1
|
Kim SZ, Jeong MS, Lee JE, Kim KN, Zheng Q, Yuk HG. Antifungal effect and mechanism of 405 nm light-emitting diodes combined with riboflavin on Penicillium digitatum and Penicillium italicum. J Appl Microbiol 2025; 136:lxaf104. [PMID: 40307958 DOI: 10.1093/jambio/lxaf104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/02/2025] [Accepted: 04/28/2025] [Indexed: 05/02/2025]
Abstract
AIMS This study was designed to evaluate the antifungal effect of a 405 nm light-emitting diode (LED) combined with an exogenous photosensitizer against Penicillium digitatum and Penicillium italicum and elucidate the antifungal mechanism. METHODS AND RESULTS The results showed that riboflavin significantly enhanced the antifungal effect of 405 nm LED illumination among the three photosensitizers tested (chlorogenic acid, chlorophyllin, and riboflavin). Riboflavin inactivated mold spores below the detection limit (∼6.0 log reduction) at a lower dose (1.9-2.6 kJ cm-2) compared to the others and LED alone. Mycelial growth and sporulation were completely suppressed by LED illumination with or without riboflavin. Adding ascorbic acid required a similar dose (3.9 kJ cm-2) for spore inactivation, suggesting reactive oxygen species (ROS) generation as the primary mechanism. Transmission electron microscopy revealed intracellular organelle damage without morphological changes in spores. Lipid peroxidation, indicated by a 6- to 8-fold increase in malondialdehyde concentration, likely caused the organelle damage. CONCLUSIONS This study confirmed that riboflavin-mediated 405 nm LED illumination was more effective in controlling both molds than LED illumination alone, and that its antifungal effect might be due to the ROS generated by the photoinactivation of riboflavin during LED illumination, which oxidizes the membranes of intracellular organelles.
Collapse
Affiliation(s)
- Su Zi Kim
- Major in Food Science and Technology, Korea National University of Transportation, 61 Daehak-ro, Jeungpyeong-gun, Chungbuk 27909, Republic of Korea
| | - Myeong Seon Jeong
- Center for Bio-imaging Translational Research, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Joo Eun Lee
- Thermo Fisher Scientific, Yongin, Gyeonggi 17111, Republic of Korea
| | - Kil-Nam Kim
- Honam Regional Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
| | - Qianwang Zheng
- Colleage of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510604, China
| | - Hyun-Gyun Yuk
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea
- GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea
| |
Collapse
|
2
|
Jiang Z, Feng J, Dai Y, Yu W, Bai S, Bai C, Tu Z, Guo P, Liao T, Qiu L. Preparation of a biodegradable packaging film by konjac glucomannan/sodium alginate reinforced with nitrogen-doped carbon quantum dots from crayfish shell for crayfish meat preservation. Int J Biol Macromol 2025; 297:139596. [PMID: 39800018 DOI: 10.1016/j.ijbiomac.2025.139596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/27/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
The development of biomass material is an important approach to alleviating the excessive using of plastic packaging, by which the product could be more environmentally friendly and lower toxicity. In this study, we developed a biodegradable photodynamic antibacterial food packaging film using nitrogen-doped carbon quantum dots (N-CQDs) synthesized from crayfish shells, combined with konjac glucomannan (KGM) and sodium alginate (SA). Casting method was used to prepare the composite film and results indicated that incorporation of N-CQDs significantly enhanced the mechanical and barrier properties of the film by reducing the number of micropores. The N-CQDs endowed the film with strong antioxidant activity and UV resistance. The DPPH scavenging rate of the composite film reached 77.92 %, while the transmittance of ultraviolet (300 nm) was reduced to 16.97 %. Furthermore, under blue light irradiation, the film exhibited excellent photodynamic antibacterial effects against Shewanella putrefaciens and Staphylococcus aureus, achieving inhibition rates of 99.2 % and 98.99 %, respectively. The film solution demonstrated no cytotoxicity, and the composite film preserved crayfish meat for up to 8 days at 4 °C. Furthermore, the film almost completely degrading in soil within 14 days. These findings suggest that the KGM/SA/N-CQD film is a promising degradable antimicrobial material for food packaging applications.
Collapse
Affiliation(s)
- Ziwei Jiang
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Engineering Research Center for Agro-Product Irradiation, Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan 430064, China; School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 4300731, China
| | - Jundong Feng
- Department of Materials Science and Technology, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China
| | - Yaodong Dai
- Department of Materials Science and Technology, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China
| | - Wei Yu
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Shunjie Bai
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Engineering Research Center for Agro-Product Irradiation, Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan 430064, China
| | - Chan Bai
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Engineering Research Center for Agro-Product Irradiation, Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan 430064, China
| | - Ziyi Tu
- Hubei Crawfish Industrial Tech Ltd, Qianjiang 433100, China
| | - Peng Guo
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Engineering Research Center for Agro-Product Irradiation, Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan 430064, China
| | - Tao Liao
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Engineering Research Center for Agro-Product Irradiation, Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan 430064, China
| | - Liang Qiu
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Engineering Research Center for Agro-Product Irradiation, Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan 430064, China; Department of Materials Science and Technology, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China.
| |
Collapse
|
3
|
Zhang X, Na F, Zhang M, Yang W. Microbial Control in the Processing of Low-Temperature Meat Products: Non-Thermal Sterilization and Natural Antimicrobials. Foods 2025; 14:225. [PMID: 39856890 PMCID: PMC11764996 DOI: 10.3390/foods14020225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
The safety and health of food have been persistent concerns, particularly about meat products. Low-temperature meat products refer to those that are processed at lower temperatures. Meat, rich in proteins and other nutrients, is highly susceptible to microbial contamination, leading to spoilage, particularly when processed at lower temperatures that increase storage and transportation requirements. In response to the limitations of conventional preservation methods, such as heat treatment and chemical bacteriostats, emerging preservation technologies are increasingly being adopted. These technologies aim to mitigate the negative effects of microorganisms on meat products. Non-thermal technologies and biotechnological approaches, which are low in energy consumption and energy efficiency, are becoming more prevalent. Non-thermal sterilization technology is widely applied in various food products. It maintains the original quality of food, enhances food safety, reduces energy consumption, and improves production efficiency. Biocides are extensively used in the antibacterial field owing to their high efficiency, low toxicity, and long-lasting properties. Both non-thermal sterilization technology and biocides can ensure food safety, extend the shelf life of food products, improve food quality, meet consumers' demand for natural and healthy food, enhance market competitiveness, and play a positive role in promoting the sustainable development of the food industry. This paper provides a comprehensive review of the specific applications of biocides and non-thermal sterilization methods in food, highlighting the control parameters and their effects on microbes during low-temperature meat processing, to supply pertinent researchers with theoretical references.
Collapse
Affiliation(s)
- Xiaoyang Zhang
- College of Food Science and Bioengineering, Tianjin Agricultural University, Tianjin 300380, China
| | - Feng Na
- College of Food Science and Bioengineering, Tianjin Agricultural University, Tianjin 300380, China
| | - Min Zhang
- College of Food Science and Bioengineering, Tianjin Agricultural University, Tianjin 300380, China
| | - Wei Yang
- College of Basic Science, Tianjin Agricultural University, Tianjin 300380, China
| |
Collapse
|
4
|
Xiao J, Zhang H. Inactivation of Listeria monocytogenes, Escherichia coli O157:H7, and Staphylococcus aureus by sequential light-emitting diodes (LEDs) treatment at 365 nm and 420 nm. Food Res Int 2025; 199:115352. [PMID: 39658156 DOI: 10.1016/j.foodres.2024.115352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/25/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024]
Abstract
Frequent outbreaks caused by foodborne pathogens pose long-term risks to consumer health. To proactively reduce the load of pathogenic bacteria during food processing, a novel light-based antibacterial approach was developed by sequential application of 365 nm and 420 nm light-emitting diodes (LEDs). Results demonstrated that after treatment with 365 nm (480 J/cm2) followed by 420 nm (307.2 J/cm2), the reduction of Listeria monocytogenes reached 4.05 ± 0.31 log CFU/mL, significantly higher (an additional 1.8 log CFU/mL, P < 0.05) than cumulative reductions achieved by each 365 nm (2.25 ± 0.92 log CFU/mL) and 420 nm (0.02 ± 0.15 log CFU/mL) treatments. Further analysis revealed that the enhancement in bacterial reduction achieved through the sequential treatment with 365 nm and 420 nm was primarily driven by the exposure time to 365 nm. The inactivation mechanisms were investigated, considering possible photothermal, physical, and oxidative effects. Findings showed that the antibacterial effect of sequential treatment was mainly ascribed to intracellular oxidation generated by reactive oxidative species (ROS), namely hydrogen peroxide and superoxide anion. The antibacterial mechanism of two LEDs may result from the sensitization of bacterial cells to excessive ROS, as evidenced by fluorescent intensity measurements and chemical scavenger assays. This research provides new insight for improving the efficacy of UVA and blue light treatment to control food contamination by Listeria.
Collapse
Affiliation(s)
- Jie Xiao
- College of Food Science and Nutritional Engineering, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing 100083, PR China
| | - Hongchao Zhang
- College of Food Science and Nutritional Engineering, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
5
|
Chen L, Zhao Y, Shi Q, Du Y, Zeng Q, Liu H, Zhang Z, Zheng H, Wang JJ. Preservation effects of photodynamic inactivation-mediated antibacterial film on storage quality of salmon fillets: Insights into protein quality. Food Chem 2024; 444:138685. [PMID: 38341917 DOI: 10.1016/j.foodchem.2024.138685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
The preservation effects of a photodynamic inactivation (PDI)-mediated polylactic acid/5-aminolevulinic acid (PLA/ALA) film on the storage quality of salmon fillets were investigated. Results showed that the PDI-mediated PLA/ALA film could continuously generate reactive oxygen species by consuming oxygen to inactivate native pathogens and spoilage bacteria on salmon fillets. Meanwhile, the film maintained the content of muscle proteins and their secondary and tertiary structures, as well as the integrity of myosin by keeping the activity of Ca2+-ATPase, all of which protected the muscle proteins from degradation. Furthermore, the film retained the activity of total superoxide dismutase (T-SOD), suppressed the accumulation of lipid peroxides (e.g., MDA), which greatly inhibited four main types of protein oxidations. As a result, the content of flavor amino acids and essential amino acids in salmon fillets was preserved. Therefore, the PDI-mediated antimicrobial packaging film greatly preserves the storage quality of aquatic products by preserving the protein quality.
Collapse
Affiliation(s)
- Lu Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China.
| | - Qiandai Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yu Du
- Data Information Center, Polar Research Institute of China, Shanghai 200136, China
| | - Qiaohui Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
| | - Zhaohuan Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
| | - Huaming Zheng
- School of Material Sciences & Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Jing Jing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China.
| |
Collapse
|
6
|
Kaavya R, Rajasekaran B, Shah K, Nickhil C, Palanisamy S, Palamae S, Chandra Khanashyam A, Pandiselvam R, Benjakul S, Thorakattu P, Ramesh B, Aurum FS, Babu KS, Rustagi S, Ramniwas S. Radical species generating technologies for decontamination of Listeria species in food: a recent review report. Crit Rev Food Sci Nutr 2024; 65:1974-1998. [PMID: 38380625 DOI: 10.1080/10408398.2024.2316295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Foodborne illnesses occur due to the contamination of fresh, frozen, or processed food products by some pathogens. Among several pathogens responsible for the illnesses, Listeria monocytogenes is one of the lethal bacteria that endangers public health. Several preexisting and novel technologies, especially non-thermal technologies are being studied for their antimicrobial effects, particularly toward L. monocytogenes. Some noteworthy emerging technologies include ultraviolet (UV) or light-emitting diode (LED), pulsed light, cold plasma, and ozonation. These technologies are gaining popularity since no heat is employed and undesirable deterioration of food quality, especially texture, and taste is devoided. This review aims to summarize the most recent advances in non-thermal processing technologies and their effect on inactivating L. monocytogenes in food products and on sanitizing packaging materials. These technologies use varying mechanisms, such as photoinactivation, photosensitization, disruption of bacterial membrane and cytoplasm, etc. This review can help food processing industries select the appropriate processing techniques for optimal benefits, in which the structural integrity of food can be preserved while simultaneously destroying L. monocytogenes present in foods. To eliminate Listeria spp., different technologies possess varying mechanisms such as rupturing the cell wall, formation of pyrimidine dimers in the DNA through photochemical effect, excitation of endogenous porphyrins by photosensitizers, generating reactive species, causing leakage of cellular contents and oxidizing proteins and lipids. These technologies provide an alternative to heat-based sterilization technologies and further development is still required to minimize the drawbacks associated with some technologies.
Collapse
Affiliation(s)
| | - Bharathipriya Rajasekaran
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | | | - C Nickhil
- Department of Food Engineering and Technology, Tezpur University, Assam, India
| | - Suguna Palanisamy
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Suriya Palamae
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | | | - R Pandiselvam
- Physiology, Biochemistry, and Post-Harvest Technology Division, ICAR - Central Plantation Crops Research Institute, Kasaragod, Kerala, India
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Priyamavada Thorakattu
- Department of Animal Sciences and Industry/Food Science Institute, Kansas State University, Manhattan, KS, USA
| | - Bharathi Ramesh
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE, USA
| | - Fawzan Sigma Aurum
- Research Center for Food Technology and Processing, National Research and Innovation Agency, Yogyakarta, Indonesia
| | | | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Seema Ramniwas
- University Centre for Research and Development, University of Biotechnology, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
7
|
Lv Y, Li P, Cen L, Wen F, Su R, Cai J, Chen J, Su W. Gelatin/carboxymethylcellulose composite film combined with photodynamic antibacterial: New prospect for fruit preservation. Int J Biol Macromol 2024; 257:128643. [PMID: 38061514 DOI: 10.1016/j.ijbiomac.2023.128643] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024]
Abstract
Plastic packaging causes environmental pollution, and the development of simple and effective biodegradable active packaging remains a challenge. In this study, gelatin (G) and sodium carboxymethylcellulose (CMC) were used as film materials, with the addition of curcumin (Cur), a photosensitive substance, to investigate the changes in the physical and chemical properties of the film and its application in fruit preservation. The results demonstrated that Cur was compatible with the film. With the addition of Cur, the thickness of the film increased up to 1.3 times, while the moisture content was reduced to 12.10 %. The tensile strength (TS) and elongation at break (EAB) of the film can reach 8.84 MPa and 19.33 %, respectively. The photodynamic antibacterial experiment revealed that the film containing 0.5 % Cur exhibited the highest antibacterial rate, reaching 99.99 % against Staphylococcus aureus (S. aureus) and 95 % against Escherichia coli (E. coli). During storage, the grapes remained unspoiled for up to 9 days after being phototreated with the film and the microbial content of the skin was much lower than that of the control group. In addition, Cur provided antioxidant activity for the film, with a scavenging activity of 39.54 % against the 2,2-diphenyl-1-picrind radical (DPPH). Bananas exposed to the film-forming solution for a short period of time remained fresh for up to 6 days. During preservation, the weight of the treated bananas decreased more slowly than that of the control group. In addition, the activity of SOD on the 7th day was approximately 20 U/g higher than that of the control group, which helped to reduce oxidative stress during banana preservation. In summary, G-CMC/Cur film is an optional fruit-cling film that can be used in food packaging.
Collapse
Affiliation(s)
- Yingbin Lv
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Peiyuan Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.
| | - Lei Cen
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Fangzhou Wen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Rixiang Su
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Jinyun Cai
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Jingdi Chen
- Marine College, Shandong University, Weihai 264209, China
| | - Wei Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China.
| |
Collapse
|
8
|
Lee SG, Kim SJ, Bang WS, Yuk HG. Combined antibacterial effect of 460 nm light-emitting diode illumination and chitosan against Escherichia coli O157:H7, Salmonella spp. and Listeria monocytogenes on fresh-cut melon, and the impact of combined treatment on fruit quality. Food Sci Biotechnol 2024; 33:191-202. [PMID: 38186619 PMCID: PMC10766941 DOI: 10.1007/s10068-023-01324-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 04/08/2023] [Accepted: 04/26/2023] [Indexed: 01/09/2024] Open
Abstract
This study evaluated the combined antibacterial effect of 460 nm LED illumination and chitosan on Escherichia coli O157:H7, Salmonella spp. and Listeria monocytogenes on fresh-cut melon surface and its impact on the quality of melon at a total dose of 2.4 kJ/cm2 at 4 and 10 °C. Results showed that the antibacterial effect of LED illumination in combination with chitosan (0.5 and 1.0%) was much better than that of LED illumination alone, showing their synergistic effect. Among the pathogens, L. monocytogenes was the most susceptible pathogen to LED illumination. Although the color of melons became paler after LED illumination, there was little to no change in ascorbic acid content, total flavonoid content, or antioxidant capacity of the illuminated fruits compared with non-illuminated fruits. Thus, these results suggest that chitosan-mediated 460 nm LED illumination could be applied to inactivate foodborne pathogens on fresh-cut melons during storage at food establishments.
Collapse
Affiliation(s)
- Seok-Gyu Lee
- Department of Food Science and Technology, Korea National University of Transportation, 61 Daehak-ro, Jeungpyeong-gun, Chungbuk 27909 Korea
| | - Su-Jin Kim
- Department of Food and Nutrition, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongsangbuk-do 38541 Korea
| | - Woo-Suk Bang
- Department of Food and Nutrition, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongsangbuk-do 38541 Korea
| | - Hyun-Gyun Yuk
- Department of Food Science and Technology, Korea National University of Transportation, 61 Daehak-ro, Jeungpyeong-gun, Chungbuk 27909 Korea
| |
Collapse
|
9
|
Chitosan enhances antibacterial efficacy of 405 nm light-emitting diode illumination against Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella spp. on fresh-cut melon. Food Res Int 2023; 164:112372. [PMID: 36737959 DOI: 10.1016/j.foodres.2022.112372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/08/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022]
Abstract
This study aimed to evaluate the influence of chitosan on the antibacterial efficacy of 405 nm LED illumination against Escherichia coli O157:H7, Salmonella spp., and Listeria monocytogenes on fresh-cut melons. The antibacterial efficacy of LED illumination (a total dose of 1.3 kJ/cm2) with or without chitosan (0.5 and 1.0 %) against these three pathogens was determined at 4 and 10 °C, respectively. Non-illuminated and chitosan-treated fruits were stored in the dark for 36 h under the same temperature. Color changes, ascorbic acid content, and total flavonoid content of illuminated and non-illuminated fruits were also analyzed. The results showed that the populations of all three pathogens on the non-illuminated and chitosan-treated fruits remained unchanged during storage. Regardless of bacterial species and chitosan concentrations, LED illumination in combination with chitosan greatly reduced the bacterial populations by 1.5 - 3.5 log/cm2, which was greater than LED illumination alone. Among the three pathogens, L. monocytogenes was the most susceptible to chitosan-mediated LED illumination. However, the whiteness index of illuminated fruits significantly increased by 1.3-fold compared to that of non-illuminated fruits, regardless of the presence of chitosan. Unlike color, no significant difference was observed in ascorbic acid and total flavonoid contents between illuminated and non-illuminated fruits. Although the fruit color was changed by LED illumination, these results indicate that adding chitosan could enhance the antibacterial efficacy of 405 nm LED illumination against major foodborne pathogens on fresh-cut melons without changing nutritional quality.
Collapse
|
10
|
Zhang W, Su P, Ma J, Gong M, Ma L, Wang J. A singlet state oxygen generation model based on the Monte Carlo method of visible antibacterial blue light inactivation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 239:112628. [PMID: 36610348 DOI: 10.1016/j.jphotobiol.2022.112628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/22/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Visible antibacterial blue light (VABL) has received much attention recently as a nondestructive inactivation approach. However, due to the sparse distribution of bacteria, the light energy evaluation method used in existing studies is inaccurate. Thus, the sensitivity of microorganisms to VABL in different experiments cannot be compared. In this paper, a Monte Carlo-based photon transport model with the optimized scattering phase function was constructed. The model calculated the spatial light energy distribution and the temporal distribution of cumulative singlet state oxygen (CSO) under various cell and medium parameters. The simulation results show that when the cells are sparsely distributed, <30% of light energy from the light source is absorbed by microbes and participates in photochemical reactions. The CSO produced increases with cell density and cell size. Little light energy is available, and thus, the concentration of CSO produced is insufficient to inactivate microbes at deeper depths. As the light intensity and inactivation time increased, the production of singlet state oxygen tended to level off. The model proposed here can quantify the generation of singlet state oxygen and provide a more accurate light energy guide for the VABL inactivation process.
Collapse
Affiliation(s)
- Wanqing Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ping Su
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jianshe Ma
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Mali Gong
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Liya Ma
- Shenzhen Baoan Women and Children's Hospital, Jinan University, Shenzhen 518100, China
| | - Jing Wang
- College of Water Conservancy, Yunnan Agricultural University, Kunming 650000, China
| |
Collapse
|
11
|
Yu X, Zou Y, Zhang Z, Wei T, Ye Z, Yuk HG, Zheng Q. Recent advances in antimicrobial applications of curcumin-mediated photodynamic inactivation in foods. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Abstract
Current strategies of combating bacterial infections are limited and involve the use of antibiotics and preservatives. Each of these agents has generally inadequate efficacy and a number of serious adverse effects. Thus, there is an urgent need for new antimicrobial drugs and food preservatives with higher efficacy and lower toxicity. Edible plants have been used in medicine since ancient times and are well known for their successful antimicrobial activity. Often photosensitizers are present in many edible plants; they could be a promising source for a new generation of drugs and food preservatives. The use of photodynamic therapy allows enhancement of antimicrobial properties in plant photosensitizers. The purpose of this review is to present the verified data on the antimicrobial activities of photodynamic phytochemicals in edible species of the world’s flora, including the various mechanisms of their actions.
Collapse
|
13
|
Liu D, Gu W, Wang L, Sun J. Photodynamic inactivation and its application in food preservation. Crit Rev Food Sci Nutr 2021; 63:2042-2056. [PMID: 34459290 DOI: 10.1080/10408398.2021.1969892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Food incidents caused by various foodborne pathogenic bacteria are posing a major threat to human health. The traditional thermal and chemical-based procedures applied for microbial control in the food industry cause adverse effects on food quality and bacterial resistance. As a new means of innovative sterilization technology, photodynamic inactivation (PDI) has gained significant attention due to excellent sterilization effect, environmental friendliness, safety, and low cost. This review analyses new developments in recent years for PDI systems applied to the food preservation. The fundamentals of photosensitization mechanism, the development of photosensitizers and light source selection are discussed. The application of PDI in food preservation are presented, with the main emphasis on the natural photosensitizers and its application to inactivate in vitro and in vivo microorganisms in food matrixes such as fresh vegetable, fruits, seafood, and poultry. The challenges and future research directions facing the application of this technology to food systems have been proposed. This review will provide reference for combating microbial contamination in food industry.
Collapse
Affiliation(s)
- Dan Liu
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Weiming Gu
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Lu Wang
- College of Food Science and Engineering, Jilin University, Changchun, PR China
| | - Jianxia Sun
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| |
Collapse
|