, Qingdao University, Qingdao, 266071, P. R. China
| | - Miao Song
- Department of Pathogeny Biology, College of Basic Medicine, Qingdao University, Qingdao, 266071, P. R. China
| | - Tong Zou
- Department of Pathogeny Biology, College of Basic Medicine, Qingdao University, Qingdao, 266071, P. R. China
| | - Xuelin Gong
- Department of Pathogeny Biology, College of Basic Medicine, Qingdao University, Qingdao, 266071, P. R. China
| | - Shuang Wang
- Department of Pathogeny Biology, College of Basic Medicine, Qingdao University, Qingdao, 266071, P. R. China
| | - Qing Zhang
- Department of Pathogeny Biology, College of Basic Medicine, Qingdao University, Qingdao, 266071, P. R. China
| | - Chengyang Liu
- Department of Pathogeny Biology, College of Basic Medicine, Qingdao University, Qingdao, 266071, P. R. China
| | - Shichao Xing
- Department of Pathogeny Biology, College of Basic Medicine, Qingdao University, Qingdao, 266071, P. R. China.
- Women and Children'S Hospital, Qingdao University, Qingdao, 266075, P. R. China.
| |
Collapse
|
2
|
Zhou S, Wen X, Lessing DJ, Chu W. Uric Acid-Degrading Lacticaseibacillus paracasei CPU202306 Ameliorates Hyperuricemia by Regulating Uric Acid Metabolism and Intestinal Microecology in Mice. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10532-3. [PMID: 40205164 DOI: 10.1007/s12602-025-10532-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2025] [Indexed: 04/11/2025]
Abstract
Hyperuricemia, characterized by elevated levels of uric acid in the blood, poses a significant health threat due to its association with various adverse health outcomes, and lactic acid bacteria from the gut microbiota may offer solutions. Our investigation focused on Lacticaseibacillus paracasei CPU202306, isolated from fermented pickles for its potent uric acid degradation and probiotic properties. This bacterium effectively reduced blood uric acid levels by breaking down uric acid and inhibiting hepatic xanthine oxidase (XOD) and adenosine deaminase (ADA) enzymes. Additionally, it stimulated the production of short-chain fatty acid (SCFAs) in the colon, enhancing the expression of uric acid secretion transport proteins (ATP-binding cassette sub-family G member 2 and organic anion transporter 3) while suppressing absorption transport proteins (glucose transporter 9 and uric acid transporter 1). This orchestrated process promoted uric acid excretion. L. paracasei CPU202306 also improved gut microbiota health by reinforcing tight junction proteins, shifting the microbiota to a healthier composition, and reducing harmful bacteria. This transformation inhibited kidney TLR4/MyD88/NF-κB inflammatory signaling, leading to a significant decrease in pro-inflammatory cytokines and an increase in anti-inflammatory cytokines, mitigating kidney inflammation. Furthermore, the bacterium supported kidney health by influencing amino acid metabolic pathways linked to the gut-kidney axis. In summary, our study highlights the diverse mechanisms through which L. paracasei CPU202306 addresses hyperuricemia, showcasing its therapeutic potential for this condition.
Collapse
Affiliation(s)
- Shuxin Zhou
- Department of Microbiology and Synthetic Biology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Xin Wen
- Department of Microbiology and Synthetic Biology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Duncan James Lessing
- Department of Microbiology and Synthetic Biology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Weihua Chu
- Department of Microbiology and Synthetic Biology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
3
|
Zhao S, Cao H, Sun F, Xu M, Wang X, Jiang J, Luo L, Zeng L. Investigating the modulatory effects of Pu-erh tea on the gut microbiota in ameliorating hyperuricemia induced by circadian rhythm disruption. Food Funct 2025; 16:2669-2686. [PMID: 40029218 DOI: 10.1039/d4fo05659k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Circadian rhythm disruption (CRD) can induce a variety of metabolic disorders. Our previous laboratory studies have shown that Pu-erh tea could alleviate CRD-induced syndromes, including obesity, intestinal dysfunction, and tryptophan metabolism disorders. However, its potential protective mechanism against CRD-induced hyperuricaemia remains unclear. In this work, we found that polyphenols of Pu-erh tea were significantly released in the stage of intestinal digestion, which might promote their interaction with gut microbes. Through animal experiments, C57BL6/J mice were given water or different doses of Pu-erh tea for 60 days, followed by a 90-day CRD, the lifestyle of modern individuals who frequently stay up late. Our results indicated that CRD mice exhibited high serum uric acid levels and gut microbiota disorders. Pu-erh tea intake significantly reshaped the gut microbiome, especially increasing the abundance of Bifidobacterium, Akkermansia and Faecalibaculum, and increased the production of short-chain fatty acids (SCFAs), especially acetic acid, which restored the function of the intestinal barrier. This improvement further regulated oxidative stress pathways (NRF2/HO-1), reduced systemic inflammatory response (IL-6, IL-1β, and TNF-α), restored hepatic function (SOD, MOD, CAT, and GSH) and modulated the activity of enzymes related to UA metabolism in the liver (XOD and ADA). Finally, Pu-erh tea intake promoted the excretion of UA and reduced the levels of UA and xanthine in the serum. Moreover, the results of antibiotic experiments showed that the UA improvement effect of Pu-erh tea depended on the existence of the gut microbiota. Collectively, Pu-erh tea intake has the potential to prevent CRD-induced hyperuricaemia by reshaping the gut microbiota.
Collapse
Affiliation(s)
- Sibo Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Beibei, Chongqing, 400715, China.
- Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing, 400715, China
| | - Hongli Cao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Beibei, Chongqing, 400715, China.
- Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing, 400715, China
| | - Fanwei Sun
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Mianhong Xu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Beibei, Chongqing, 400715, China.
- Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing, 400715, China
| | - Xinghua Wang
- College of Tea, Yunnan Agricultural University, Puer, Yunnan, 665000, China
| | - Jielin Jiang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Beibei, Chongqing, 400715, China.
- Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing, 400715, China
- Menghai Tea Factory·TAETEA Group, Xishuangbanna Dai Autonomous Prefecture, Yunnan 666200, China
| | - Liyong Luo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Beibei, Chongqing, 400715, China.
- Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing, 400715, China
| | - Liang Zeng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Beibei, Chongqing, 400715, China.
- Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing, 400715, China
| |
Collapse
|
4
|
Martínez-Nava GA, Altamirano-Molina E, Vázquez-Mellado J, Casimiro-Soriguer CS, Dopazo J, Lozada-Pérez C, Herrera-López B, Martínez-Gómez LE, Martínez-Armenta C, Guido-Gómora DL, Valle-Gutiérrez S, Suarez-Ahedo C, Camacho-Rea MDC, Martínez-García M, Gutiérrez-Esparza G, Amezcua-Guerra LM, Zamudio-Cuevas Y, Martínez-Flores K, Fernández-Torres J, Burguete-García AI, Orbe-Orihuela YC, Lagunas-Martínez A, Méndez-Salazar EO, Francisco-Balderas A, Palacios-González B, Pineda C, López-Reyes A. Metatranscriptomic analysis reveals gut microbiome bacterial genes in pyruvate and amino acid metabolism associated with hyperuricemia and gout in humans. Sci Rep 2025; 15:9981. [PMID: 40121243 PMCID: PMC11929762 DOI: 10.1038/s41598-025-93899-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/10/2025] [Indexed: 03/25/2025] Open
Abstract
Several pathologies with metabolic origin, such as hyperuricemia and gout, have been associated with the gut microbiota taxonomic profile. However, there is no evidence of which bacterial genes are being expressed in the gut microbiome, and of their potential effects on hyperuricemia and gout. We sequenced the RNA of 26 fecal samples from 10 healthy normouricemic controls, 10 with asymptomatic hyperuricemia (AH), and six gout patients. The coding sequences were mapped to KEGG orthologues (KO). We compared the expression levels using generalized linear models and validated the expression of four KO in a larger sample by qRT-PCR. A distinct genetic expression pattern was identified among groups. AH individuals and gout patients showed an over-expression of KOs mainly related to pyruvate metabolism (Log2foldchange > 23, p-adj ≤ 3.56 × 10- 9), the pentose pathway (Log2foldchange > 24, p-adj < 1.10 × 10-12) and purine metabolism (Log2foldchange > 22, p-adj < 1.25 × 10- 7). AH subjects had lower expression of KO related to glycine metabolism (Log2foldchange=-18, p-adj < 1.72 × 10-6) than controls. Gout patients had lower expression (Log2foldchange=-22.42, p-adj < 3.31 × 10- 16) of a KO involved in phenylalanine biosynthesis, in comparison to controls and AH subjects. The over-expression seen for the KO related to pyruvate metabolism and the pentose pathway in gout patients´ microbiome was validated. There is a differential gene expression pattern in the gut microbiome of normouricemic individuals, AH subjects and gout patients. These differences are mainly located in metabolic pathways involved in acetate precursors and bioavailability of amino acids.
Collapse
Affiliation(s)
- Gabriela Angélica Martínez-Nava
- Laboratorio de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calz México-Xochimilco 289, Coapa, Col. Arenal de Guadalupe, Tlalpan, 14389, CDMX, Mexico
| | - Efren Altamirano-Molina
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Alcaldía Miguel Hidalgo, C.P. 11340, Ciudad de México, Mexico
- Servicio de Reumatología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calz México-Xochimilco 289, Coapa, Col. Arenal de Guadalupe, Tlalpan, C.P. 4389, CDMX, Mexico
| | - Janitzia Vázquez-Mellado
- Servicio de Reumatología, Hospital General de México Eduardo Liceaga, Dr. Balmis 148, Doctores, Cuauhtémoc, C.P. 06720, CDMX, Mexico
| | - Carlos S Casimiro-Soriguer
- Plataforma de Medicina Computacional, Fundación Progreso y Salud (FPS), CDCA, Hospital Vírgen del Rocio, 41013, Sevilla, España
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Sevilla, 41013, Sevilla, España
| | - Joaquín Dopazo
- Plataforma de Medicina Computacional, Fundación Progreso y Salud (FPS), CDCA, Hospital Vírgen del Rocio, 41013, Sevilla, España
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Sevilla, 41013, Sevilla, España
| | - Carlos Lozada-Pérez
- Servicio de Reumatología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calz México-Xochimilco 289, Coapa, Col. Arenal de Guadalupe, Tlalpan, C.P. 4389, CDMX, Mexico
| | - Brígida Herrera-López
- Laboratorio de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calz México-Xochimilco 289, Coapa, Col. Arenal de Guadalupe, Tlalpan, 14389, CDMX, Mexico
| | - Laura Edith Martínez-Gómez
- Laboratorio de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calz México-Xochimilco 289, Coapa, Col. Arenal de Guadalupe, Tlalpan, 14389, CDMX, Mexico
| | - Carlos Martínez-Armenta
- Laboratorio de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calz México-Xochimilco 289, Coapa, Col. Arenal de Guadalupe, Tlalpan, 14389, CDMX, Mexico
| | - Dafne Lissete Guido-Gómora
- Servicio de reconstrucción articular de cadera y rodilla, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calz México-Xochimilco 289, Coapa, Col. Arenal de Guadalupe, CDMX, C.P. 14389, Mexico
| | - Sarahí Valle-Gutiérrez
- Universidad Autónoma Metropolitana Iztapalapa, Av. Ferrocarril San Rafael Atlixco, Núm. 186, Col. Leyes de Reforma 1 A Sección, Alcaldía Iztapalapa, Tlalpan, C.P. 09310, CDMX, Mexico
| | - Carlos Suarez-Ahedo
- Servicio de reconstrucción articular de cadera y rodilla, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calz México-Xochimilco 289, Coapa, Col. Arenal de Guadalupe, CDMX, C.P. 14389, Mexico
- Departamento de ortopedia, oficina de cirugía, Hospital Médica Sur, Puente de Piedra No. 150, Col. Toriello Guerra, C.P.14050, CDMX, Mexico
| | - María Del Carmen Camacho-Rea
- Departamento de Nutrición Animal, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CDMX, Mexico
| | - Mireya Martínez-García
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Belisario Domínguez Secc 16, Tlalpan, 14080, CDMX, Mexico
| | - Guadalupe Gutiérrez-Esparza
- Programa Investigador para México de la SECIHTI, Secretaría de Ciencias, Humanidades, Tecnología e Innovación, Ciudad de México, Avenida Insurgentes Sur 1582, Crédito Constructor, CDMX, Mexico
- Servicios de Diagnóstico y Tratamiento, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Belisario Domínguez Secc 16, Tlalpan, 14080, CDMX, Mexico
| | - Luis M Amezcua-Guerra
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Belisario Domínguez Secc 16, Tlalpan, 14080, CDMX, Mexico
| | - Yessica Zamudio-Cuevas
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calz México-Xochimilco 289, Coapa, Col. Arenal de Guadalupe, Tlalpan, 14389, CDMX, Mexico
| | - Karina Martínez-Flores
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calz México-Xochimilco 289, Coapa, Col. Arenal de Guadalupe, Tlalpan, 14389, CDMX, Mexico
| | - Javier Fernández-Torres
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calz México-Xochimilco 289, Coapa, Col. Arenal de Guadalupe, Tlalpan, 14389, CDMX, Mexico
| | - Ana I Burguete-García
- GID Microbiota y Epidemiologia Genética, Instituto Nacional de Salud Pública, Universidad No. 655 Colonia Santa María Ahuacatitlán, Cuernavaca, Morelos, Mexico
| | - Yaneth Citlalli Orbe-Orihuela
- GID Microbiota y Epidemiologia Genética, Instituto Nacional de Salud Pública, Universidad No. 655 Colonia Santa María Ahuacatitlán, Cuernavaca, Morelos, Mexico
| | - Alfredo Lagunas-Martínez
- GID Microbiota y Epidemiologia Genética, Instituto Nacional de Salud Pública, Universidad No. 655 Colonia Santa María Ahuacatitlán, Cuernavaca, Morelos, Mexico
| | | | - Adriana Francisco-Balderas
- Hospital General de Zona No. 71 "Benito Coquet Lagunes", Instituto Mexicano de la Seguridad Social, Av. Salvador Díaz Mirón s/n, Pastora, Floresta, C.P. 91930, Veracruz, Mexico
| | - Berenice Palacios-González
- Laboratorio de Envejecimiento Saludable del INMEGEN en el Centro de Investigación sobre el Envejecimiento, Calz. de los Tenorios 235. Col. Rinconada de las Hadas, Tlalpan, 14330, CDMX, Mexico
- Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Periférico Sur 4809, Tlalpan, México, 14610, Mexico, Mexico
| | - Carlos Pineda
- Dirección General, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calz México-Xochimilco 289, Coapa, Col. Arenal de Guadalupe, Tlalpan, 14389, CDMX, Mexico
| | - Alberto López-Reyes
- Laboratorio de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calz México-Xochimilco 289, Coapa, Col. Arenal de Guadalupe, Tlalpan, 14389, CDMX, Mexico.
- Laboratorio de Gerociencias, Luis Guillermo Ibarra Ibarra National Rehabilitation Institute, Calz México- Xochimilco 289, Coapa, Col. Arenal de Guadalupe, Tlalpan, 14389, Ciudad de México, CDMX, Mexico.
| |
Collapse
|
5
|
Liu W, Zhang M, Tan J, Liu H, Wang L, Liao J, Huang D, Jie W, Jin X. Integrated Data Mining and Animal Experiments to Investigate the Efficacy and Potential Pharmacological Mechanism of a Traditional Tibetan Functional Food Terminalia chebula Retz. in Hyperuricemia. J Inflamm Res 2024; 17:11111-11128. [PMID: 39713714 PMCID: PMC11662633 DOI: 10.2147/jir.s484987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/05/2024] [Indexed: 12/24/2024] Open
Abstract
Background Hyperuricemia (HUA), a common metabolic disorder associated with gout, renal dysfunction, and systemic inflammation, necessitates safer and more comprehensive therapeutic approaches. Traditional Tibetan medicine has a rich history of treating HUA. This study aimed to identify novel anti-hyperuricemic herb derived from traditional Tibetan medicine. Methods Traditional Tibetan medicine prescriptions for HUA were analyzed using data mining techniques, identifying T. chebula as a high-frequency herb. Its phytochemical composition was characterized by UPLC-QE-Orbitrap-MS. Hyperuricemic rat models were treated with T. chebula to assess its effects on serum uric acid (UA) levels, renal inflammation, intestinal barrier integrity, and gut microbiota composition. Molecular and histological analyses evaluated its impact on key biomarkers. Results Through data mining, we identified T. chebula as a promising candidate for HUA treatment. T. chebula demonstrated dose-dependent inhibition of xanthine oxidase (XOD) in vitro and significantly reduced serum UA levels and XOD activity in vivo. It restored gut barrier function by upregulating tight junction proteins (ZO-1, Occludin, Claudin-1) and reduced pro-inflammatory cytokines (IL-6, TNF-α). T. chebula improved renal function, reducing serum creatinine (Cre) and blood urea nitrogen (BUN) levels. Gut microbiota analysis revealed a favorable shift in microbial composition, with reductions in harmful bacteria (eg, Clostridium spp.) and increases in beneficial bacteria (eg, Roseburia). These effects aligned with the modulation of the gut-kidney axis. Conclusion This study highlights the multi-target therapeutic potential of T. chebula in HUA management. By regulating the gut-kidney axis, T. chebula alleviates systemic inflammation, enhances intestinal and renal health, and addresses critical aspects of HUA pathology. These findings underscore the value of integrating traditional medicine with modern scientific methodologies to develop innovative treatments.
Collapse
Affiliation(s)
- Wenbin Liu
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Mingchao Zhang
- People’s Hospital of Foshan Nanhai Economy Development Zone, Foshan, People’s Republic of China
| | - Jingli Tan
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Hao Liu
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Lijun Wang
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Jingyang Liao
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Dan Huang
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Wang Jie
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Xiaobao Jin
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| |
Collapse
|
6
|
Zhang X, Liu J. Regulating Lipid Metabolism in Gout: A New Perspective with Therapeutic Potential. Int J Gen Med 2024; 17:5203-5217. [PMID: 39554874 PMCID: PMC11568860 DOI: 10.2147/ijgm.s499413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024] Open
Abstract
Gout is a metabolic disease characterized by inflammatory arthritis caused by abnormal uric acid metabolism. It is often complicated with cardio-renal damage and vascular lesions. In recent years, the relationship between lipid metabolism and gout has attracted increasing attention. Changes in blood lipids in gout patients are often clinically detectable and closely related to uric acid metabolism and inflammatory response in gout. With the development of lipidomics, the changes in small lipid molecules and their metabolic pathways have been gradually discovered, yielding a greater understanding of the lipid metabolism changes in gout patients and their potential role in gout development. Through searching the literature on lipid metabolism in gout since 2000 in PubMed and Web of Science, this article reviewed lipid metabolism changes in gout patients and their role in the risk of gout, uric acid metabolism, inflammatory response, and comorbidities. Additionally, the strategies to regulate the abnormal lipid metabolism in gout have also been summarized from the aspects of drugs, diet, and exercise. These will provide a new perspective for understanding gout pathogenesis and its treatment and management.
Collapse
Affiliation(s)
- Xianheng Zhang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, 230031, People’s Republic of China
- Anhui University of Chinese Medicine, Hefei, Anhui Province, 230012, People’s Republic of China
| | - Jian Liu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, 230031, People’s Republic of China
- Institute of Rheumatology, Anhui Academy of Traditional Chinese Medicine, Hefei, Anhui Province, 230009, People’s Republic of China
| |
Collapse
|
7
|
Demarquoy J, Dehmej O. Reassessing Gout Management through the Lens of Gut Microbiota. Appl Microbiol 2024; 4:824-838. [DOI: 10.3390/applmicrobiol4020057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Gout, recognized as the most common form of inflammatory arthritis, arises from the accumulation of uric acid crystals, leading to intense pain, particularly in the big toe. This condition has traditionally been associated with the overproduction or reduced clearance of uric acid. Recent studies, however, have underscored the significant role of the gut microbiota in uric acid metabolism, impacting both its production and elimination. This emerging understanding suggests that maintaining gut health could offer innovative approaches to treating gout, complementing traditional dietary and pharmacological interventions. It highlights the potential of probiotics or microbiome-based therapies, indicating a future where treatments are tailored to an individual’s microbiome. This offers a fresh perspective on gout management and underscores the broader influence of the microbiota on health and disease.
Collapse
Affiliation(s)
- Jean Demarquoy
- Unité Mixte de Recherche Procédés Alimentaires et Microbiologiques (UMR PAM), Université de Bourgogne Franche-Comté, Institut Agro, Université de Bourgogne, INRAE, 21000 Dijon, France
| | - Oumaima Dehmej
- Unité Mixte de Recherche Procédés Alimentaires et Microbiologiques (UMR PAM), Université de Bourgogne Franche-Comté, Institut Agro, Université de Bourgogne, INRAE, 21000 Dijon, France
| |
Collapse
|
8
|
Lou Y, Liu B, Jiang Z, Wen X, Song S, Xie Z, Mao Y, Shao T. Assessing the causal relationships of gut microbial genera with hyperuricemia and gout using two-sample Mendelian randomization. Nutr Metab Cardiovasc Dis 2024; 34:1028-1035. [PMID: 38403483 DOI: 10.1016/j.numecd.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/08/2023] [Accepted: 01/17/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND AND AIMS The causal relationship between gut microbiota and gout and hyperuricemia (HUA) has not been clarified. The objective of this research was to evaluate the potential causal effects of gut microbiota on HUA and gout using a two-sample Mendelian randomization (MR) approach. METHODS AND RESULTS Genetic instruments were selected using summary statistics from genome-wide association studies (GWASs) comprising a substantial number of individuals, including 18,473 participants for gut microbiome, 288,649 for serum urate (SU), and 763,813 for gout. Two-sample MR analyses were performed to determine the possible causal associations of gut microbial genera with the risk of HUA and gout using the inverse-variance weighted (IVW) method, and robustness of the results was confirmed by several sensitivity analyses. A reverse MR analysis was conducted on the bacterial taxa that were identified in forward MR analysis. Based on the results of MR analyses, Escherichia-Shigella (OR = 1.05; 95% CI, 1.01-1.08; P = 0.009) exhibited a positive association with SU levels, while Lachnospiraceae NC2004 group (OR = 0.95; 95% CI, 0.92-0.98; P = 0.001) and Family XIII AD3011 group (OR = 0.94; 95% CI, 0.90-0.99; P = 0.015) were associated with a reduced HUA risk. Moreover, Coprococcus 3 (OR = 1.17, 95% CI: 1.01-1.34, P = 0.031) was causally associated with a higher gout risk. In reverse MR analysis, no causal relationships were identified between these bacterial genera and HUA or gout. CONCLUSION This study provides evidence for a causal association between gut microbial genera and HUA or gout, and further investigations of the underlying mechanism are warranted.
Collapse
Affiliation(s)
- Yu Lou
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bin Liu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhounan Jiang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianghui Wen
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Siyue Song
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhijun Xie
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yingying Mao
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Tiejuan Shao
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
9
|
Nagarajan G, Govindan R, Poomarimuthu M, Andiappan R, Elango S, Maruthamuthu S, Mariakuttikan J, Kadiam S. The microbiome and rheumatic heart disease: current knowledge and future perspectives. Acta Cardiol 2023:1-9. [PMID: 37171266 DOI: 10.1080/00015385.2023.2207933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Rheumatic heart disease (RHD) is a cardiovascular disease caused by an autoimmune response to group A Streptococcus (GAS) infection resulting in the damage of heart valves. RHD is the most commonly acquired heart disease among children and young adults with a global burden of over 40 million cases accounting for 306,000 deaths annually. Inflammation in the heart valves caused due to molecular mimicry between the GAS antigens and host cardiac proteins is facilitated by cytokines, cross-reactive antibodies and CD4+ T cells. The complex interaction between genetic and environmental factors linked with erratic events leads to the loss of immunological tolerance and autoimmunity in RHD. Despite extensive research on the etiopathogenesis of RHD, the precise mechanism underpinning the initiation of acute rheumatic fever (ARF) to the progression of RHD still remains elusive. Mounting evidences support the contribution of the human microbiome in the development of several immune-mediated diseases including rheumatoid arthritis, juvenile idiopathic arthritis, Kawasaki disease, inflammatory bowel disease and type 1 diabetes. The microbiome and their metabolites could play a crucial role in the integrity of the epithelial barrier, development of the immune system, inflammation and differentiation of T cell subsets. Consequently, microbiome dysbiosis might result in autoimmunity by molecular mimicry, epitope spreading and bystander activation. This review discusses various aspects of the interaction between the microbiome and the immune system in order to reveal causative links relating dysbiosis and autoimmune diseases with special emphasis on RHD.
Collapse
Affiliation(s)
- Gunavathy Nagarajan
- Department of Immunology, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Ramajayam Govindan
- Multidisciplinary Research Unit, Madurai Medical College, Madurai, India
| | | | - Rathinavel Andiappan
- Department of Cardio Vascular Thoracic Surgery, Madurai Medical College & Government Rajaji Hospital, Madurai, India
| | - Sivakumar Elango
- Institute of Child Health and Research Centre, Madurai Medical College & Government Rajaji Hospital, Madurai, India
| | - Stalinraja Maruthamuthu
- Department of Surgery, Immunogenetics and Transplantation Laboratory, University of California, San Francisco, CA, USA
| | | | - Sony Kadiam
- Department of Immunology, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| |
Collapse
|