1
|
Ma N, Li R, Zhang GF, Gao RH, Zhang DJ. Fermentation-enriched quinoa β-glucan ameliorates disturbed gut microbiota and metabolism in type 2 diabetes mellitus mice. Int J Biol Macromol 2025; 306:141666. [PMID: 40032090 DOI: 10.1016/j.ijbiomac.2025.141666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/10/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Quinoa β-glucan (QBG) has shown potential benefits in treating type 2 diabetes mellitus (T2DM); however, comprehensive evaluations of its effects remain limited. This study investigates the impact of QBG-derived from hot water extraction (Q-) and microbial fermentation enrichment (Q+)-on serum glucose levels, lipid profiles, appetite-regulating hormones, fecal short-chain fatty acids (SCFAs), and gut microbiota composition and function in streptozotocin/high-fat diet (STZ/HFD)-induced T2DM mice. The results indicate that QBG treatment significantly reduced fasting blood glucose, insulin levels, triglycerides (TG) and total cholesterol (TC), while concurrently increasing high-density lipoprotein cholesterol (HDLC) levels. Additionally, liver and pancreatic function improved, as evidenced by decreased levels of malondialdehyde (MDA), aspartate transaminase (AST), and alanine transaminase (ALT). SCFA levels were significantly higher in QBG-treated groups compared to MC group. QBG treatment also reduced the abundance of Firmicutes and Patescibacteria, along with the Firmicutes/Bacteroidota ratio, while increasing levels of Bacteroidota and Actinobacteria. These findings suggest that QBG can regulate the dysbiosis of SCFAs production in T2DM mice and may indirectly modulate the secretion of appetite-regulating hormones by influencing gut microbiota composition. Furthermore, PICRUSt analysis revealed that QBG treatment, particularly Q + _H, could enhance disrupted metabolism and improve gut microbiota functions, helping restore normal physiological function.
Collapse
Affiliation(s)
- Nan Ma
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China; Heilongjiang Bayi Agricultural University Mudanjiang Institute of Food and Biotechnology, Mudanjiang 157000, China; Daqing Center of Inspection and Testing for Rural Affairs Agricultural Products and Processed Products, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Rong Li
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
| | - Gui-Fang Zhang
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Ruo-Han Gao
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Dong-Jie Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China; Daqing Center of Inspection and Testing for Rural Affairs Agricultural Products and Processed Products, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, Daqing 163319, China; National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, China; Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province, Daqing 163319, China.
| |
Collapse
|
2
|
Lee SM, Park SY, Kim JY. Comparative evaluation of the antihyperglycemic effects of three extracts of sea mustard (Undaria pinnatifida): In vitro and in vivo studies. Food Res Int 2024; 190:114623. [PMID: 38945577 DOI: 10.1016/j.foodres.2024.114623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024]
Abstract
Undaria pinnatifida (UP) contains multiple bioactive substances, such as polyphenols, polysaccharides, and amino acids, which are associated with various biological properties. This study aimed to evaluate the antihyperglycemic effects of three extracts obtained from UP. UP was extracted under three different conditions: a low-temperature water extract at 50 °C (UPLW), a high-temperature water extract at 90 °C (UPHW), and a 70 % ethanol extract (UPE). Nontargeted chemical profiling using high-performance liquid chromatography-triple/time-of-flight mass spectrometry (HPLC-Triple TOF-MS/MS) was conducted on the three UP extracts. Subsequently, α-glucosidase inhibitory (AGI) activity, glucose uptake, and the mRNA expression of sodium/glucose cotransporter 1 (SGLT1) and glucose transporter 2 (GLUT2) were evaluated in Caco-2 cell monolayers. Furthermore, an oral carbohydrate tolerance test was performed on C57BL/6 mice. The mice were orally administered UP at 300 mg/kg body weight (B.W.), and the blood glucose level and area under the curve (AUC) were measured. Compared with glucose, UPLW, UPHW and UPE significantly inhibited both glucose uptake and the mRNA expression of SGLT1 and GLUT2 in Caco-2 cell monolayers. After glucose, maltose, and sucrose loading, the blood glucose levels and AUC of the UPLW group were significantly lower than those of the control group. These findings suggest that UPLW has antihyperglycemic effects by regulating glucose uptake through glucose transporters and can be expected to alleviate postprandial hyperglycemia. Therefore, UPLW may have potential as a functional food ingredient for alleviating postprandial hyperglycemia.
Collapse
Affiliation(s)
- Sung Min Lee
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Soo-Yeon Park
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Ji Yeon Kim
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea.
| |
Collapse
|
3
|
Xie C, Gao W, Li X, Luo S, Wu D, Chye FY. Garlic (Allium sativum L.) polysaccharide ameliorates type 2 diabetes mellitus (T2DM) via the regulation of hepatic glycogen metabolism. NFS JOURNAL 2023. [DOI: 10.1016/j.nfs.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
4
|
Zhao Y, Zhang Z, Wang L, Li W, Du J, Zhang S, Chen X. Hypolipidemic mechanism of Pleurotus eryngii polysaccharides in high-fat diet-induced obese mice based on metabolomics. Front Nutr 2023; 10:1118923. [PMID: 36761225 PMCID: PMC9905146 DOI: 10.3389/fnut.2023.1118923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Objective In this study, the structure of Pleurotus eryngii polysaccharides (PEPs) was characterized, and the mechanism of PEP on obesity and hyperlipidemia induced by high-fat diet was evaluated by metabonomic analysis. Methods The structure of PEPs were characterized by monosaccharide composition, Fourier transform infrared spectroscopy and thermogravimetry. In animal experiments, H&E staining was used to observe the morphological difference of epididymal adipose tissue of mice in each group. Ultrahigh performance liquid chromatography (UHPLC)-(QE) HFX -mass spectrometry (MS) was used to analyze the difference of metabolites in serum of mice in each group and the related metabolic pathways. Results The PEPs contained nine monosaccharides: 1.05% fucose, 0.30% arabinose, 17.94% galactose, 53.49% glucose, 1.24% xylose, 23.32% mannose, 1.30% ribose, 0.21%galacturonic acid, and 1.17% glucuronic acid. The PEPs began to degrade at 251°C (T0), while the maximum thermal degradation rate temperature (Tm) appeared at 300°C. The results histopathological observation demonstrated that the PEPs had signifificant hypolipidemic activities. After PEPs intervention, the metabolic profile of mice changed significantly. A total of 29 different metabolites were selected as adjunctive therapy to PEPs, for treatment of obesity and hyperlipidemia-related complications caused by a high-fat diet. These metabolites include amino acids, unsaturated fatty acids, choline, glycerol phospholipids, and other endogenous compounds, which can prevent and treat obesity and hyperlipidemia caused by a high-fat diet by regulating amino acid metabolism, fatty acid metabolism, and changes in metabolic pathways such as that involved in the citric cycle (TCA cycle). Conclusions The presented results indicate that PEPs treatment can alleviate the obesity and hyperlipidemia caused by a high-fat diet and, thus, may be used as a functional food adjuvant, providing a theoretical basis and technical guidance for the prevention and treatment of high-fat diet-induced obesity and hyperlipidemia.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Zhen Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Li Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Wen Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Jianming Du
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Shengxiang Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China,*Correspondence: Xuefeng Chen ✉
| |
Collapse
|
5
|
Aruncus dioicus var. kamtschaticus Extract Ameliorates Psoriasis-like Skin Inflammation via Akt/mTOR and JAK2/STAT3 Signaling Pathways in a Murine Model. Nutrients 2022; 14:nu14235094. [PMID: 36501124 PMCID: PMC9736163 DOI: 10.3390/nu14235094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Goat's beard (Aruncus dioicus var. kamtschaticus) is a traditional medicinal plant, widely used in Chinese and Korean traditional medicine because of its anti-inflammatory, anti-oxidant, antimicrobial, and anti-cancer activity. However, its effect on skin inflammatory diseases like psoriasis is unknown. The aim of this study was to investigate the therapeutic potency of A. dioicus extract (ADE) in in vitro and in vivo psoriasis models. ADE treatment significantly attenuated skin inflammation and improved skin integrity in imiquimod-treated mice by suppressing keratinocyte hyperproliferation, inhibiting the infiltration of immune cells, and downregulating the expression of psoriatic markers. Further, ADE treatment suppressed protein kinase B/mammalian target of rapamycin (Akt/mTOR) and Janus kinase 2/signal transducers and activators of transcription 3 (JAK2/STAT3) signaling in HaCaT cells. Overall, the application of ADE relieves psoriasis-like skin inflammation possibly by regulating the Akt/mTOR and JAK2/STAT3 signaling pathways, making it an effective alternative for psoriasis therapy.
Collapse
|
6
|
Ti Y, Wang W, Wang X, Ban Y, Wang P, Zhang Y, Song Z. Pumpkin Polysaccharide Extracted by Subcritical Water: Physicochemical Characterization and Anti-Diabetic Effects in T2DM Rats. Mol Nutr Food Res 2022; 66:e2200160. [PMID: 36263848 DOI: 10.1002/mnfr.202200160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/01/2022] [Indexed: 01/18/2023]
Abstract
SCOPE This study aims to optimize the extraction of pumpkin polysaccharide by subcritical water, investigates the physicochemical properties and biological activities of pumpkin polysaccharide. METHODS AND RESULTS Subcritical water is used to extract pumpkin polysaccharide. The structure and composition of pumpkin polysaccharide are analyzed by infrared spectroscopy, gel filtration chromatography, and high-performance liquid chromatography. The hypoglycemic and hypolipidemic potential of pumpkin polysaccharide aere determined by the physicochemical indexes, pathological, and immunohistochemical analysis in T2DM rats induced by STZ + high-fat diet. The optimal conditions for subcritical water are 1:15, 150°C, and 10 min. Pumpkin polysaccharide has α-configurations and are mainly composed of seven different monosaccharides, and it exhibits good free-radical scavenging ability and inhibition of α-amylase, α-glucosidase, and pancreatic lipase activities. Pumpkin polysaccharide treatment in T2DM rats significantly decreases the concentrations of blood glucose, insulin, TC, TG, LDL-C, and MDA; increases the levels of HDL-C; and enhances the antioxidant enzymes activities (SOD and CAT). Histopathology and immunohistochemical analyses reveal that pumpkin polysaccharide has protective effects on kidney and pancreatic organs in T2DM rats. CONCLUSION Pumpkin polysaccharide extracted by SWE shows great potential as functional food ingredients and candidates for T2DM treatment.
Collapse
Affiliation(s)
- Yongrui Ti
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weizhen Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoxiao Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuqian Ban
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Peng Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanli Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zihan Song
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
7
|
Polysaccharide from Hemerocallis citrina Borani by subcritical water: Bioactivity, purification, characterization, and anti-diabetic effects in T2DM rats. Int J Biol Macromol 2022; 215:169-183. [PMID: 35724900 DOI: 10.1016/j.ijbiomac.2022.06.101] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/31/2022] [Accepted: 06/12/2022] [Indexed: 01/03/2023]
Abstract
Hemerocallis citrina Borani (daylily) has various health benefits. However, the structural characterization and hypoglycemic effects of its polysaccharide remain unclear. Here, we first report for the first time, the effects of subcritical water extraction temperature on bioactivity of Hemerocallis citrina Borani polysaccharide (HCBP). HCBP extracted at 160 °C had better scavenging ability of free-radical and pancreatic lipase inhibition. This study aimed to investigate the structural characterization and anti-diabetic effects of aforementioned HCBP. HCBP was separated into three fractions using a DEAE-Sepharose Fast Flow. HCBP-1 was the major component with lower molecular weight, HCBP-2 was the least abundant component, HCBP-3 was the component with higher uronic acid and molecular weight. HCBP treatment significantly decreased the concentrations of fasting blood glucose, insulin, total cholesterol, triglyceride, and low density lipoprotein, as well as improved glucose intolerance and insulin resistance in type 2 diabetes mellitus (T2DM) rats. HCBP also protected the kidneys and pancreatic organs by histopathology and immunohistochemical analyses in T2DM rats. In addition, HCBP significantly increased the antioxidant enzymes activities and decreased the level of malonaldehyde to alleviated the oxidative stress injury. The results indicate HCBP extracted by subcritical water is promising functional food ingredients and could be used in T2DM treatment.
Collapse
|
8
|
Huang Z, Liu Y, Liu X, Chen K, Xiong W, Qiu Y, He X, Liu B, Zeng F. Sanghuangporus vaninii mixture ameliorated type 2 diabetes mellitus and altered intestinal microbiota in mice. Food Funct 2022; 13:11758-11769. [DOI: 10.1039/d2fo02268k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sanghuangporus vaninii mixture ameliorated type 2 diabetes mellitus through improving body weight, fasting blood glucose, insulin-related indicators, lipid indexes, inflammatory factors, histological pathology, and intestinal microbiota.
Collapse
Affiliation(s)
- Zirui Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- National Engineering Research Center of JUNCAO Technology, Fuzhou 350002, China
| | - Yun Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoyan Liu
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Kewen Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenyu Xiong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuyang Qiu
- National Engineering Research Center of JUNCAO Technology, Fuzhou 350002, China
| | - Xiaoyu He
- National Engineering Research Center of JUNCAO Technology, Fuzhou 350002, China
| | - Bin Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- National Engineering Research Center of JUNCAO Technology, Fuzhou 350002, China
| | - Feng Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
9
|
Samnamul (Shoots of Aruncus dioicus) Inhibit Adipogenesis by Downregulating Adipocyte-Specific Transcription Factors in 3T3-L1 Adipocytes. Processes (Basel) 2020. [DOI: 10.3390/pr8121576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Adipocyte-specific transcription factors and antioxidants are considered the best target of obesity. Aruncus dioicus var. kamtschaticus (A. dioicus, Samnamul) is easily available owing to edible and inexpensive. However, the anti-adipogenic effects of the underlying mechanism of A. dioicus extract (ADE) have not yet been reported. In the present study, we evaluate anti-adipogenic pathway in 3T3-L1 adipocytes, antioxidant activities and quantified phenolics using high-performance liquid chromatography of ADE. The results revealed ADE had reduced adipocyte differentiation (0.72-fold vs. MDI (media of differentiation) control), triglyceride (TG; 0.50-fold vs. MDI control, p < 0.001), and total cholesterol contents (0.77-fold vs. MDI control) by regulating adipocyte-specific transcription factors (C/EBPα, PPARγ, and SREBP1) and their downstream mRNA (AdipoQ, Ap2, SREBP1-c, and FAS) levels. Furthermore, ADE has higher total phenol and flavonoid contents and scavenging assay in the DPPH and ABTS+. In particularly, ADE contains chlorogenic acid (7.04 mg/kg), caffeic acid (20.14 mg/kg), ferulic acid (1.74 mg/kg), veratric acid (29.31 mg/kg), cinnamic acid (4.70 mg/kg), and quercetin (4.18 mg/kg). In conclusion, since these phenols, especially quercetin, in the ADE appear to reduce differentiation, TG and cholesterol content by regulating adipocyte-specific transcription factors in adipocytes, ADE has the potential to be developed into a new antioxidant and anti-obesity therapeutics.
Collapse
|
10
|
Beneficial effects of polysaccharide-rich extracts from Apocynum venetum leaves on hypoglycemic and gut microbiota in type 2 diabetic mice. Biomed Pharmacother 2020; 127:110182. [DOI: 10.1016/j.biopha.2020.110182] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/02/2020] [Accepted: 04/17/2020] [Indexed: 01/12/2023] Open
|
11
|
Effect of Aruncus dioicus var. kamtschaticus Extract on Neurodegeneration Improvement: Ameliorating Role in Cognitive Disorder Caused by High-Fat Diet Induced Obesity. Nutrients 2019; 11:nu11061319. [PMID: 31212845 PMCID: PMC6628174 DOI: 10.3390/nu11061319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/04/2019] [Accepted: 06/11/2019] [Indexed: 12/20/2022] Open
Abstract
This study was performed to estimate the possibility of using an ethyl acetate fraction from Aruncus dioicus var. kamtschaticus (EFAD) on metabolic syndrome that is induced by a high-fat diet (HFD). It was demonstrated that EFAD suppresses lipid accumulation and improves insulin resistance (IR) caused by Tumor necrosis factor alpha (TNF-α) in in-vitro experiments using the 3T3-L1 cell. In in-vivo tests, C57BL/6 mice were fed EFAD at 20 and 40 mg/kg body weight (BW) for four weeks after the mice were fed HFD for 15 weeks to induce obesity. EFAD significantly suppressed the elevation of BW and improved impaired glucose tolerance in obese mice. Additionally, this study showed that EFAD has an ameliorating effect on obesity-induced cognitive disorder with behavioral tests. The effect of EFAD on peripheral-IR improvement was confirmed by serum analysis and western blotting in peripheral tissues. Additionally, EFAD showed an ameliorating effect on HFD-induced oxidative stress, impaired cholinergic system and mitochondrial dysfunction, which are interrelated symptoms of neurodegeneration, such as Alzheimer’s disease and central nervous system (CNS)-IR in brain tissue. Furthermore, we confirmed that EFAD improves CNS-IR by confirming the IR-related factors in brain tissue. Consequently, this study suggests the possibility of using EFAD for the prevention of neurodegeneration by improving metabolic syndrome that is caused by HFD.
Collapse
|
12
|
Dietary composition modulates impact of food-added monosodium glutamate on behaviour, metabolic status and cerebral cortical morphology in mice. Biomed Pharmacother 2018; 109:417-428. [PMID: 30399577 DOI: 10.1016/j.biopha.2018.10.172] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/20/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023] Open
Abstract
Effects of food-added monosodium glutamate (MSG) on neurobehaviour, serum biochemical parameters, malondialdehyde (MDA) levels, and changes in cerebral cortex, liver and kidney morphology were assessed in mice fed standard diet (SD) or high-fat diet (HFD). Animals were assigned to 8 groups [SD control, HFD control, and six groups fed MSG plus SD or HFD at 0.1, 0.2 and 0.4 g/kg of feed]. Animals were fed for 8 weeks, behavioural tests were conducted, and blood was taken for estimation of biochemical parameters and MDA level. Whole brain was homogenised for neurochemical assays, while the cerebrum, liver and kidneys were processed for histology. In groups fed MSG/SD, there was a decrease in weight gain, increase in food-intake, an increase in locomotion, a decrease in rearing/grooming, and a decrease in anxiety-response. Also observed were derangements in biochemical parameters, increased MDA, and alteration of renal morphology. Compared to HFD, MSG/HFD groups had reduction in weight gain, food-intake, grooming and anxiety-response, an increase in locomotion, and improved memory. Protection against biochemical derangements and HFD-induced organ injuries were also observed. In conclusion, the findings suggest that possible interactions that may occur between dietary constituents and MSG are determinants of the effects of food-added MSG in mice.
Collapse
|