1
|
Chang TS. Functional Approaches to Discover New Compounds via Enzymatic Modification: Predicted Data Mining Approach and Biotransformation-Guided Purification. Molecules 2025; 30:2228. [PMID: 40430400 PMCID: PMC12113840 DOI: 10.3390/molecules30102228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/07/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025] Open
Abstract
In the field of biotechnology, natural compounds isolated from medicinal plants are highly valued; however, their discovery, purification, biofunctional characterization, and biochemical validation have historically involved time-consuming and laborious processes. Two innovative approaches have emerged to more efficiently discover new bioactive substances: the predicted data mining approach (PDMA) and biotransformation-guided purification (BGP). The PDMA is a computational method that predicts biotransformation potential, identifying potential substrates for specific enzymes from numerous candidate compounds to generate new compounds. BGP combines enzymatic biotransformation with traditional purification techniques to directly identify and isolate biotransformed products from crude extract fractions. This review examines recent research employing BGP or the PDMA for novel compound discovery. This research demonstrates that both approaches effectively allow for the discovery of novel bioactive molecules from natural sources, the enhancement of the bioactivity and solubility of existing compounds, and the development of alternatives to traditional methods. These findings highlight the potential of integrating traditional medicinal knowledge with modern enzymatic and computational tools to advance drug discovery and development.
Collapse
Affiliation(s)
- Te-Sheng Chang
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 70005, Taiwan
| |
Collapse
|
2
|
Tian Y, Xu W, Guang C, Zhang W, Mu W. Glycosylation of flavonoids by sucrose- and starch-utilizing glycoside hydrolases: A practical approach to enhance glycodiversification. Crit Rev Food Sci Nutr 2024; 64:7408-7425. [PMID: 36876518 DOI: 10.1080/10408398.2023.2185201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Flavonoids are ubiquitous and diverse in plants and inseparable from the human diet. However, in terms of human health, their further research and application in functional food and pharmaceutical industries are hindered by their low water solubility. Therefore, flavonoid glycosylation has recently attracted research attention because it can modulate the physicochemical and biochemical properties of flavonoids. This review represents a comprehensive overview of the O-glycosylation of flavonoids catalyzed by sucrose- and starch-utilizing glycoside hydrolases (GHs). The characteristics of this feasible biosynthesis approach are systematically summarized, including catalytic mechanism, specificity, reaction conditions, and yields of the enzymatic reaction, as well as the physicochemical properties and bioactivities of the product flavonoid glycosides. The cheap glycosyl donor substrates and high yields undoubtedly make it a practical flavonoid modification approach to enhance glycodiversification.
Collapse
Affiliation(s)
- Yuqing Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Wang C, Niu D, Mchunu NP, Zhang M, Singh S, Wang Z. Secretory expression of amylosucrase in Bacillus licheniformis through twin-arginine translocation pathway. J Ind Microbiol Biotechnol 2024; 51:kuae004. [PMID: 38253396 PMCID: PMC10849164 DOI: 10.1093/jimb/kuae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
Amylosucrase (EC 2.4.1.4) is a versatile enzyme with significant potential in biotechnology and food production. To facilitate its efficient preparation, a novel expression strategy was implemented in Bacillus licheniformis for the secretory expression of Neisseria polysaccharea amylosucrase (NpAS). The host strain B. licheniformis CBBD302 underwent genetic modification through the deletion of sacB, a gene responsible for encoding levansucrase that synthesizes extracellular levan from sucrose, resulting in a levan-deficient strain, B. licheniformis CBBD302B. Neisseria polysaccharea amylosucrase was successfully expressed in B. licheniformis CBBD302B using the highly efficient Sec-type signal peptide SamyL, but its extracellular translocation was unsuccessful. Consequently, the expression of NpAS via the twin-arginine translocation (TAT) pathway was investigated using the signal peptide SglmU. The study revealed that NpAS could be effectively translocated extracellularly through the TAT pathway, with the signal peptide SglmU facilitating the process. Remarkably, 62.81% of the total expressed activity was detected in the medium. This study marks the first successful secretory expression of NpAS in Bacillus species host cells, establishing a foundation for its future efficient production. ONE-SENTENCE SUMMARY Amylosucrase was secreted in Bacillus licheniformis via the twin-arginine translocation pathway.
Collapse
Affiliation(s)
- Caizhe Wang
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Dandan Niu
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Nokuthula Peace Mchunu
- National Research Foundation, PO Box 2600 Pretoria 0001, South Africa
- School of Life Science, University of KwaZulu Natal, Durban 4000, South Africa
| | - Meng Zhang
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Suren Singh
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, PO Box 1334, Durban 4001, South Africa
| | - Zhengxiang Wang
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, China
| |
Collapse
|
4
|
Xu Y, Xuan X, Gao R, Xie G. Increased Expression Levels of Thermophilic Serine Protease TTHA0724 through Signal Peptide Screening in Bacillus subtilis and Applications of the Enzyme. Int J Mol Sci 2023; 24:15950. [PMID: 37958933 PMCID: PMC10648325 DOI: 10.3390/ijms242115950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
The thermostable protease TTHA0724 derived from Thermus thermophilus HB8 is an ideal industrial washing enzyme due to its thermophilic characteristics; although it can be expressed in Escherichia coli via pET-22b, high yields are difficult to achieve, leading to frequent autolysis of the host. This paper details the development of a signal peptide library in the expression system of B. subtilis and the optimization of signal peptides for enhanced extracellular expression of TTHA0724. When B. subtilis was used as the host and the optimized signal peptide was used, the expression level of TTHA0724 was 16.7 times higher compared with E. coli. B. subtilis as an expression host does not change the characteristics of TTHA0724. The potential application fields of TTHA0724 are studied. TTHA0724 can be used as a detergent additive at 60 °C, which can sterilize and eliminate mites while thoroughly cleaning protein stains. Soybean meal enzymatic hydrolysis with TTHA0724 at a high temperature produced a higher content of antioxidant peptides. These results indicate that TTHA0724 has great potential for industrial applications.
Collapse
Affiliation(s)
- Yiwen Xu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China;
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun 130021, China; (X.X.); (R.G.)
| | - Xiaoran Xuan
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun 130021, China; (X.X.); (R.G.)
| | - Renjun Gao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun 130021, China; (X.X.); (R.G.)
| | - Guiqiu Xie
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China;
| |
Collapse
|
5
|
Lee UJ, Sohng JK, Kim BG, Choi KY. Recent trends in the modification of polyphenolic compounds using hydroxylation and glycosylation. Curr Opin Biotechnol 2023; 80:102914. [PMID: 36857963 DOI: 10.1016/j.copbio.2023.102914] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/08/2023] [Accepted: 01/31/2023] [Indexed: 03/02/2023]
Abstract
Polyphenols are bioactive molecules that are used in therapeutics. Polyphenol hydroxylation and glycosylation have been shown to increase their bioavailability, solubility, bioactivity, and stability for use in various applications. Ortho-hydroxylation of polyphenols using tyrosinase allows high selectivity and yield without requiring a cofactor, while meta- and para-hydroxylation of polyphenols are mediated by site-specific hydroxylases and cytochrome P450s, although these processes are somewhat rare. O-glycosylation of polyphenols proceeds further after hydroxylation. The O-glycosylation reaction typically requires nucleotide diphosphate (NDP) sugar. However, amylosucrase (AS) has emerged as a promising enzyme for polyphenol glycosylation in large-scale production without requiring NDP-sugar. Overall, this review describes recent findings on the enzymatic mechanisms, enzyme engineering, and applications of enzymatic reactions.
Collapse
Affiliation(s)
- Uk-Jae Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea; Bio-MAX/N-Bio, Institute of BioEngineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae Kyung Sohng
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea; Department of Biotechnology and Pharmaceutical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea; Bio-MAX/N-Bio, Institute of BioEngineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Kwon-Young Choi
- Department of Environmental and Safety Engineering, College of Engineering, Ajou University, Republic of Korea; Department of Energy Systems Research, Ajou University, Republic of Korea.
| |
Collapse
|
6
|
Basu B. The radiophiles of Deinococcaceae family: Resourceful microbes for innovative biotechnological applications. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100153. [PMID: 35909625 PMCID: PMC9325910 DOI: 10.1016/j.crmicr.2022.100153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/24/2022] [Accepted: 06/29/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
- Corresponding author.
| |
Collapse
|
7
|
Siziya IN, Kim YS, Seo DH. Whole cell biosynthesis of luteolin glycosides by engineered Corynebacterium glutamicum harboring the amylosucrase gene. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Kim YJ, Siziya IN, Hong S, Lee GY, Seo MJ, Kim YR, Yoo SH, Park CS, Seo DH. Biosynthesis of glyceride glycoside (nonionic surfactant) by amylosucrase, a powerful glycosyltransferase. Food Sci Biotechnol 2021; 30:267-276. [PMID: 33732517 DOI: 10.1007/s10068-020-00861-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/16/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023] Open
Abstract
Amylosucrase (ASase, E.C. 2.4.1.4) is a powerful transglycosylation enzyme that can transfer glucose from sucrose to the hydroxyl (-OH) group of various compounds. In this study, recombinant ASases from Deinococcus geothermalis (DgAS) and Bifidobacterium thermophilum (BtAS) were used to synthesize biosurfactants based on the computational analysis of predicted docking simulations. Successful predictions of the binding affinities, conformations, and three-dimensional structures of three surfactants were computed from receptor-ligand binding modes. DgAS and BtAS were effective in the synthesis of biosurfactants from glyceryl caprylate, glyceryl caprate, and polyglyceryl-2 caprate. The results of the transglycosylation reaction were consistent for both ASases, with glyceryl caprylate acceptor showing the highest concentration, as confirmed by thin layer chromatography. Furthermore, the transglycosylation reactions of DgAS were more effective than those of BtAS. Among the three substrates, glyceryl caprylate glycoside and glyceryl caprate glycoside were successfully purified by liquid chromatography-mass spectrometry (LC-MS) with the corresponding molecular weights.
Collapse
Affiliation(s)
- Ye-Jin Kim
- Department of Food Science and Biotechnology, Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, 17104 Republic of Korea
| | - Inonge Noni Siziya
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896 Republic of Korea
| | - Seungpyo Hong
- Research Group of Healthcare, Korea Food Research Institute, Wanju, 55365 Republic of Korea
| | - Gil-Yong Lee
- Healthcare Research Institute, Kolon Industries, Inc, Seoul, 07793 Republic of Korea
| | - Myung-Ji Seo
- Division of Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
| | - Young-Rok Kim
- Department of Food Science and Biotechnology, Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, 17104 Republic of Korea
| | - Sang-Ho Yoo
- Department of Food Science and Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul, 05006 Republic of Korea
| | - Cheon-Seok Park
- Department of Food Science and Biotechnology, Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, 17104 Republic of Korea
| | - Dong-Ho Seo
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896 Republic of Korea.,Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896 Republic of Korea.,Institute of Agricultural Science and Technology, Jeonbuk National University, Jeonju, 54896 Republic of Korea
| |
Collapse
|
9
|
Moulis C, Guieysse D, Morel S, Séverac E, Remaud-Siméon M. Natural and engineered transglycosylases: Green tools for the enzyme-based synthesis of glycoproducts. Curr Opin Chem Biol 2020; 61:96-106. [PMID: 33360622 DOI: 10.1016/j.cbpa.2020.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 01/22/2023]
Abstract
An increasing number of transglycosylase-based processes provide access to oligosaccharides or glycoconjugates, some of them reaching performance levels compatible with industrial developments. Nevertheless, the full potential of transglycosylases has not been explored because of the challenges in transforming a glycoside hydrolase into an efficient transglycosylase. Advances in studying enzyme structure/function relationships, screening enzyme activity, and generating synthetic libraries guided by computational protein design or machine learning methods should considerably accelerate the development of these catalysts. The time has now come for researchers to uncover their possibilities and learn how to design and precisely refine their activity to respond more rapidly to the growing demand for well-defined glycosidic structures.
Collapse
Affiliation(s)
- Claire Moulis
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 135, Avenue de Rangueil, Toulouse, Cedex 04, F-31077, France.
| | - David Guieysse
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 135, Avenue de Rangueil, Toulouse, Cedex 04, F-31077, France
| | - Sandrine Morel
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 135, Avenue de Rangueil, Toulouse, Cedex 04, F-31077, France
| | - Etienne Séverac
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 135, Avenue de Rangueil, Toulouse, Cedex 04, F-31077, France
| | - Magali Remaud-Siméon
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 135, Avenue de Rangueil, Toulouse, Cedex 04, F-31077, France.
| |
Collapse
|
10
|
Chin YW, Jang SW, Shin HS, Kim TW, Kim SK, Park CS, Seo DH. Heterologous expression of Deinococcus geothermalis amylosucrase in Corynebacterium glutamicum for luteolin glucoside production. Enzyme Microb Technol 2020; 135:109505. [PMID: 32146930 DOI: 10.1016/j.enzmictec.2019.109505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/12/2019] [Accepted: 12/26/2019] [Indexed: 10/25/2022]
Abstract
Amylosucrase (ASase) has great industrial potential owing to its multifunctional activities, including transglucosylation, polymerization, and isomerization. In the present study, the properties of Deinococcus geothermalis ASase (DGAS) expressed in Corynebacterium glutamicum (cDGAS) and purified via Ni-NTA affinity chromatography were compared to those of DGAS expressed in Escherichia coli (eDGAS). The pH profile of cDGAS was similar to that of eDGAS, whereas the temperature profile of cDGAS was lower than that of eDGAS. The melting temperature of both enzymes did not differ significantly. Interestingly, polymerization activity was slightly lower in cDGAS than in eDGAS, whereas luteolin (an acceptor molecule) transglucosylation activity in cDGAS was 10 % higher than that in eDGAS. Analysis of protein secondary structure via circular dichroism spectroscopy revealed that cDGAS had a lower strand/helix ratio than eDGAS. The present results indicate that cDGAS is of greater industrial significance than eDGAS.
Collapse
Affiliation(s)
- Young-Wook Chin
- Research Group of Traditional Food, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Se-Won Jang
- Research Group of Healthcare, Korea Food Research Institute, Wanju 55365, Republic of Korea; Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam 13120, Republic of Korea
| | - Hee-Soon Shin
- Research Group of Natural Materials and Metabolism, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Tae-Wan Kim
- Research Group of Traditional Food, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Sun-Ki Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea
| | - Cheon-Seok Park
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Dong-Ho Seo
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
11
|
Seo DH, Yoo SH, Choi SJ, Kim YR, Park CS. Versatile biotechnological applications of amylosucrase, a novel glucosyltransferase. Food Sci Biotechnol 2020; 29:1-16. [PMID: 31976122 PMCID: PMC6949346 DOI: 10.1007/s10068-019-00686-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/05/2019] [Accepted: 09/16/2019] [Indexed: 12/21/2022] Open
Abstract
Amylosucrase (AS; EC 2.4.1.4) is an enzyme that has great potential in the biotechnology and food industries, due to its multifunctional enzyme activities. It can synthesize α-1,4-glucans, like amylose, from sucrose as a sole substrate, but importantly, it can also utilize various other molecules as acceptors. In addition, AS produces sucrose isomers such as turanose and trehalulose. It also efficiently synthesizes modified starch with increased ratios of slow digestive starch and resistant starch, and glucosylated functional compounds with increased water solubility and stability. Furthermore, AS produces turnaose more efficiently than other carbohydrate-active enzymes. Amylose synthesized by AS forms microparticles and these can be utilized as biocompatible materials with various bio-applications, including drug delivery, chromatography, and bioanalytical sciences. This review not only compares the gene and enzyme characteristics of microbial AS, studied to date, but also focuses on the applications of AS in the biotechnology and food industries.
Collapse
Affiliation(s)
- Dong-Ho Seo
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896 Republic of Korea
| | - Sang-Ho Yoo
- Department of Food Science and Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul, 05006 Republic of Korea
| | - Seung-Jun Choi
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
| | - Young-Rok Kim
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, 17104 Republic of Korea
| | - Cheon-Seok Park
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, 17104 Republic of Korea
| |
Collapse
|
12
|
Jung YS, Kim YJ, Kim AT, Jang D, Kim MS, Seo DH, Nam TG, Rha CS, Park CS, Kim DO. Enrichment of Polyglucosylated Isoflavones from Soybean Isoflavone Aglycones Using Optimized Amylosucrase Transglycosylation. Molecules 2020; 25:E181. [PMID: 31906359 PMCID: PMC6982859 DOI: 10.3390/molecules25010181] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/23/2019] [Accepted: 12/30/2019] [Indexed: 12/26/2022] Open
Abstract
Isoflavones in soybeans are well-known phytoestrogens. Soy isoflavones present in conjugated forms are converted to aglycone forms during processing and storage. Isoflavone aglycones (IFAs) of soybeans in human diets have poor solubility in water, resulting in low bioavailability and bioactivity. Enzyme-mediated glycosylation is an efficient and environmentally friendly way to modify the physicochemical properties of soy IFAs. In this study, we determined the optimal reaction conditions for Deinococcus geothermalis amylosucrase-mediated α-1,4 glycosylation of IFA-rich soybean extract to improve the bioaccessibility of IFAs. The conversion yields of soy IFAs were in decreasing order as follows: genistein > daidzein > glycitein. An enzyme quantity of 5 U and donor:acceptor ratios of 1000:1 (glycitein) and 400:1 (daidzein and genistein) resulted in high conversion yield (average 95.7%). These optimal reaction conditions for transglycosylation can be used to obtain transglycosylated IFA-rich functional ingredients from soybeans.
Collapse
Affiliation(s)
- Young Sung Jung
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea; (Y.S.J.); (A.T.K.)
| | - Ye-Jin Kim
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea; (Y.-J.K.); (D.J.); (C.-S.P.)
| | - Aaron Taehwan Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea; (Y.S.J.); (A.T.K.)
| | - Davin Jang
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea; (Y.-J.K.); (D.J.); (C.-S.P.)
| | - Mi-Seon Kim
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea; (Y.-J.K.); (D.J.); (C.-S.P.)
| | - Dong-Ho Seo
- Department of Food Science and Technology, Jeonbuk National University, Jeonju 54896, Korea;
| | - Tae Gyu Nam
- Food Analysis Center, Korea Food Research Institute, Wanju 55365, Korea;
| | - Chan-Su Rha
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea; (Y.S.J.); (A.T.K.)
| | - Cheon-Seok Park
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea; (Y.-J.K.); (D.J.); (C.-S.P.)
| | - Dae-Ok Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea; (Y.S.J.); (A.T.K.)
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea; (Y.-J.K.); (D.J.); (C.-S.P.)
| |
Collapse
|
13
|
Rha CS, Kim ER, Kim YJ, Jung YS, Kim DO, Park CS. Simple and Efficient Production of Highly Soluble Daidzin Glycosides by Amylosucrase from Deinococcus geothermalis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12824-12832. [PMID: 31650839 DOI: 10.1021/acs.jafc.9b05380] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Transglycosylation of amylosucrase from Deinococcus geothermalis (DGAS) was performed using daidzin (daidzein-7-O-glucoside). Unlike cyclodextrin glucanotransferase, DGAS led to the production of new daidzin glucosides with high conversion yields (89%). Structures of these daidzin glucosides (i.e., DA2 and DA3) were daidzein-7-O-α-d-glucopyranosyl-(4 → 1)-O-β-d-glucopyranoside (daidzin-4″-O-α-d-glucopyranoside) and daidzein-4'-O-α-d-glucopyranosyl-7-O-α-d-glucopyranosyl-(1 → 4)-O-β-d-glucopyranoside (daidzin-4',4″-O-α-d-diglucopyranoside), respectively. DA2 and DA3 showed increased solubility of 15.4 mM (127-fold) and 203.3 mM (1686-fold) compared with daidzin, respectively. Kinetic studies revealed Vmax of 1.0 μM/min and K'm of 175 μM for DA3 production based on nonlinear regression. DGAS exhibited substrate inhibition behavior at high sucrose concentrations (700-1500 mM). Taken together, these findings indicate that DGAS can attach a glucose unit to a free C4'-OH via an α-linkage and then produce highly water-soluble isoflavone glycosides with a simple donor, moderate reaction conditions, less waste production, and high yield compared with that observed using the existing processes and enzymes.
Collapse
|
14
|
Site-specific α-glycosylation of hydroxyflavones and hydroxyflavanones by amylosucrase from Deinococcus geothermalis. Enzyme Microb Technol 2019; 129:109361. [DOI: 10.1016/j.enzmictec.2019.109361] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/08/2019] [Accepted: 06/16/2019] [Indexed: 12/27/2022]
|
15
|
Chang TS, Wang TY, Yang SY, Kao YH, Wu JY, Chiang CM. Potential Industrial Production of a Well-Soluble, Alkaline-Stable, and Anti-Inflammatory Isoflavone Glucoside from 8-Hydroxydaidzein Glucosylated by Recombinant Amylosucrase of Deinococcus geothermalis. Molecules 2019; 24:molecules24122236. [PMID: 31208027 PMCID: PMC6631725 DOI: 10.3390/molecules24122236] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/09/2019] [Accepted: 06/14/2019] [Indexed: 12/31/2022] Open
Abstract
8-Hydroxydaidzein (8-OHDe), an ortho-hydroxylation derivative of soy isoflavone daidzein isolated from some fermented soybean foods, has been demonstrated to possess potent anti-inflammatory activity. However, the isoflavone aglycone is poorly soluble and unstable in alkaline solutions. To improve the aqueous solubility and stability of the functional isoflavone, 8-OHDe was glucosylated with recombinant amylosucrase of Deinococcus geothermalis (DgAS) with industrial sucrose, instead of expensive uridine diphosphate-glucose (UDP-glucose). One major product was produced from the biotransformation, and identified as 8-OHDe-7-α-glucoside, based on mass and nuclear magnetic resonance spectral analyses. The aqueous solubility and stability of the isoflavone glucoside were determined, and the results showed that the isoflavone glucoside was almost 4-fold more soluble and more than six-fold higher alkaline-stable than 8-OHDe. In addition, the anti-inflammatory activity of 8-OHDe-7-α-glucoside was also determined by the inhibition of lipopolysaccharide-induced nitric oxide production in RAW 264.7 cells. The results showed that 8-OHDe-7-α-glucoside exhibited significant and dose-dependent inhibition on the production of nitric oxide, with an IC50 value of 173.2 µM, which remained 20% of the anti-inflammatory activity of 8-OHDe. In conclusion, the well-soluble and alkaline-stable 8-OHDe-7-α-glucoside produced by recombinant DgAS with a cheap substrate, sucrose, as a sugar donor retains moderate anti-inflammatory activity, and could be used in industrial applications in the future.
Collapse
Affiliation(s)
- Te-Sheng Chang
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 70005, Taiwan.
| | - Tzi-Yuan Wang
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan.
| | - Szu-Yi Yang
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 70005, Taiwan.
| | - Yu-Han Kao
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 70005, Taiwan.
| | - Jiumn-Yih Wu
- Department of Food Science, National Quemoy University, Kinmen County 892, Taiwan.
| | - Chien-Min Chiang
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, No. 60, Sec. 1, Erh-Jen Rd., Jen-Te District, Tainan 71710, Taiwan.
| |
Collapse
|