1
|
Zhang Q, Zhu L, Li H, Chen Q, Li N, Li J, Zhao Z, Xiao D, Tang T, Bi C, Zhang Y, Zhang H, Zhang G, Li M, Zhu Y, Zhang J, Kong J. Insights and progress on the biosynthesis, metabolism, and physiological functions of gamma-aminobutyric acid (GABA): a review. PeerJ 2024; 12:e18712. [PMID: 39703920 PMCID: PMC11657192 DOI: 10.7717/peerj.18712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/24/2024] [Indexed: 12/21/2024] Open
Abstract
GABA (γ-aminobutyric acid) is a non-protein amino acid that occurs naturally in the human brain, animals, plants and microorganisms. It is primarily produced by the irreversible action of glutamic acid decarboxylase (GAD) on the α-decarboxylation of L-glutamic acid. As a major neurotransmitter in the brain, GABA plays a crucial role in behavior, cognition, and the body's stress response. GABA is mainly synthesized through the GABA shunt and the polyamine degradation pathways. It works through three receptors (GABAA, GABAB, and GABAC), each exhibiting different pharmacological and physiological characteristics. GABA has a variety of physiological roles and applications. In plants, it regulates growth, development and stress responses. In mammals, it influences physiological functions such as nervous system regulation, blood pressure equilibrium, liver and kidneys enhancement, hormone secretion regulation, immunity enhancement, cancer prevention, as well as anti-aging effects. As a biologically active ingredient, GABA possesses unique physiological effects and medicinal value, leading to its widespread application and substantially increased market demand in the food and pharmaceutical industries. GABA is primarily produced through chemical synthesis, plant enrichment and microbial fermentation. In this review, we first make an overview of GABA, focusing on its synthesis, metabolism, GABA receptors and physiological functions. Next, we describe the industrial production methods of GABA. Finally, we discuss the development of ligands for the GABA receptor binding site, the prospects of GABA production and application, as well as its clinical trials in potential drugs or compounds targeting GABA for the treatment of epilepsy. The purpose of this review is to attract researchers from various fields to focus on GABA research, promote multidisciplinary communications and collaborations, break down disciplinary barriers, stimulate innovative research ideas and methods, and advance the development and application of GABA in medicine, agriculture, food and other fields.
Collapse
Affiliation(s)
- Qingli Zhang
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Lei Zhu
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Hailong Li
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Qu Chen
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Nan Li
- Department of Rehabilitation, Qingdao Binhai College Affiliated Hospital, Qingdao, China
| | - Jiansheng Li
- Department of Nephrology, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Zichu Zhao
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Di Xiao
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Tingting Tang
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Chunhua Bi
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Yan Zhang
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Haili Zhang
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Guizhen Zhang
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Mingyang Li
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Yanli Zhu
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Jingjing Zhang
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Jingjing Kong
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| |
Collapse
|
2
|
Han J, Zhao X, Zhao X, Wang Q, Li P, Gu Q. Microbial-Derived γ-Aminobutyric Acid: Synthesis, Purification, Physiological Function, and Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14931-14946. [PMID: 37792666 DOI: 10.1021/acs.jafc.3c05269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
γ-Aminobutyric acid (GABA) is an important nonprotein amino acid that extensively exists in nature. At present, GABA is mainly obtained through chemical synthesis, plant enrichment, and microbial production, among which microbial production has received widespread attention due to its safety and environmental benefits. After using microbial fermentation to obtain GABA, it is necessary to be isolated and purified to ensure its quality and suitability for various industries such as food, agriculture, livestock, pharmaceutics, and others. This article provides a comprehensive review of the different sources of GABA, including its presence in nature and the synthesis methods. The factors affecting the production of microbial-derived GABA and its isolation and purification methods are further elucidated. Moreover, the main physiological functions of GABA and its application in different fields are also reviewed. By advancing our understanding of GABA, we can unlock its full potential and further utilize it in various fields to improve human health and well-being.
Collapse
Affiliation(s)
- Jiarun Han
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Xilian Zhao
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Xin Zhao
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Qi Wang
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| |
Collapse
|
3
|
Chong SY, Ilham Z, Samsudin NIP, Soumaya S, Wan-Mohtar WAAQI. Microbial consortia and up-to-date technologies in global soy sauce production: A review. INTERNATIONAL FOOD RESEARCH JOURNAL 2023; 30:1-24. [DOI: 10.47836/ifrj.30.1.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Soy sauce is an Oriental fermented condiment, and key ingredient in many Asian cuisines. As consumers around the world are becoming more adventurous with their eating choices and preferences, the demand for and popularity of Asian cuisines are increasing globally. The underlying basis of soy sauce fermentation is intricate microbial interactions which play a vital role in defining the quality, flavour, and smell of the resulting soy sauce. Traditional soy sauce fermentation consists of a two-step process: koji and moromi fermentation. Despite the presence of beneficial microorganisms in soy sauce, various harmful microorganisms can also be found during the koji or moromi step, thus resulting in soy sauce contamination. Therefore, studying the biodiversity and interactions of microorganisms is critical in ensuring soy sauce quality. The present review thus discusses in depth the various bacterial and fungal species that are either beneficial or harmful to soy sauce fermentation. The present review also discusses the advances in soy sauce fermentation such as the enhancement of gamma-aminobutyric acid (GABA) in soy sauce by microorganisms, the enhancement of soy sauce flavour by mixed starter culture, and by genome shuffling starter culture.
Collapse
|
4
|
Sassi S, Ilham Z, Jamaludin NS, Halim-Lim SA, Shin Yee C, Weng Loen AW, Poh Suan O, Ibrahim MF, Wan-Mohtar WAAQI. Critical Optimized Conditions for Gamma-Aminobutyric Acid (GABA)-Producing Tetragenococcus Halophilus Strain KBC from a Commercial Soy Sauce Moromi in Batch Fermentation. FERMENTATION-BASEL 2022; 8:409. [DOI: 10.3390/fermentation8080409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Gamma-aminobutyric acid (GABA) has several health-promoting qualities, leading to a growing demand for natural GABA production via microbial fermentation. The GABA-producing abilities of the new Tetragenococcus halophilus (THSK) isolated from a commercial soy sauce moromi were proven in this investigation. Under aerobic conditions, the isolate produced 293.43 mg/L of GABA after 5 days of cultivation, compared to 217.13 mg/L under anaerobic conditions. Critical parameters such as pH, monosodium glutamate (MSG), and sodium chloride (NaCl) concentrations were examined to improve GABA yield. MSG had the most significant impact on GABA and GABA synthesis was not suppressed even at high NaCl concentrations. Data showed that a pH of 8, MSG content of 5 g/L, and 20% NaCl were the best culture conditions. The ultimate yield was improved to 653.101 mg/L, a 2.22-fold increase (293.43 mg/L). This design shows that the bacteria THSK has industrial GABA production capability and can be incorporated into functional food.
Collapse
|
5
|
Liu Q, Xie S, Zhao X, Liu Y, Xing Y, Dao J, Wei B, Peng Y, Duan W, Wang Z. Drought Sensitivity of Sugarcane Cultivars Shapes Rhizosphere Bacterial Community Patterns in Response to Water Stress. Front Microbiol 2021; 12:732989. [PMID: 34745035 PMCID: PMC8568056 DOI: 10.3389/fmicb.2021.732989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
Rhizosphere bacteria, the main functional microorganisms inhabiting the roots of terrestrial plants, play important roles in regulating plant growth and environmental stress resistance. However, limited information is available regarding changes occurring within the structure of the root microbial community and the response mechanisms of host plants that improve adaptability to drought stress. In this study, we conducted an experiment on two sugarcane varieties with different drought tolerance levels under drought and control treatments and analyzed the rhizosphere bacterial communities using 16S rRNA high-throughput sequencing. Correlation analysis results clarified the influence of various factors on the rhizosphere bacterial community structure. Drought stress reduced the diversity of the bacterial community in the rhizosphere of sugarcane. Interestingly, the bacterial community of the drought-sensitive sugarcane cultivar GT39 changed more than that of the drought-tolerant cultivar ZZ9. In addition, ZZ9 had a high abundance of drought-resistant bacteria in the rhizosphere under optimal soil water conditions, whereas GT39 accumulated a large number of drought-resistant bacteria only under drought stress. GT39 mainly relied on Actinobacteria in its response to drought stress, and the abundance of this phylum was positively correlated with soil acid phosphatase and protease levels. In contrast, ZZ9 mainly relied on Bacilli in its response to drought stress, and the abundance of this class was positively correlated with only soil acid phosphatase levels. In conclusion, drought stress can significantly reduce the bacterial diversity and increase the abundance of drought-resistant bacteria in the sugarcane rhizosphere. The high abundance of drought-resistant bacteria in the rhizosphere of drought-tolerant cultivars under non-drought conditions is an important factor contributing to the high drought adaptability of these cultivars. Moreover, the core drought-resistant bacteria of the sugarcane rhizosphere and root exudates jointly affect the resistance of sugarcane to drought.
Collapse
Affiliation(s)
- Qi Liu
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Sasa Xie
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Xiaowen Zhao
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Yue Liu
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Yuanjun Xing
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Jicao Dao
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Beilei Wei
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Yunchang Peng
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Weixing Duan
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Ziting Wang
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| |
Collapse
|
6
|
Isolation, Identification, and Optimization of γ-Aminobutyric Acid (GABA)-Producing Bacillus cereus Strain KBC from a Commercial Soy Sauce moromi in Submerged-Liquid Fermentation. Processes (Basel) 2020. [DOI: 10.3390/pr8060652] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A new high γ-aminobutyric acid (GABA) producing strain of Bacillus cereus was successfully isolated from soy sauce moromi. This B. cereus strain named KBC shared similar morphological characteristics (Gram-positive, rod-shaped) with the reference B. cereus. 16S rRNA sequence of B. cereus KBC was found to be 99% similar with B. cereus strain OPWW1 under phylogenetic tree analysis. B. cereus KBC cultivated in unoptimized conditions using De Man, Rogosa, Sharpe (MRS) broth was capable of producing 523.74 mg L−1 of GABA within five days of the cultivation period. By using response surface methodology (RSM), pH level, monosodium glutamate (MSG) concentration and temperature were optimized for a high concentration of GABA production. The pH level significantly influenced the GABA production by B. cereus KBC with p-value = 0.0023. GABA production by B. cereus KBC under the optimized condition of pH 7, MSG concentration of 5 g L−1 and temperature of 40 °C resulted in GABA production of 3393.02 mg L−1, which is 6.37-fold higher than under unoptimized conditions. Overall, this study has shown that B. cereus KBC isolated from soy sauce moromi is capable of producing a high concentration of GABA together with the optimal fermentation conditions that have been statistically analysed using RSM.
Collapse
|
7
|
Wan-Mohtar WAAQI, Ab Kadir S, Halim-Lim SA, Ilham Z, Hajar-Azhari S, Saari N. Vital parameters for high gamma-aminobutyric acid (GABA) production by an industrial soy sauce koji Aspergillus oryzae NSK in submerged-liquid fermentation. Food Sci Biotechnol 2019; 28:1747-1757. [PMID: 31807347 DOI: 10.1007/s10068-019-00602-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 03/04/2019] [Accepted: 03/11/2019] [Indexed: 01/08/2023] Open
Abstract
In submerged-liquid fermentation, seven key parameters were assessed using one-factor-at-a-time to obtain the highest GABA yield using an industrial soy sauce koji Aspergillus oryzae strain NSK (AOSNSK). AOSNSK generated maximum GABA at 30 °C (194 mg/L) and initial pH 5 (231 mg/L), thus was able to utilize sucrose (327 mg/L of GABA) for carbon source. Sucrose at 100 g/L, improved GABA production at 646 mg/L. Single nitrogen sources failed to improve GABA production, however a combination of yeast extract (YE) and glutamic acid (GA) improved GABA at 646.78 mg/L. Carbon-to-nitrogen ratio (C8:N3) produced the highest cell (24.01 g/L) and GABA at a minimal time of 216 h. The key parameters of 30 °C, initial pH 5, 100 g/L of sucrose, combination YE and GA, and C8:N3 generated the highest GABA (3278.31 mg/L) in a koji fermentation. AOSNSK promisingly showed for the development of a new GABA-rich soy sauce.
Collapse
Affiliation(s)
- Wan Abd Al Qadr Imad Wan-Mohtar
- 1Functional Omics and Bioprocess Development Laboratory, Biotechnology Program, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Safuan Ab Kadir
- 2Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
| | - Sarina Abdul Halim-Lim
- 4Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
| | - Zul Ilham
- 3Biomass Energy Laboratory, Environmental Science and Management Program, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Siti Hajar-Azhari
- 2Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
| | - Nazamid Saari
- 2Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
| |
Collapse
|