1
|
Gao X, Qian B, Yuan T, Pan D, Liang Z, Yin Y, Liu S, Li X, Zhao D, Zhang H. Ginseng extract and total ginsenosides protect the function of hematopoietic stem cells by activating the Notch and Wnt signal pathways. JOURNAL OF ETHNOPHARMACOLOGY 2025; 347:119798. [PMID: 40216043 DOI: 10.1016/j.jep.2025.119798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/31/2025] [Accepted: 04/09/2025] [Indexed: 04/17/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax ginseng C.A. Meyer (ginseng), a traditional Chinese medicine, is famous for "Qi-tonifying" effect and widely used for healthcare and therapeutic effects in China. Modern pharmacology showed that Ginseng had a potential impact on hematopoietic stem cells (HSCs) that promote the regeneration of all blood cells in the bone marrow. The "Qi-tonifying" effect of ginseng might have close correlation with hematopoietic function. However, the protective effect of ginseng on HSCs has been rarely studied. AIM OF THE STUDY To elucidate the difference of chemical composition and the effects of ginseng extract (GE), total ginsenosides (TG) and total polysaccharides (TP) on HSCs of cyclophosphamide (CYP)-induced mice. MATERIALS AND METHODS The ginsenosides, monosaccharide and molecular distribution of GE, TG, and TP were detected. We established the mouse myelosuppression model induced by CYP. Eight ginsenosides in mice plasma were detected with high-performance liquid chromatography-mass spectrometer (MS)/MS in GE and TG group. Blood cell parameters (red blood cell, hemoglobin, reticulocyte, platelet, white blood cell, neutrophil, and lymphocyte) of plasma, oxidative stress indicators (superoxide dismutase, catalase, glutathione peroxidase, lactate dehydrogenase, malondialdehyde, and myeloperoxidase) of liver, cell differentiation marker (CD33, and GR-1) and colony forming of HSCs were detected. Ribonucleic acid (RNA)-sequencing analysis was performed on purified HSCs to find differentially expressed genes (DEGs). And the expression of DEGs was verified by quantitative polymerase chain reaction (qPCR), western blot, and immunohistochemical (IHC). RESULTS Our results showed that 24 and 34 ginsenosides were detected in the GE and TG, and the total sugar content was 72.28 %, 4.68 %, and 89.79 % in GE, TG and TP, respectively. The weight-average molar mass/number-average molar mass (Mw/Mn) values of GE and TP were 2.96 and 1.23. TP showed homogeneous polysaccharide. The results of animal experiments showed that Rb1, Rc, Rb2, Rb3, and Rd of mouse serum in TG group was 22.91, 11.64, 10.73, 9.36, and 8.61 times in GE group, respectively. GE, TG and TP obviously elevated the numbers of blood cells, and improved oxidative stress indicator of liver. The results of RNA-sequencing analysis showed that DEGs in GE, TG and TP groups were primarily focused on signaling pathways related to HSCs. GE and TG obviously promoted the expression of Notch1, Notch2 and Jag1, and inhibited the expression of Hes1 of HSCs in model mice via activating Notch signal pathway. Meanwhile, GE and TG also obviously promoted the expression of Wnt7b, Wnt10b, and Fzd6 of HSCs by activating Wnt signal pathway. However, TP hardly activated the expression of these genes in Notch and Wnt signal pathways. Moreover, TG significantly increased the expression of CD33, CD38, CD14, CD4, CD19 and Gp1bα, and GE remarkably increased the expressions of CD34, CD14, CD4, and Gp1bα. GE and TG significantly increased the Gr-1hi and decreased the Gr-1neg. However, TP played less role in HSCs. CONCLUSIONS This study found that TG and GE showed a strong protection on HSCs in model mice induced by CYP via activating the Notch and Wnt signal pathways, however, TP could not activate HSCs. Therefore, we think that ginsenosides from GE and TG are important chemical components in protecting the function of HSCs by activating the Notch and Wnt signal pathways.
Collapse
Affiliation(s)
- Xiang Gao
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China; College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Benxin Qian
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China; Thoracic Surgery Department, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Tongyi Yuan
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China; College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Daian Pan
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China; Thoracic Surgery Department, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Zuguo Liang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China; College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Yifei Yin
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China; College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Songyan Liu
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China; College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - He Zhang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China; College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
2
|
Yanzhang R, Yan M, Yang Z, Zhang H, Yu Y, Li X, Shen R, Chu X, Han S, Zhang Z, Teng J, Li H, Li T, Jin G, Guo Z. Ginger extract inhibits c-MET activation and suppresses osteosarcoma in vitro and in vivo. Cancer Cell Int 2025; 25:130. [PMID: 40186167 PMCID: PMC11971884 DOI: 10.1186/s12935-025-03759-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 03/19/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Osteosarcoma (OS) as an invasive and lethal malignancy showing a low 5-year survival rate requires novel therapeutic targets and their suppressors to improve prevention and treatment strategies. METHODS Our research served to clarify the therapeutic potential of ginger extract and its underlying antineoplastic mechanisms in OS. In vitro studies were used to detect the anti-proliferation ability of ginger extract towards OS cells. Patient-derived xenograft (PDX) was performed to confirm whether ginger extract suppressed tumor growth. Cancer Heat Shock Protein (HSP) database was utilized to identify the potential target of ginger extract, which was subsequently validated through a computational docking model screening method, molecular dynamics simulations and pull-down assay. Analysis of the Gene Expression Omnibus (GEO) database revealed the c-MET expression among OS samples as well as the potential mechanism. Immunohistochemistry (IHC) staining corroborated the c-MET expression level among OS tissues relative to the controls. Functional studies involving c-MET knockdown among OS cell lines were produced to elucidate the functional role of c-MET in OS cellular processes. RESULTS In vitro studies demonstrated that ginger extract administration impeded OS cell progress while inducing apoptosis and inhibiting migration. Moreover, in vivo tests unveiled that ginger extract prominently inhibited patient-derived xenograft (PDX) tumor development. Cancer HSP database analysis recognized c-MET as an underlying target of ginger extract, which was subsequently validated through a computational docking model screening, molecular dynamics simulations and pull-down assay. Analysis of the Gene Expression Omnibus (GEO) database combined with immunohistochemistry (IHC) staining corroborated the c-MET overexpression among OS tissues in contrast with the controls. Next, our study confirmed the significant suppression of cell progress and anchorage-independent growth, while concomitantly inducing apoptosis after c-MET knockdown, underscoring its prospect for a therapeutic target. CONCLUSION Collectively, our findings show that c-MET is a prospective therapeutic target for OS. Ginger extract, a natural c-MET inhibitor, exhibits potent antineoplastic effects by suppressing OS growth both in vitro and in vivo, highlighting its prospect for a new therapeutic agent of this aggressive malignancy.
Collapse
Affiliation(s)
- Ruoping Yanzhang
- Henan Key Laboratory of Chronic Disease, Fuwai Central China Cardiovascular Hospital, Zhengzhou, 450000, China
- Laboratory of Bone Tumor, Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Zhengzhou, 450000, China
| | - Mingyang Yan
- China-US (Henan) Hormel Cancer Institute, No.126, Dongming street, Jinshui District, Zhengzhou, Henan, 450008, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhaojie Yang
- Henan Key Laboratory of Chronic Disease, Fuwai Central China Cardiovascular Hospital, Zhengzhou, 450000, China
- Laboratory of Bone Tumor, Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Zhengzhou, 450000, China
| | - Huijun Zhang
- Henan Key Laboratory of Chronic Disease, Fuwai Central China Cardiovascular Hospital, Zhengzhou, 450000, China
- Laboratory of Bone Tumor, Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Zhengzhou, 450000, China
| | - Yin Yu
- Henan Key Laboratory of Chronic Disease, Fuwai Central China Cardiovascular Hospital, Zhengzhou, 450000, China
- Laboratory of Bone Tumor, Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Zhengzhou, 450000, China
| | - Xiangping Li
- Laboratory of Bone Tumor, Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Zhengzhou, 450000, China
| | - Ruifang Shen
- Laboratory of Bone Tumor, Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Zhengzhou, 450000, China
| | - Xiao Chu
- Henan Key Laboratory of Chronic Disease, Fuwai Central China Cardiovascular Hospital, Zhengzhou, 450000, China
| | - Siyuan Han
- Henan Key Laboratory of Chronic Disease, Fuwai Central China Cardiovascular Hospital, Zhengzhou, 450000, China
| | - Ziliang Zhang
- Henan Key Laboratory of Chronic Disease, Fuwai Central China Cardiovascular Hospital, Zhengzhou, 450000, China
| | - Junyan Teng
- Laboratory of Bone Tumor, Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Zhengzhou, 450000, China
| | - Hao Li
- Henan Key Laboratory of Chronic Disease, Fuwai Central China Cardiovascular Hospital, Zhengzhou, 450000, China
| | - Tao Li
- Healthy Management Center, Fuwai Central China Cardiovascular Hospital, No.1 Fuwai Road, Zhengzhou, Henan, 451464, China
| | - Guoguo Jin
- Henan Key Laboratory of Chronic Disease, Fuwai Central China Cardiovascular Hospital, Zhengzhou, 450000, China.
- China-US (Henan) Hormel Cancer Institute, No.126, Dongming street, Jinshui District, Zhengzhou, Henan, 450008, China.
| | - Zhiping Guo
- Henan Key Laboratory of Chronic Disease, Fuwai Central China Cardiovascular Hospital, Zhengzhou, 450000, China.
| |
Collapse
|
3
|
Finnegan D, Connolly C, Mechoud MA, FitzGerald JA, Beresford T, Mathur H, Brennan L, Cotter PD, Loscher CE. Novel Dairy Fermentates Have Differential Effects on Key Immune Responses Associated with Viral Immunity and Inflammation in Dendritic Cells. Foods 2024; 13:2392. [PMID: 39123583 PMCID: PMC11311654 DOI: 10.3390/foods13152392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Fermented foods and ingredients, including furmenties derived from lactic acid bacteria (LAB) in dairy products, can modulate the immune system. Here, we describe the use of reconstituted skimmed milk powder to generate novel fermentates from Lactobacillus helveticus strains SC232, SC234, SC212, and SC210, and from Lacticaseibacillus casei strains SC209 and SC229, and demonstrate, using in vitro assays, that these fermentates can differentially modulate cytokine secretion via bone-marrow-derived dendritic cells (BMDCs) when activated with either the viral ligand loxoribine or an inflammatory stimulus, lipopolysaccharide. Specifically, we demonstrate that SC232 and SC234 increase cytokines IL-6, TNF-α, IL-12p40, IL-23, IL-27, and IL-10 and decrease IL-1β in primary bone-marrow-derived dendritic cells (BMDCs) stimulated with a viral ligand. In contrast, exposure of these cells to SC212 and SC210 resulted in increased IL-10, IL-1β, IL-23, and decreased IL-12p40 following activation of the cells with the inflammatory stimulus LPS. Interestingly, SC209 and SC229 had little or no effect on cytokine secretion by BMDCs. Overall, our data demonstrate that these novel fermentates have specific effects and can differentially enhance key immune mechanisms that are critical to viral immune responses, or can suppress responses involved in chronic inflammatory conditions, such as ulcerative colitis (UC), and Crohn's disease (CD).
Collapse
Affiliation(s)
- Dearbhla Finnegan
- School of Biotechnology, Dublin City University, D09 DX63 Dublin, Ireland;
- Food for Health Ireland, Science Centre South (S2.79), University College Dublin, Dublin 4, Ireland; (C.C.); (M.A.M.); (J.A.F.); (T.B.); (H.M.); (L.B.); (P.D.C.)
| | - Claire Connolly
- Food for Health Ireland, Science Centre South (S2.79), University College Dublin, Dublin 4, Ireland; (C.C.); (M.A.M.); (J.A.F.); (T.B.); (H.M.); (L.B.); (P.D.C.)
- UCD School of Agriculture and Food Science, University College Dublin, D04V1W8 Dublin, Ireland
| | - Monica A. Mechoud
- Food for Health Ireland, Science Centre South (S2.79), University College Dublin, Dublin 4, Ireland; (C.C.); (M.A.M.); (J.A.F.); (T.B.); (H.M.); (L.B.); (P.D.C.)
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland
| | - Jamie A. FitzGerald
- Food for Health Ireland, Science Centre South (S2.79), University College Dublin, Dublin 4, Ireland; (C.C.); (M.A.M.); (J.A.F.); (T.B.); (H.M.); (L.B.); (P.D.C.)
- UCD School of Agriculture and Food Science, University College Dublin, D04V1W8 Dublin, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland
| | - Tom Beresford
- Food for Health Ireland, Science Centre South (S2.79), University College Dublin, Dublin 4, Ireland; (C.C.); (M.A.M.); (J.A.F.); (T.B.); (H.M.); (L.B.); (P.D.C.)
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland
| | - Harsh Mathur
- Food for Health Ireland, Science Centre South (S2.79), University College Dublin, Dublin 4, Ireland; (C.C.); (M.A.M.); (J.A.F.); (T.B.); (H.M.); (L.B.); (P.D.C.)
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland
| | - Lorraine Brennan
- Food for Health Ireland, Science Centre South (S2.79), University College Dublin, Dublin 4, Ireland; (C.C.); (M.A.M.); (J.A.F.); (T.B.); (H.M.); (L.B.); (P.D.C.)
- UCD School of Agriculture and Food Science, University College Dublin, D04V1W8 Dublin, Ireland
| | - Paul D. Cotter
- Food for Health Ireland, Science Centre South (S2.79), University College Dublin, Dublin 4, Ireland; (C.C.); (M.A.M.); (J.A.F.); (T.B.); (H.M.); (L.B.); (P.D.C.)
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, University College Cork, T12 R229 Cork, Ireland
- VistaMilk, P61 C996 Co. Cork, Ireland
| | - Christine E. Loscher
- School of Biotechnology, Dublin City University, D09 DX63 Dublin, Ireland;
- Food for Health Ireland, Science Centre South (S2.79), University College Dublin, Dublin 4, Ireland; (C.C.); (M.A.M.); (J.A.F.); (T.B.); (H.M.); (L.B.); (P.D.C.)
| |
Collapse
|
4
|
Valdés-González JA, Sánchez M, Moratilla-Rivera I, Iglesias I, Gómez-Serranillos MP. Immunomodulatory, Anti-Inflammatory, and Anti-Cancer Properties of Ginseng: A Pharmacological Update. Molecules 2023; 28:molecules28093863. [PMID: 37175273 PMCID: PMC10180039 DOI: 10.3390/molecules28093863] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
Ginseng, a medicinal plant of the genus Panax, boasts a rich historical record of usage that dates back to the Paleolithic period. This botanical is extensively acknowledged and consumed in Eastern countries for its therapeutic properties, and, in Western countries, it is becoming increasingly popular as a remedy for fatigue and asthenia. This review provides an update on current research pertaining to ginseng and its isolated compounds, namely, ginsenosides and polysaccharides. The primary focus is on three crucial pharmacological activities, namely, immunomodulation, anti-inflammatory, and anti-cancer effects. The review encompasses studies on both isolated compounds and various ginseng extracts obtained from the root, leaves, and berries.
Collapse
Affiliation(s)
- Jose Antonio Valdés-González
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain
| | - Marta Sánchez
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain
| | - Ignacio Moratilla-Rivera
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain
| | - Irene Iglesias
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain
| | - María Pilar Gómez-Serranillos
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain
| |
Collapse
|
5
|
Kim JH, Kim DH, Jo S, Cho MJ, Cho YR, Lee YJ, Byun S. Immunomodulatory functional foods and their molecular mechanisms. Exp Mol Med 2022; 54:1-11. [PMID: 35079119 PMCID: PMC8787967 DOI: 10.1038/s12276-022-00724-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/04/2021] [Accepted: 09/29/2021] [Indexed: 12/24/2022] Open
Abstract
The immune system comprises a complex group of processes that provide defense against diverse pathogens. These defenses can be divided into innate and adaptive immunity, in which specific immune components converge to limit infections. In addition to genetic factors, aging, lifestyle, and environmental factors can influence immune function, potentially affecting the susceptibility of the host to disease-causing agents. Chemical compounds in certain foods have been shown to regulate signal transduction and cell phenotypes, ultimately impacting pathophysiology. Research has shown that the consumption of specific functional foods can stimulate the activity of immune cells, providing protection against cancer, viruses, and bacteria. Here, we review a number of functional foods reported to strengthen immunity, including ginseng, mushrooms, chlorella, and probiotics (Lactobacillus plantarum). We also discuss the molecular mechanisms involved in regulating the activity of various types of immune cells. Identifying immune-enhancing functional foods and understanding their mechanisms of action will support new approaches to maintain proper health and combat immunological diseases. Evidence is building to support the idea that specific ‘functional foods’ can stimulate the activity of cells and signaling systems of the immune system to provide protection against cancer, viruses and bacteria. Sanguine Byun and colleagues at Yonsei University in Seoul, South Korea, review research into a range of functional foods, foods thought to have health benefits beyond their nutritional value. These include ginseng, mushrooms, the green algae called Chlorella and the probiotic bacteria Lactobacillus plantarum. They also consider individual components of foods such as poly-gamma-glutamate, a natural polymer made by bacteria. A wide body of research is revealing diverse molecular mechanisms through which biochemicals in functional foods can modulate different aspects of the immune system. These include effects on both non-specific innate immunity and adaptive immunity, which targets specific invading pathogens and diseased cells.
Collapse
|
6
|
Wan Y, Wang J, Xu JF, Tang F, Chen L, Tan YZ, Rao CL, Ao H, Peng C. Panax ginseng and its ginsenosides: potential candidates for the prevention and treatment of chemotherapy-induced side effects. J Ginseng Res 2021; 45:617-630. [PMID: 34764717 PMCID: PMC8569258 DOI: 10.1016/j.jgr.2021.03.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Chemotherapy-induced side effects affect the quality of life and efficacy of treatment of cancer patients. Current approaches for treating the side effects of chemotherapy are poorly effective and may cause numerous harmful side effects. Therefore, developing new and effective drugs derived from natural non-toxic compounds for the treatment of chemotherapy-induced side effects is necessary. Experiments in vivo and in vitro indicate that Panax ginseng (PG) and its ginsenosides are undoubtedly non-toxic and effective options for the treatment of chemotherapy-induced side effects, such as nephrotoxicity, hepatotoxicity, cardiotoxicity, immunotoxicity, and hematopoietic inhibition. The mechanism focus on anti-oxidation, anti-inflammation, and anti-apoptosis, as well as the modulation of signaling pathways, such as nuclear factor erythroid-2 related factor 2 (Nrf2)/heme oxygenase-1 (HO-1), P62/keap1/Nrf2, c-jun N-terminal kinase (JNK)/P53/caspase 3, mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinases (ERK), AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR), mitogen-activated protein kinase kinase 4 (MKK4)/JNK, and phosphatidylinositol 3-kinase (PI3K)/AKT. Since a systemic review of the effect and mechanism of PG and its ginsenosides on chemotherapy-induced side effects has not yet been published, we provide a comprehensive summarization with this aim and shed light on the future research of PG.
Collapse
Key Words
- 5-FU, 5-fluorouracil
- ADM, Adriamycin
- ALT, alanine aminotransferase
- AMO, Atractylodes macrocephala volatile oil
- AMPK, AMP-activated protein kinase
- ARE, antioxidant response element
- AST, aspartate aminotransferase
- BMNC, bone marrow nucleated cells
- CIA, chemotherapy-induced hair loss
- CK, compound K
- CP, cisplatin
- CY, cyclophosphamide
- CYP2E1, Cytochrome P450 E1
- Chemotherapy
- DAC, doses of docetaxel, doxorubicin as well as cyclophosphamide
- ERG, enzyme-treated eRG
- ERK, extracellular signal-regulated kinases
- FBG, fermented black ginseng
- FRG, probiotic-fermented eRG
- FRGE, fermented red ginseng extract
- GM-CSF, granulocyte macrophage colony-stimulating factor
- Ginsenosides
- HEI-OC1, House Ear Institute-Organ of Corti 1
- HO-1, heme oxygenase-1
- HSPCS, haematopoietic stem and progenitor cells
- IL, interleukin
- JNK, c-jun N-terminal kinase
- KG-KH, the mixture of ginsenosides Rk3 and Rh4
- LLC-PK1, porcine renal proximal epithelial tubular
- LSK, Lin−Sca-1+c-kit+
- MAPK, mitogen-activated protein kinase
- MDA, malonaldehyde
- MEK, mitogen activated protein kinase
- MKK4, mitogen activated protein kinase kinase 4
- Mechanism
- NF-κB, nuclear factor-kappa B p65
- NQO, NAD (P) H quinone oxidoreductase
- Nrf2, nuclear factor erythroid related factor 2
- PG
- PG, Panax ginseng
- PGFR, PG flower
- PGLF, PG leaf
- PGRT, PG root
- PGS, PG total saponins
- PGSD, PG seeds
- PGSM, PG stem
- PI3K, phosphatidylinositol 3-kinase
- PPD, protopanaxadiol
- PPT, protopanaxatriol
- Pharmacological effects
- RG, red ginseng
- RGE, red ginseng extract
- ROS, reactive oxygen species
- SREBP-1, sterol regulatory element binding protein 1
- Side effects
- TNF-α, tumor necrosis factor-α
- eRG, 50% ethanol-extracted RG
- mTOR, mammalian target of rapamycin
- wRG, water-extracted RG
Collapse
Affiliation(s)
- Yan Wan
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin-feng Xu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Tang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Chen
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-zhu Tan
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao-long Rao
- College of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Ao
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Wang L, Ke J, Wang C, Li Y, Wu G, Ding Q, Luo Q, Cai R, Lv P, Song T, Xiong S. Efficacy and Safety of Banxia XieXin Decoction, a Blended Traditional Chinese Medicine, as Monotherapy for Patients With Advanced Hepatocellular Carcinoma. Integr Cancer Ther 2021; 19:1534735420942587. [PMID: 32787468 PMCID: PMC7427017 DOI: 10.1177/1534735420942587] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose: To explore a new therapeutic option for patients with hepatocellular carcinoma (HCC), the efficacy and safety of a group of traditional Chinese medicines (Banxia XieXin recipe) as monotherapy for patients with advanced HCC was studied. Materials and Methods: The study included 68 patients with advanced HCC from August 16,2016 to August 15,2019 for analysis. These eligible patients received treatment with Banxia XieXin recipe for at least 1 month. The primary endpoints were progression-free survival (PFS) and overall survival (OS). The secondary efficacy endpoints included objective response rate (ORR) and disease control rate (DCR). In addition, safety was also assessed. Results: The median treatment duration of these 68 patients was 10.3 months (range = 1.6-33.5 months), and follow-up is still ongoing. The median PFS was 6.07 months (95% confidence interval [CI] = 3.748-8.392 months), and the median OS was 12.60 months (95% CI = 8.019-17.181 months). The ORR was 10.3% and the DCR was 41.2%. In the subgroup analysis, the median OS in the transcatheter arterial chemoembolization (TACE) group was not reached, and the median OS in the NO TACE group was 11.30 months (95% CI = 3.219-19.381 months). In addition, no drug-related serious adverse events were observed during the study. Conclusion: This is the first clinical analysis of traditional Chinese medicine as a single treatment for advanced HCC. The obtained results are encouraging as they suggest that this panel of Chinese herbs is safe and it may be effective for patients with advanced HCC in a real-world clinical setting.
Collapse
Affiliation(s)
- Lijuan Wang
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Jianlong Ke
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Cui Wang
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Yaling Li
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Guoyu Wu
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Qian Ding
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Qiuyue Luo
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Rui Cai
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Panpan Lv
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Tingting Song
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Shaoquan Xiong
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| |
Collapse
|
8
|
Kim KJ, Paik HD, Kim JY. Immune-Enhancing Effects of Lactobacillus plantarum 200655 Isolated from Korean Kimchi in a Cyclophosphamide-Induced Immunocompromised Mouse Model. J Microbiol Biotechnol 2021; 31:726-732. [PMID: 33820888 PMCID: PMC9705930 DOI: 10.4014/jmb.2103.03028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/15/2022]
Abstract
In this study, we evaluated the immune-enhancing activity of kimchi-derived Lactobacillus plantarum 200655 on immune suppression by cyclophosphamide (CP) in ICR mice. Animals were fed distilled water or 1×109 colony-forming unit/kg B.W. 200655 or Lactobacillus rhamnosus GG as a positive control for 14 days. An in vivo model of immunosuppression was induced using CP 150 and 100 mg/kg B.W. at 7 and 10 days, respectively. Body weight, spleen index, spleen weight, and gene expression were measured to estimate the immune-enhancing effects. The dead 200655 (D-200655) group showed an increased spleen weight compared to the sham control (SC) group. Similarly, the spleen index was significantly higher than that in the CP-treated group. The live 200655 (L-200655) group showed an increased mRNA expression of tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-6 in splenocytes. Also, the iNOS and COX-2 mRNA expression was upregulated in the L-200655 group compared to the CP-only (SC) group. The phosphorylation of ERK and MAPK was also upmodulated in the L-200655 group. These results indicate that L. plantarum 200655 ameliorated CP-induced immune suppression, suggesting that L. plantarum 200655 may have the potential to enhance the immune system.
Collapse
Affiliation(s)
- Kyeong Jin Kim
- Department of Nano Bio engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Ji Yeon Kim
- Department of Nano Bio engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea,Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea,Corresponding author Phone: +82-2-970-6740 E-mail:
| |
Collapse
|
9
|
Cong C, Kluwe L, Li S, Liu X, Liu Y, Liu H, Gui W, Liu T, Xu L. Paeoniflorin inhibits tributyltin chloride-induced apoptosis in hypothalamic neurons via inhibition of MKK4-JNK signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2019; 237:1-8. [PMID: 30878547 DOI: 10.1016/j.jep.2019.03.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 02/28/2019] [Accepted: 03/10/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paeoniflorin (PF) exerts a significant protective effect against neurotoxicity and mitochondrial damage in neurons. However, the mechanisms underlying PF-mediated rescue remain elusive. Therefore, we endeavored to further research the molecular mechanisms underlying PF-mediated inhibition of tributyltin chloride (TBTC)-induced apoptosis of neurons. AIM OF THE STUDY To investigate the influence and possible mechanism of action of PF in TBTC-induced neurodegenerative disease. MATERIALS AND METHODS First, primary hypothalamic neurons were treated with tributyltin chloride (150 μg/L) and PF (25, 50, and 100 μM). 17β-estradiol (1 nM) was used as a positive control. Subsequently, CCK-8 assay was performed. The level of apoptosis was examined by flow cytometry and the function of mitochondria was reflected by MMP levels. The mRNA expression levels of B-cell lymphoma-2 (Bcl-2), together with Bax, were examined using qRT-PCR. The protein levels of mitogen-activated protein kinase kinase 4 (MKK4), c-Jun N-terminal kinase (JNK), Bcl-2, Bax, and Caspase-3 were examined using western blotting. Finally, pretreatment with JNK agonist, anisomycin, was done to observe the change in expressions of MKK4 and JNK. RESULTS Paeoniflorin treatment reduced TBTC-induced damage and neuron loss in a dose-dependent manner. Decrease in mitogen-activated protein kinase (MAPK) as well as JNK levels were reversed by treatment with paeoniflorin via inhibition of JNK activation. Furthermore, ratio of levels of Bcl-2/Bax increased while the activation of caspase-3 was suppressed. In addition, pretreatment with JNK agonist, anisomycin effectively suppressed TBTC-induced cytotoxicity in hypothalamic neuron. CONCLUSIONS PF can potentially be used to prevent and/or treat neurodegenerative diseases and neural injury by inhibiting MKK4-JNK signaling pathway.
Collapse
Affiliation(s)
- Chao Cong
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China
| | - Lan Kluwe
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Shengnan Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China
| | - Xiaofei Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China
| | - Yang Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China
| | - Huicong Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China
| | - Wenjia Gui
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China
| | - Te Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China
| | - Lianwei Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China.
| |
Collapse
|