1
|
El Oirdi M, Farhan M. Clinical Trial Findings and Drug Development Challenges for Curcumin in Infectious Disease Prevention and Treatment. Life (Basel) 2024; 14:1138. [PMID: 39337921 PMCID: PMC11432846 DOI: 10.3390/life14091138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Since ancient times, turmeric, scientifically known as Curcuma longa, has been renowned for its therapeutic properties. Recently, extensive documentation has highlighted the prevalence of microbial diseases without effective treatments, the increased expense of certain antimicrobial medications, and the growing occurrence of antimicrobial drug resistance. Experts predict that drug resistance will emerge as a significant global cause of death by the middle of this century, thereby necessitating intervention. Curcumin, a major curcuminoid molecule, has shown extensive antimicrobial action. Improving and altering the use of natural antimicrobial agents is the most effective approach to addressing issues of targeted specificity and drug resistance in chemically synthesized medicines. Further research is required to explore the efficacy of curcumin and other natural antimicrobial substances in combating microbial infections. The solubility and bioavailability of curcumin impede its antimicrobial capability. To enhance curcumin's antimicrobial effectiveness, researchers have recently employed several methods, including the development of curcumin-based nanoformulations. This review seeks to compile the latest available literature to assess the advantages of curcumin as a natural antimicrobial agent (particularly antiviral and antibacterial) and strategies to enhance its medical efficacy. The future application of curcumin will help to alleviate microbial infections, thereby promoting the sustainability of the world's population.
Collapse
Affiliation(s)
- Mohamed El Oirdi
- Department of Life Sciences, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa 31982, Saudi Arabia;
| | - Mohd Farhan
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa 31982, Saudi Arabia;
- Department of Chemistry, College of Sciences, King Faisal University, Al Ahsa 31982, Saudi Arabia
| |
Collapse
|
2
|
Villagrán-Andrade KM, Núñez-Carro C, Blanco FJ, de Andrés MC. Nutritional Epigenomics: Bioactive Dietary Compounds in the Epigenetic Regulation of Osteoarthritis. Pharmaceuticals (Basel) 2024; 17:1148. [PMID: 39338311 PMCID: PMC11434976 DOI: 10.3390/ph17091148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Nutritional epigenomics is exceptionally important because it describes the complex interactions among food compounds and epigenome modifications. Phytonutrients or bioactive compounds, which are secondary metabolites of plants, can protect against osteoarthritis by suppressing the expression of inflammatory and catabolic mediators, modulating epigenetic changes in DNA methylation, and the histone or chromatin remodelling of key inflammatory genes and noncoding RNAs. The combination of natural epigenetic modulators is crucial because of their additive and synergistic effects, safety and therapeutic efficacy, and lower adverse effects than conventional pharmacology in the treatment of osteoarthritis. In this review, we have summarized the chondroprotective properties of bioactive compounds used for the management, treatment, or prevention of osteoarthritis in both human and animal studies. However, further research is needed into bioactive compounds used as epigenetic modulators in osteoarthritis, in order to determine their potential value for future clinical applications in osteoarthritic patients as well as their relation with the genomic and nutritional environment, in order to personalize food and nutrition together with disease prevention.
Collapse
Affiliation(s)
- Karla Mariuxi Villagrán-Andrade
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Carmen Núñez-Carro
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Francisco J Blanco
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
- Grupo de Investigación en Reumatología y Salud, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, Campus de Oza, Universidade da Coruña (UDC), 15008 A Coruña, Spain
| | - María C de Andrés
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| |
Collapse
|
3
|
Liu Q, Wang C, Guo X, Du Q, Keshavarzi M. Curcumin and its nano-formulations combined with exercise: From molecular mechanisms to clinic. Cell Biochem Funct 2024; 42:e4061. [PMID: 38812287 DOI: 10.1002/cbf.4061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/15/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
Curcumin is a strong substance derived from turmeric, a popular spice, renowned for its antioxidant and anti-inflammatory abilities. The study delved deeply into a thorough examination of various sources to evaluate the impact of both regular curcumin and nano-formulated curcumin on elements that impact physical performance, including muscular strain, discomfort, swelling, and oxidative tension. While engaging in exercise, the body experiences a rise in reactive oxygen species and inflammation. As a result, it is important to ensure a proper balance between internal and external sources of antioxidants to maintain stability in the skeletal muscle. Without this balance, there is a risk of muscle soreness, damage, and ultimately, a decline in exercise performance. Curcumin possesses the ability to enhance physical performance and reduce the symptoms of muscle fatigue and injury by virtue of its antioxidative and anti-inflammatory properties. Including curcumin supplements appears to have advantageous effects on various aspects of exercise, such as enhancing performance, assisting with recovery, lessening muscle damage and discomfort, and lowering levels of inflammation and oxidative stress. However, a thorough assessment is necessary to precisely gauge the healing advantages of curcumin in enhancing exercise ability and reducing recovery time.
Collapse
Affiliation(s)
- Qian Liu
- School of Physical Education, Hubei Normal University, Huangshi, 435002, China
| | - Chengyu Wang
- School of Physical Education, Hubei Normal University, Huangshi, 435002, China
| | - Xinyan Guo
- School of Physical Education, Hubei Normal University, Huangshi, 435002, China
| | - Qiankun Du
- School of Physical Education, Hubei Normal University, Huangshi, 435002, China
| | - Maryam Keshavarzi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Youssef AMM, Abu-Ghazaleh HHN, Al-Suhaimat R, Hussein RM. The Antioxidant and anti-inflammatory Activity of Selenium and Lecithin Combination Against ethanol-induced Gastric Ulcer in mice via Modulating IGF-1/PTEN/Akt/FoxO3a Signaling. Biol Trace Elem Res 2024; 202:2158-2169. [PMID: 37676407 DOI: 10.1007/s12011-023-03831-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023]
Abstract
Gastric ulcers are one of the most prevalent gastrointestinal disorders. The current study investigated the antioxidant and anti-inflammatory effects of selenium (Se) and lecithin (Lec) alone and in combination against ethanol-induced gastric ulcers in mice, and their ability to modulate insulin-like growth factor-1 (IGF-1)/ Phosphatase and tensin homologue deleted on chromosome 10 (PTEN)/ Protein kinase B (Akt)/ Forkhead box O3a (FoxO3a) signaling. The mice were divided into normal, ethanol, Se + ethanol, Lec + ethanol, Se + Lec + ethanol, and omeprazole + ethanol groups. Treatment with the selected doses was continued for 14 days before a single dose of absolute ethanol (5 ml/kg body weight) was administered to induce gastric ulcers in mice. The results showed that pretreatment with Se and Lec combination effectively decreased both the macro- and microscopic gastric lesions and increased the protection index compared to the ethanol group. Remarkably, the Se and Lec combination decreased the levels of reactive oxygen species, malondialdehyde, and cytochrome c and increased glutathione, glutathione peroxidase, and thioredoxin reductase activities in gastric tissues. The Se and Lec combination increased prostaglandin E2 and interleukin-10 levels but decreased tumor necrosis factor-α, interleukin-6 and interleukin-1β levels compared to either treatment alone. Interestingly, this combination decreased the expression of IGF-1, p-Akt, and FoxO3a proteins and increased PTEN expression in gastric tissues. The gastric tissues examination by hematoxylin and eosin staining confirmed these results. Therefore, the Se and Lec combination showed superior protective effects against ethanol-induced gastric ulcers in mice, compared to either treatment alone, through antioxidant, and anti-inflammatory activities, in addition to modulating IGF-1/PTEN/Akt/FoxO3a pathway signaling.
Collapse
Affiliation(s)
- Ahmed M M Youssef
- Department of Pharmacology, Faculty of Pharmacy, Mutah University, P.O. Box 7, Al-Karak, 61710, Jordan.
| | - Hussein H N Abu-Ghazaleh
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, P.O. Box 7, Al-Karak, 61710, Jordan
| | - Rawan Al-Suhaimat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mutah University, P.O. Box 7, Al-Karak, 61710, Jordan
| | - Rasha M Hussein
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, P.O. Box 7, Al-Karak, 61710, Jordan.
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Salah Salem Street, Beni-Suef, 62514, Egypt.
| |
Collapse
|
5
|
Zhao J, Liang G, Zhou G, Hong K, Yang W, Liu J, Zeng L. Efficacy and safety of curcumin therapy for knee osteoarthritis: A Bayesian network meta-analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117493. [PMID: 38036015 DOI: 10.1016/j.jep.2023.117493] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/15/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Curcumin, a polyphenolic compound extracted from turmeric (Curcuma longa L.), is widely used in traditional Chinese medicine to treat osteoarthritis and rheumatoid arthritis. Clinical and experimental studies show that curcuminoid formulations have considerable clinical application value in the treatment of knee osteoarthritis (KOA). AIM OF THE STUDY To evaluate the efficacy and safety of curcumin, both alone and in combination with other drugs, in KOA treatment through a Bayesian network meta-analysis (NMA). METHODS We searched PubMed, Embase and Cochrane Library for randomized controlled trials of curcumin for KOA treatment. The time range of the search was from the establishment of each database to April 26, 2023. The NMAs of outcome indicators were all performed using a random-effects model. NMAs were calculated and graphed in R using MetaInsight and Stata 140 software. Measurement data were represented by the mean difference (MD), while count data were represented by the odds ratio (OR); the 95% confidence interval (CI) of each effect size was also calculated. RESULTS This study included 23 studies from 7 countries, including 2175 KOA patients and 6 interventions. The NMA results showed that compared with placebo, curcumin significantly reduced the visual analogue scale pain score (MD = -1.63, 95% CI: -2.91 to -0.45) and total WOMAC score (MD = -18.85, 95% CI: -29.53 to -8.76). Compared with placebo, curcumin (OR = 0.17, 95% CI: 0.08 to 0.36), curcumin + NSAIDs (OR = 0.01, 95% CI: 0.00 to 0.13) and NSAIDs (OR = 0.11, 95% CI: 0.02 to 0.47) reduced the use of rescue medication. Compared with NSAIDs, curcumin (OR = 0.51, 95% CI: 0.25 to 0.94) and curcumin + NSAIDs (OR = 0.23, 95% CI: 0.06 to 0.9) had a reduced incidence of adverse reactions. The surface under the cumulative ranking curve results indicated that curcumin monotherapy, curcumin + chondroprotective agents, and curcumin + NSAIDs have good clinical value in KOA treatment. CONCLUSIONS Curcumin, either alone or in combination with other treatments, is considered to have good clinical efficacy and safety in KOA treatment. Drug combinations containing curcumin may have the dual effect of enhancing efficacy and reducing adverse reactions, but this possibility still needs to be confirmed by further clinical and basic research.
Collapse
Affiliation(s)
- Jinlong Zhao
- State Key Laboratory of Traditional Chinese Medicine Syndrome/The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China; The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China.
| | - Guihong Liang
- State Key Laboratory of Traditional Chinese Medicine Syndrome/The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China; The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China.
| | - Guanghui Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome/The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Kunhao Hong
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Weiyi Yang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China.
| | - Jun Liu
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China; The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Guangdong Second Chinese Medicine Hospital (Guangdong Province Enginering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, 510095, China.
| | - Lingfeng Zeng
- State Key Laboratory of Traditional Chinese Medicine Syndrome/The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China; The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China.
| |
Collapse
|
6
|
Boretti A. Curcumin-Based Fixed Dose Combination Products for Cholesterol Management: A Narrative Review. ACS Pharmacol Transl Sci 2024; 7:300-308. [PMID: 38357288 PMCID: PMC10863436 DOI: 10.1021/acsptsci.3c00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 02/16/2024]
Abstract
Curcumin, a polyphenol compound that belongs to a class of molecules known as curcuminoids, may interact with various biological macromolecules in the body, including proteins, nucleic acids, and lipids. Curcumin-based fixed-dose combination (FDC) products enhance curcumin stability and bioavailability for better clinical use in cholesterol management. Preclinical studies on curcumin and cholesterol are mostly positive. Obstacles are the variable composition of the many different curcumin-based FDC products, the lack of standards, and the limitation of the randomized controlled trials (RCTs) conducted for specific products. Once these downfalls have been addressed, curcumin-based FDC products have great potential for cholesterol management. They can supplement the uptake of statins, reducing their dosage for the same controlling effects or even replacing them.
Collapse
Affiliation(s)
- Alberto Boretti
- Melbourne Institute of Technology, The Argus, 288 La Trobe St, Melbourne, VIC 3000, Australia
| |
Collapse
|
7
|
Shibata S, Kon S. Functional Ingredients Associated with the Prevention and Suppression of Locomotive Syndrome: A Review. Biol Pharm Bull 2024; 47:1978-1991. [PMID: 39617444 DOI: 10.1248/bpb.b24-00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
In 2007, the Japanese Orthopaedic Association proposed the concept of locomotive syndrome, a comprehensive description of conditions involving the functional decline of the locomotor system. Locomotive syndrome includes bone-related diseases such as osteoporosis, joint cartilage and disc-related diseases such as osteoarthritis and lumbar spondylosis, and sarcopenia and locomotive syndrome-related diseases. If left untreated, these diseases are likely to reduce mobility, necessitating nursing care. To prevent the progression of locomotive syndrome, a daily exercise routine and well-balanced diet are important, in addition to recognizing one's own decline in mobility. Therefore, research on the effectiveness of functional ingredients in the prevention and suppression of locomotive syndrome progression is ongoing. In this review, we summarize the latest reports on the effectiveness of five functional ingredients, namely, epigallocatechin gallate, resveratrol, curcumin, ellagic acid, and carnosic acid, in the treatment of osteoarthritis, osteoporosis, and rheumatoid arthritis, which are considered representative diseases of the locomotive syndrome.
Collapse
Affiliation(s)
- Sachi Shibata
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University
| | - Shigeyuki Kon
- Department of Molecular Immunology, Faculty of Pharmaceutical Sciences, Fukuyama University
| |
Collapse
|
8
|
Effects of interleukin 1β on long noncoding RNA and mRNA expression profiles of human synovial fluid derived mesenchymal stem cells. Sci Rep 2022; 12:8432. [PMID: 35589865 PMCID: PMC9120201 DOI: 10.1038/s41598-022-12190-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/25/2022] [Indexed: 11/11/2022] Open
Abstract
Synovial fluid-derived mesenchymal stem cells (SFMSCs) play important regulatory roles in the physiological balance of the temporomandibular joint. Interleukin (IL)-1β regulates the biological behavior of SFMSCs; however, the effects of IL-1β on long noncoding RNA (lncRNA) and mRNA expression in SFMSCs in the temporomandibular joint are unclear. Here, we evaluated the lncRNA and mRNA expression profiles of IL-1β-stimulated SFMSCs. Using microarrays, we identified 264 lncRNAs (203 upregulated, 61 downregulated) and 258 mRNAs (201 upregulated, 57 downregulated) that were differentially expressed after treatment with IL-1β (fold changes ≥ 2, P < 0.05). Kyoto Encyclopedia of Genes and Genomes pathway analysis found that one of the most significantly enriched pathways was the NF-κB pathway. Five paired antisense lncRNAs and mRNAs, eight paired enhancer lncRNAs and mRNAs, and nine paired long intergenic noncoding RNAs and mRNAs were predicted to be co-expressed. A network constructed by the top 30 K-score genes was visualized and evaluated. We found a co-expression relationship between RP3-467K16.4 and IL8 and between LOC541472 and IL6, which are related to NF-κB pathway activation. Overall, our results provide important insights into changes in lncRNA and mRNA expression in IL-1β-stimulated SFMSCs, which can facilitate the identification of potential therapeutic targets.
Collapse
|
9
|
Nakagawa Y, Mori K, Yamada S, Mukai S, Hirose A, Nakamura R. The Oral Administration of Highly-Bioavailable Curcumin for One Year Has Clinical and Chondro-Protective Effects: A Randomized, Double-Blinded, Placebo-Controlled Prospective Study. Arthrosc Sports Med Rehabil 2022; 4:e393-e402. [PMID: 35494290 PMCID: PMC9042777 DOI: 10.1016/j.asmr.2021.10.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/23/2021] [Indexed: 12/17/2022] Open
Abstract
Purpose The purpose of this study was to determine the clinical and chondroprotective efficacy and safety of orally administered Theracurmin in patients who underwent mosaicplasty for knee chondral or osteochondral diseases over 12 months of treatment. Methods We enrolled 50 patients, older than 20 years of age, who underwent mosaicplasty for their knee joint diseases. Theracurmin at 180 mg of curcumin per day or placebo was administered orally every day for 12 months. Because 7 patients dropped out of the study, 43 patients were examined; they included 14 men and 29 women and 24 right and 19 left knees. The mean operative age was 59.5 years (range, 24-84 years). We evaluated the Japanese Orthopaedic Association knee osteoarthritis score (JOA), visual analog scale (VAS), and Japanese Knee Osteoarthritis Measure (JKOM) as clinical symptoms; T2 mapping values using magnetic resonance imaging as an indication of the chondroprotective effect; and blood concentration of curcumin at 0, 3, 6, and 12 months after the operations. We performed intraoperative acoustic evaluation of articular cartilage as a measure of chondroprotective effect during the operations and second-look arthroscopy. Results The JOA, VAS and JKOM at 3, 6, and 12 months were significantly better than those during the preoperative period. However, the values of JOA, VAS and JKOM and T2 mapping were not significantly different between the Theracurmin and placebo groups. The blood concentration of curcumin in the Theracurmin group was significantly higher than that in the placebo group at 3, 6, and 12 months after the operations. Cartilage stiffness and surface roughness were significantly better in the Theracurmin group than in the placebo group at second-look arthroscopy. Conclusions The oral administration of Theracurmin for 1 year demonstrated significantly better chondroprotective effects and no worse clinical effects and adverse events than the placebo. Level of Evidence Level I, double-blinded, placebo-controlled, prospective study.
Collapse
|
10
|
Urošević M, Nikolić L, Gajić I, Nikolić V, Dinić A, Miljković V. Curcumin: Biological Activities and Modern Pharmaceutical Forms. Antibiotics (Basel) 2022; 11:antibiotics11020135. [PMID: 35203738 PMCID: PMC8868220 DOI: 10.3390/antibiotics11020135] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/16/2022] Open
Abstract
Curcumin (1,7-bis-(4-hydroxy-3-methoxyphenyl)-hepta-1,6-diene-3,5-dione) is a natural lipophilic polyphenol that exhibits significant pharmacological effects in vitro and in vivo through various mechanisms of action. Numerous studies have identified and characterised the pharmacokinetic, pharmacodynamic, and clinical properties of curcumin. Curcumin has an anti-inflammatory, antioxidative, antinociceptive, antiparasitic, antimalarial effect, and it is used as a wound-healing agent. However, poor curcumin absorption in the small intestine, fast metabolism, and fast systemic elimination cause poor bioavailability of curcumin in human beings. In order to overcome these problems, a number of curcumin formulations have been developed. The aim of this paper is to provide an overview of recent research in biological and pharmaceutical aspects of curcumin, methods of sample preparation for its isolation (Soxhlet extraction, ultrasound extraction, pressurised fluid extraction, microwave extraction, enzyme-assisted aided extraction), analytical methods (FTIR, NIR, FT-Raman, UV-VIS, NMR, XRD, DSC, TLC, HPLC, HPTLC, LC-MS, UPLC/Q-TOF-MS) for identification and quantification of curcumin in different matrices, and different techniques for developing formulations. The optimal sample preparation and use of an appropriate analytical method will significantly improve the evaluation of formulations and the biological activity of curcumin.
Collapse
|
11
|
Wang P, Ye Y, Yuan W, Tan Y, Zhang S, Meng Q. Curcumin exerts a protective effect on murine knee chondrocytes treated with IL-1β through blocking the NF-κB/HIF-2α signaling pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:940. [PMID: 34350255 PMCID: PMC8263872 DOI: 10.21037/atm-21-2701] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022]
Abstract
Background Osteoarthritis (OA) is characterized by erosion and degradation of articular cartilage. This study assessed the effects of curcumin on mouse knee cartilage chondrocytes. Methods Chondrocytes were treated for 24 hours with interleukin IL-1β (10 ng/mL) alone, or the combination of curcumin (10, 20, and 50 µM) and IL-1β. The proliferation, viability, and cytotoxicity of the chondrocytes were evaluated by the MTS assay. Expression of SOX9, AGG, Col2α, MMP9, ADAMTS5, COX2, iNOS, pIκB-α, pNF-κB, and hypoxia-inducible factor-2α (HIF-2α) were detected by western blotting or quantitative polymerase chain reaction (q-PCR). Nuclear translocation of NF-κB and HIF-2α were investigated by immunofluorescence and immunohistochemistry. In in vivo experiments, mice were subjected to destabilization of the medial meniscus (DMM) and given curcumin orally for 6 weeks. Cartilage integrity was evaluated by OARSI (Osteoarthritic Research Society International) scores. Results Curcumin significantly inhibited the IL-1β-induced reduction of cell viability, degradation of ECM, and the expression of SOX9, Col2α, and AGG (P<0.01). Western blotting, immunofluorescence and immunohistochemistry experiments demonstrated that curcumin dramatically inhibited the activation of NF-κB/HIF-2α in chondrocytes treated with IL-1β (P<0.01). The articular scores were significantly lower in the DMM-induced OA mice compared to OA mice treated with curcumin (P<0.01). Conclusions Curcumin may have the potential to inhibit OA development, partly through suppressing the activation of the NF-κB/HIF-2α pathway.
Collapse
Affiliation(s)
- Pengzhen Wang
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Yanchen Ye
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Yuan
- Department of General Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Yanping Tan
- Department of Neurology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Shaoheng Zhang
- Department of Cardiology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Qingqi Meng
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
12
|
Zhang R, Zhang Q, Zou Z, Li Z, Jin M, An J, Li H, Ma J. Curcumin Supplementation Enhances Bone Marrow Mesenchymal Stem Cells to Promote the Anabolism of Articular Chondrocytes and Cartilage Repair. Cell Transplant 2021; 30:963689721993776. [PMID: 33588606 PMCID: PMC7894692 DOI: 10.1177/0963689721993776] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells derived from bone marrows (BMSCs) and curcumin derived from turmeric were used for osteoarthritis (OA) treatment, respectively. We invested the effects of curcumin supplementation for BMSC therapeutic effects. In vitro, rat BMSCs were identified by dual-immunofluorescent staining of CD44 and CD90, and flow cytometry. Primary articular chondrocytes were identified by toluidine blue staining and immunofluorescent staining of Col2a1. EdU incorporation, migration assay, real-time quantitative polymerase chain reaction, and Western blot analyses were performed to evaluate the alterations of chondrocytes cocultured with BMSCs. In vivo, the rat model of OA was established by monoiodoacetic acid. After intra-articular injection of allogeneic BMSCs, articular cartilage damage and OA progression were evaluated by histological staining, and Osteoarthritis Research Society International and Mankin score evaluation. Although curcumin alone did not improve cell viability of primary articular chondrocytes, it promoted proliferation and migration of chondrocytes when cocultured with BMSCs. Meanwhile, the expression of anabolic genes in chondrocytes was remarkably increased both at mRNA and protein levels. In OA rats, curcumin and BMSCs cooperated to greatly promote articular cartilage repair and retard OA progression. Therefore, curcumin supplementation enhanced the BMSC function for the proliferation and migration of articular chondrocytes, and anabolic gene expression of extracellular matrix in articular chondrocytes in vitro, and the generation of articular cartilage in vivo. Our study shed light on the potential clinical application of curcumin cooperated with BMSCs in cartilage repair for OA treatment.
Collapse
Affiliation(s)
- Rui Zhang
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qiaoxia Zhang
- School of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Zhiyu Zou
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Integrated Traditional Chinese Medicine & Western Medicine Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zheng Li
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Meng Jin
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,School of Basic Medicine, Shannxi University of Traditional Chinese Medicine, Xi'an, Shaanxi, China
| | - Jing An
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hui Li
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jianbing Ma
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
13
|
Xiang Q, Wang J, Wang T, Zuo H. Combination of baicalein and miR-106a-5p mimics significantly alleviates IL-1β-induced inflammatory injury in CHON-001 cells. Exp Ther Med 2021; 21:345. [PMID: 33732318 PMCID: PMC7903477 DOI: 10.3892/etm.2021.9776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) induces inflammation and degeneration of all joint components, and as such, is a considerable source of disability, pain and socioeconomic burden worldwide. Baicalein (BAI) and microRNA (miR)-106a-5p suppress the progression of OA; however, the effects of BAI and miR-106a-5p for the combined treatment of OA are not completely understood. An in vitro OA model was established by treating CHON-001 cells with 20 ng/ml interleukin (IL)-1β. Cell Counting Kit-8 and flow cytometry assays were conducted to evaluate cell viability and apoptosis, respectively. Western blotting was performed to determine the expression levels of Bax, active caspase-3, Bcl-2, collagen I, collagen III, aggrecan, matrix metallopeptidase (MMP)-13, MMP-9, active Notch1 and transcription factor hes family bHLH transcription factor 1 (Hes1). The levels of IL-6 and tumor necrosis factor-α in the cell culture medium were quantified via ELISA. The present study revealed that treatment with BAI or miR-106a-5p mimic alleviated IL-1β-induced apoptosis, and BAI + miR-106a-5p combination treatment exerted enhanced anti-inflammatory effects compared with monotherapy. Furthermore, IL-1β-induced accumulation of collagen, collagen III, MMP-13 and MMP-9 in CHON-001 cells was reversed to a greater degree following combination treatment compared with monotherapy. Likewise, IL-1β-induced aggrecan degradation was markedly reversed by combination treatment. IL-1β-induced upregulation of active Notch1 and Hes1 in CHON-001 cells was also significantly attenuated by combined BAI + miR-106a-5p treatment. In conclusion, the results of the present study revealed that the combination of BAI and miR-106a-5p mimic significantly decreased IL-1β-induced inflammatory injury in CHON-001 cells, which may serve as a novel therapeutic strategy for OA.
Collapse
Affiliation(s)
- Qingtian Xiang
- Department of Orthopedic Surgery, Xiang Shui County People's Hospital, Yancheng, Jiangsu 224600, P.R. China
| | - Jijun Wang
- Department of Orthopedic Surgery, Xiang Shui County People's Hospital, Yancheng, Jiangsu 224600, P.R. China
| | - Tongwei Wang
- Department of Orthopedic Surgery, Xiang Shui County People's Hospital, Yancheng, Jiangsu 224600, P.R. China
| | - Hongguang Zuo
- Department of Orthopedic Surgery, Xiang Shui County People's Hospital, Yancheng, Jiangsu 224600, P.R. China
| |
Collapse
|
14
|
Hamza RZ, Al-Salmi FA, El-Shenawy NS. Chitosan and Lecithin Ameliorate Osteoarthritis Symptoms Induced by Monoiodoacetate in a Rat Model. Molecules 2020; 25:molecules25235738. [PMID: 33291821 PMCID: PMC7730914 DOI: 10.3390/molecules25235738] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/28/2020] [Accepted: 11/28/2020] [Indexed: 01/08/2023] Open
Abstract
The present work aimed to assess the chondroprotective influence of chitosan and lecithin in a monoiodoacetate (MIA)-induced experimental osteoarthritis (OA) model. Forty male rats weighing 180–200 g were randomly distributed among the following five experimental groups (eight per group): control, MIA-induced OA, MIA-induced OA + chitosan, MIA-induced OA + lecithin, and MIA-induced OA + chitosan + lecithin. The levels of TNF-α, IL6, RF, ROS, and CRP, as well as mitochondrial markers such as mitochondrial swelling, cytochrome C oxidase (complex IV), MMP, and serum oxidative/antioxidant status (MDA level) (MPO and XO activities) were elevated in MIA-induced OA. Also, SDH (complex II) activity in addition to the levels of ATP, glutathione (GSH), and thiol was markedly diminished in the MIA-induced OA group compared to in control rats. These findings show that mitochondrial function is associated with OA pathophysiology and suggest that chitosan and lecithin could be promising potential ameliorative agents in OA animal models. Lecithin was more effective than chitosan in ameliorating all of the abovementioned parameters.
Collapse
Affiliation(s)
- Reham Z. Hamza
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Department of Zoology, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
- Correspondence: ; Tel.: +96-6531-355470 or +20-111-8500-586
| | - Fawziah A. Al-Salmi
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Nahla S. El-Shenawy
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
15
|
Wang S, Ni L, Fu X, Duan D, Xu J, Gao X. A Sulfated Polysaccharide from Saccharina japonica Suppresses LPS-Induced Inflammation Both in a Macrophage Cell Model via Blocking MAPK/NF-κB Signal Pathways In Vitro and a Zebrafish Model of Embryos and Larvae In Vivo. Mar Drugs 2020; 18:E593. [PMID: 33255947 PMCID: PMC7760670 DOI: 10.3390/md18120593] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022] Open
Abstract
Inflammation is a complicated host-protective response to stimuli and toxic conditions, and is considered as a double-edged sword. A sulfated Saccharinajaponica polysaccharide (LJPS) with a sulfate content of 9.07% showed significant inhibitory effects against lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophage cells and zebrafish. Its chemical and structural properties were investigated via HPLC, GC, FTIR, and NMR spectroscopy. In vitro experiments demonstrated that LJPS significantly inhibited the generation of nitric oxide (NO) and prostaglandin E2 (PGE2) via the downregulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression and suppressed pro-inflammatory cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-1β production via the nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signal pathways in LPS-induced RAW 264.7 cells. Moreover, LJPS showed strong protective effects against LPS-induced inflammatory responses in zebrafish, increasing the survival rate, reducing the heart rate and yolk sac edema size, and inhibiting cell death and the production of intracellular reactive oxygen species (ROS) and NO. Its convenience for large-scale production and significant anti-inflammatory activity indicated the potential application of LJPS in functional foods, cosmetics, and pharmaceutical industries.
Collapse
Affiliation(s)
- Shengnan Wang
- College of Food Science & Engineering, Ocean University of China, 5th Yushan Road, Qingdao 266003, China; (S.W.); (L.N.); (J.X.); (X.G.)
| | - Liying Ni
- College of Food Science & Engineering, Ocean University of China, 5th Yushan Road, Qingdao 266003, China; (S.W.); (L.N.); (J.X.); (X.G.)
| | - Xiaoting Fu
- College of Food Science & Engineering, Ocean University of China, 5th Yushan Road, Qingdao 266003, China; (S.W.); (L.N.); (J.X.); (X.G.)
| | - Delin Duan
- State Key Lab of Seaweed Bioactive Substances, 1th Daxueyuan Road, Qingdao 266400, China;
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7th Nanhai Road, Qingdao 266071, China
| | - Jiachao Xu
- College of Food Science & Engineering, Ocean University of China, 5th Yushan Road, Qingdao 266003, China; (S.W.); (L.N.); (J.X.); (X.G.)
| | - Xin Gao
- College of Food Science & Engineering, Ocean University of China, 5th Yushan Road, Qingdao 266003, China; (S.W.); (L.N.); (J.X.); (X.G.)
| |
Collapse
|
16
|
Puffing of Turmeric ( Curcuma longa L.) Enhances its Anti-Inflammatory Effects by Upregulating Macrophage Oxidative Phosphorylation. Antioxidants (Basel) 2020; 9:antiox9100931. [PMID: 33003300 PMCID: PMC7600901 DOI: 10.3390/antiox9100931] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 02/07/2023] Open
Abstract
Turmeric (Curcuma longa L.), a widely used spice, has anti-inflammatory properties and other health benefits, but the detailed mechanisms of these effects are still poorly understood. Recent advances in assessment of cellular energy metabolism have revealed that macrophage mitochondrial respiration is critical in inflammatory responses. In an effort to enhance the anti-inflammatory function of turmeric with a simple processing method, extract of puffed turmeric was investigated for effect on macrophage energy metabolism. The high-performance liquid chromatography analysis revealed that puffing of turmeric significantly induced the degradation of curcumin to smaller active compounds including vanillic acid, vanillin and 4-vinylguaiacol. The in vitro consumption of oxygen as expressed by the oxygen consumption rate (OCR) was significantly downregulated following lipopolysaccharides stimulation in RAW 264.7 macrophages. Puffed turmeric extract, but not the non-puffed control, reversed the LPS-induced decrease in OCR, resulting in downregulated transcription of the pro-inflammatory genes cyclooxygenase-2 and inducible nitric oxide synthase. Dietary intervention in high-fat diet-induced obese mice revealed that both control and puffed turmeric have anti-obesity effects in vivo, but only puffed turmeric exhibited reciprocal downregulation of the inflammatory marker cluster of differentiation (CD)11c and upregulation of the anti-inflammatory marker CD206 in bone marrow-derived macrophages. Puffed turmeric extract further modulated the low-density lipoprotein/high-density lipoprotein cholesterol ratio toward that of the normal diet group, indicating that puffing is a simple, advantageous processing method for turmeric as an anti-inflammatory food ingredient.
Collapse
|
17
|
Nutraceutical Activity in Osteoarthritis Biology: A Focus on the Nutrigenomic Role. Cells 2020; 9:cells9051232. [PMID: 32429348 PMCID: PMC7291002 DOI: 10.3390/cells9051232] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a disease associated to age or conditions that precipitate aging of articular cartilage, a post-mitotic tissue that remains functional until the failure of major homeostatic mechanisms. OA severely impacts the national health system costs and patients' quality of life because of pain and disability. It is a whole-joint disease sustained by inflammatory and oxidative signaling pathways and marked epigenetic changes responsible for catabolism of the cartilage extracellular matrix. OA usually progresses until its severity requires joint arthroplasty. To delay this progression and to improve symptoms, a wide range of naturally derived compounds have been proposed and are summarized in this review. Preclinical in vitro and in vivo studies have provided proof of principle that many of these nutraceuticals are able to exert pleiotropic and synergistic effects and effectively counteract OA pathogenesis by exerting both anti-inflammatory and antioxidant activities and by tuning major OA-related signaling pathways. The latter are the basis for the nutrigenomic role played by some of these compounds, given the marked changes in the transcriptome, miRNome, and methylome. Ongoing and future clinical trials will hopefully confirm the disease-modifying ability of these bioactive molecules in OA patients.
Collapse
|
18
|
Kim HS, Lee JH, Moon SH, Ahn DU, Paik HD. Ovalbumin Hydrolysates Inhibit Nitric Oxide Production in LPS-induced RAW 264.7 Macrophages. Food Sci Anim Resour 2020; 40:274-285. [PMID: 32161922 PMCID: PMC7057040 DOI: 10.5851/kosfa.2020.e12] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/23/2022] Open
Abstract
In this study, ovalbumin (OVA) hydrolysates were prepared using various
proteolytic enzymes and the anti-inflammatory activities of the hydrolysates
were determined. Also, the potential application of OVA as a functional food
material was discussed. The effect of OVA hydrolysates on the inhibition of
nitric oxide (NO) production was evaluated via the Griess reaction, and their
effects on the expression of inducible NO synthase (inducible nitric oxide
synthase, iNOS) were assessed using the quantitative real-time PCR and Western
blotting. To determine the mechanism by which OVA hydrolysates activate
macrophages, pathways associated with the mitogen-activated protein kinase
(MAPK) signaling were evaluated. When the OVA hydrolysates were added to RAW
264.7 cells without lipopolysaccharide (LPS) stimulation, they did not affect
the production of NO. However, both the OVA-Protex 6L hydrolysate (OHPT) and
OVA-trypsin hydrolysate (OHT) inhibited NO production dose-dependently in LPS-
stimulated RAW 264.7 cells. Especially, OHT showed a strong NO-inhibitory
activity (62.35% at 2 mg/mL) and suppressed iNOS production and the mRNA
expression for iNOS (p<0.05). Also, OHT treatment decreased the
phosphorylation levels of Jun amino-terminal kinases (JNK) and extracellular
signal-regulated kinases (ERK) in the MAPK signaling pathway. These findings
suggested that OVA hydrolysates could be used as an anti-inflammatory agent that
prevent the overproduction of NO.
Collapse
Affiliation(s)
- Hyun Suk Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Jae Hoon Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Sun Hee Moon
- Department of Environmental and Occupational Health, University of Arkansas for Medical Science, Little Rock, Arkansas 72205, USA
| | - Dong Uk Ahn
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
19
|
Yu S, Go GW, Kim W. Medium Chain Triglyceride (MCT) Oil Affects the Immunophenotype via Reprogramming of Mitochondrial Respiration in Murine Macrophages. Foods 2019; 8:foods8110553. [PMID: 31694322 PMCID: PMC6915711 DOI: 10.3390/foods8110553] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/24/2022] Open
Abstract
Medium chain triglyceride (MCT) oil has been postulated to modulate inflammatory responses, but the detailed mechanisms have not been fully elucidated. Based on recent studies demonstrating that mitochondrial metabolic reprogramming and immune responses are correlated, the current study sought to determine whether MCT oil controls inflammatory responses through modulation of mitochondria using both in vitro and in vivo models. The mitochondrial metabolic phenotypes of macrophages were assessed according to oxygen consumption rate (OCR). Inflammatory responses were assessed for production of cytokines and expression of activation markers. MCT oil was more rapidly oxidized as observed by increased OCR in macrophages. The production of pro-inflammatory cytokines was down-regulated and anti-inflammatory cytokine was elevated by MCT oil. In addition, classically activated M1 and alternatively activated M2 markers were reciprocally regulated by MCT intervention. Overall, up-regulated β-oxidation by MCT contributes to the anti-inflammatory M2-like status of macrophages, which may aid in the dietary prevention and/or amelioration of inflammation.
Collapse
Affiliation(s)
- Seungmin Yu
- Department of Food Science and Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea;
| | - Gwang-woong Go
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Korea
- Correspondence: (G.-w.G.); (W.K.); Tel.: +82-2-2220-1206 (G.-w.G.); +82-31-201-3482 (W.K.)
| | - Wooki Kim
- Department of Food Science and Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea;
- Correspondence: (G.-w.G.); (W.K.); Tel.: +82-2-2220-1206 (G.-w.G.); +82-31-201-3482 (W.K.)
| |
Collapse
|
20
|
Kim MS, Kim JY. Cinnamon subcritical water extract attenuates intestinal inflammation and enhances intestinal tight junction in a Caco-2 and RAW264.7 co-culture model. Food Funct 2019; 10:4350-4360. [DOI: 10.1039/c9fo00302a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cinnamon is known to have several physiological effects; the effects of Cinnamomum japonicum Sieb. on anti-inflammation and tight junctions were investigated using the cellular intestinal inflammation model.
Collapse
Affiliation(s)
- Min Seo Kim
- Department of Food Science and Technology
- Seoul National University of Science and Technology
- Seoul 01811
- Republic of Korea
| | - Ji Yeon Kim
- Department of Food Science and Technology
- Seoul National University of Science and Technology
- Seoul 01811
- Republic of Korea
| |
Collapse
|