1
|
Dong B, Wang Y, Han L, Cui G, Lin Y, Su Z, Zhao G. Preparation, characterization and antimicrobial properties of double lysine-modified chitosan and its preservation ability in chicken meat refrigeration. Food Chem 2025; 479:143787. [PMID: 40086386 DOI: 10.1016/j.foodchem.2025.143787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/17/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
In this study, to increase the antimicrobial activity of chitosan, lysine was grafted onto chitosan, resulting in a novel derivative named double lysine-modified chitosan (DL-chitosan). The use of 1H NMR, FT-IR, SEM, TG and DTG analyses provided compelling evidence of the structure of the newly developed derivatives. The MICs of DL-chitosan ranged from 0.225 mg/mL to 0.300 mg/mL with a broad antibacterial spectrum, which were greater than unmodified chitosan. The SEM, TEM and PI staining analysis indicated its antimicrobial impact is the disruption of bacterial cell membrane. Moreover, DL-chitosan not only inhibited the growth of total bacteria in chicken meat during refrigerated but also increased the diversity and abundance of beneficial bacterial communities. The DL-chitosan can extend the shelf life of chicken meat during refrigeration, owning to the maintenance of the meat physicochemical attributes including pH, Drip loss, TVBN, and TBARS. Overall, DL-chitosan shows promise as a natural preservative.
Collapse
Affiliation(s)
- Bin Dong
- State Key laboratory of Food nutrition and safety, Key laboratory of Food nutrition and safety, Ministry of education, College of Food science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Yijie Wang
- College of Biological and Environmental Engineering, Shandong University of Aeronautics, Binzhou, China
| | - Lili Han
- Binzhou People's Hospital affiliated to Shandong First Medical University, China
| | - Guirong Cui
- College of Biological and Environmental Engineering, Shandong University of Aeronautics, Binzhou, China
| | - Yanjun Lin
- College of Biological and Environmental Engineering, Shandong University of Aeronautics, Binzhou, China
| | - Zhiwei Su
- College of Biological and Environmental Engineering, Shandong University of Aeronautics, Binzhou, China; Dezhou Xiangsheng Food Co., Ltd, Dezhou, China.
| | - Guozhong Zhao
- State Key laboratory of Food nutrition and safety, Key laboratory of Food nutrition and safety, Ministry of education, College of Food science and Engineering, Tianjin University of Science & Technology, Tianjin, China.
| |
Collapse
|
2
|
Lou M, Ji S, Wu R, Zhu Y, Wu J, Zhang J. Microbial production systems and optimization strategies of antimicrobial peptides: a review. World J Microbiol Biotechnol 2025; 41:66. [PMID: 39920500 DOI: 10.1007/s11274-025-04278-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/26/2025] [Indexed: 02/09/2025]
Abstract
Antibiotic resistance has become a public safety issue of the twenty-first century, posing a growing threat and drawing increased attention. Compared to traditional antibiotics, antimicrobial peptides (AMPs), as naturally produced small peptides, can target multiple pathways within pathogens and render them less prone to developing resistance. This makes them promising alternatives to antibiotics. However, traditional chemical synthesis methods face challenges, such as high costs, low yields, and poor stability, limiting the large-scale industrial production of AMPs. Despite extensive research to improve AMP production efficiency, issues such as low yields and complex extraction processes continue to pose significant barriers to commercial application. Therefore, there is an urgent need for new biosynthesis strategies and optimization methods to enhance AMP production efficiency and quality. This review summarizes the sources, classification, mechanisms of action and recent advances in the microbial synthesis of AMPs. It also explores innovative production methods, including recombinant microbial expression systems, fusion tags, codon optimization, tandem multimer expression, and hybrid peptide expression. Furthermore, we review the applications of gene editing technologies and artificial intelligence in AMP production, providing new perspectives and strategies for efficient, large-scale AMP production.
Collapse
Affiliation(s)
- Mengxue Lou
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, People's Republic of China
| | - Shuaiqi Ji
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, People's Republic of China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, 110866, People's Republic of China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, People's Republic of China
| | - Yi Zhu
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, 110866, People's Republic of China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, 110866, People's Republic of China.
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, People's Republic of China.
| | - Jiachao Zhang
- School of Food Science and Engineering, Hainan University, Haikou, Hainan, 570228, People's Republic of China.
| |
Collapse
|
3
|
Dong H, Xu Y, Zhang Q, Li H, Chen L. Activity and safety evaluation of natural preservatives. Food Res Int 2024; 190:114548. [PMID: 38945593 DOI: 10.1016/j.foodres.2024.114548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/29/2024] [Accepted: 05/25/2024] [Indexed: 07/02/2024]
Abstract
Synthetic preservatives are widely used in the food industry to control spoilage and growth of pathogenic microorganisms, inhibit lipid oxidation processes and extend the shelf life of food. However, synthetic preservatives have some side effects that can lead to poisoning, cancer and other degenerative diseases. With the improvement of living standards, people are developing safer natural preservatives to replace synthetic preservatives, including plant derived preservatives (polyphenols, essential oils, flavonoids), animal derived preservatives (lysozyme, antimicrobial peptide, chitosan) and microorganism derived preservatives (nisin, natamycin, ε-polylysine, phage). These natural preservatives exert antibacterial effects by disrupting microbial cell wall/membrane structures, interfering with DNA/RNA replication and transcription, and affecting protein synthesis and metabolism. This review summarizes the natural bioactive compounds (polyphenols, flavonoids and terpenoids, etc.) in these preservatives, their antioxidant and antibacterial activities, and safety evaluation in various products.
Collapse
Affiliation(s)
- Huiying Dong
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yang Xu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qingqing Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
4
|
Muthuvelu KS, Ethiraj B, Pramnik S, Raj NK, Venkataraman S, Rajendran DS, Bharathi P, Palanisamy E, Narayanan AS, Vaidyanathan VK, Muthusamy S. Biopreservative technologies of food: an alternative to chemical preservation and recent developments. Food Sci Biotechnol 2023; 32:1337-1350. [PMID: 37457405 PMCID: PMC10348988 DOI: 10.1007/s10068-023-01336-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 07/18/2023] Open
Abstract
Despite centuries of developing strategies to prevent food-associated illnesses, food safety remains a significant concern, even with multiple technological advancements. Consumers increasingly seek less processed and naturally preserved food options. One promising approach is food biopreservation, which uses natural antimicrobials found in food with a long history of safe consumption and can help reduce the reliance on chemically synthesized food preservatives. The hurdle technology method that combines multiple antimicrobial strategies is often used to improve the effectiveness of food biopreservation. This review attempts to provide a research summary on the utilization of lactic acid bacteria, bacteriocins, endolysins, bacteriophages, and biopolymers helps in the improvement of the shelf-life of food and lower the risk of food-borne pathogens throughout the food supply chain. This review also aims to evaluate current technologies that successfully employ the aforementioned preservatives to address obstacles in food biopreservation.
Collapse
Affiliation(s)
- Kirupa Sankar Muthuvelu
- Bioprocess and Bioproducts Special Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Erode, Tamil Nadu 638 401 India
| | - Baranitharan Ethiraj
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077 India
| | - Shreyasi Pramnik
- Integrated Bioprocessing Laboratory, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Tamil Nadu 603203 India
| | - N. Keerthish Raj
- Integrated Bioprocessing Laboratory, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Tamil Nadu 603203 India
| | - Swethaa Venkataraman
- Integrated Bioprocessing Laboratory, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Tamil Nadu 603203 India
| | - Devi Sri Rajendran
- Integrated Bioprocessing Laboratory, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Tamil Nadu 603203 India
| | - Priyadharshini Bharathi
- Integrated Bioprocessing Laboratory, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Tamil Nadu 603203 India
| | - Elakiya Palanisamy
- Bioprocess and Bioproducts Special Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Erode, Tamil Nadu 638 401 India
| | - Anusri Sathiya Narayanan
- Bioprocess and Bioproducts Special Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Erode, Tamil Nadu 638 401 India
| | - Vinoth Kumar Vaidyanathan
- Integrated Bioprocessing Laboratory, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Tamil Nadu 603203 India
| | - Shanmugaprakash Muthusamy
- Downstream Processing Laboratory, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, India
| |
Collapse
|
5
|
Yoo JM, Song JH, Vasquez R, Hwang IC, Lee JS, Kang DK. Characterization of Novel Amylase-Sensitive, Anti-Listerial Class IId Bacteriocin, Agilicin C7 Produced by Ligilactobacillus agilis C7. Food Sci Anim Resour 2023; 43:625-638. [PMID: 37483999 PMCID: PMC10359839 DOI: 10.5851/kosfa.2023.e24] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/25/2023] Open
Abstract
Among various biological agents, bacteriocins are important candidates to control Listeria monocytogenes which is a foodborne pathogen. In this study, a novel bacteriocin, named agilicin C7, was isolated from Ligilactobacillus agilis C7 showing inhibitory activity against L. monocytogenes. Agilicin C7 biosynthesis gene was characterized by bioinformatics analyses and heterologously expressed in Escherichia coli for further study. The anti-listeria activity of recombinant agilicin C7 (r-agilicin C7) was lost by proteases and α-amylase, suggesting that agilicin C7 is a glycoprotein. r-Agilicin C7 has wide pH and thermal stability and is also stable in various organic solvents. It destroyed L. monocytogenes by damaging the integrity of the cell envelope. These properties of r-agilicin C7 indicate that agilicin C7 is a novel amylase-sensitive anti-listerial Class IId bacteriocin. Physicochemical stability and inhibitory activity against L. monocytogenes of r-agilicin C7 suggest that it can be applied to control L. monocytogenes in the food industry, including dairy and meat products.
Collapse
Affiliation(s)
- Jeong Min Yoo
- Department of Animal Biotechnology,
College of Biotechnology and Bioengineering, Dankook
University, Cheonan 31116, Korea
| | - Ji Hoon Song
- Department of Animal Biotechnology,
College of Biotechnology and Bioengineering, Dankook
University, Cheonan 31116, Korea
| | - Robie Vasquez
- Department of Animal Biotechnology,
College of Biotechnology and Bioengineering, Dankook
University, Cheonan 31116, Korea
| | - In-Chan Hwang
- Department of Animal Biotechnology,
College of Biotechnology and Bioengineering, Dankook
University, Cheonan 31116, Korea
| | - Jae Seung Lee
- Department of Animal Biotechnology,
College of Biotechnology and Bioengineering, Dankook
University, Cheonan 31116, Korea
| | - Dae-Kyung Kang
- Department of Animal Biotechnology,
College of Biotechnology and Bioengineering, Dankook
University, Cheonan 31116, Korea
| |
Collapse
|
6
|
Luo X, Peng Y, Qin Z, Tang W, Duns GJ, Dessie W, He N, Tan Y. Chitosan-based packaging films with an integrated antimicrobial peptide: Characterization, in vitro release and application to fresh pork preservation. Int J Biol Macromol 2023; 231:123209. [PMID: 36639078 DOI: 10.1016/j.ijbiomac.2023.123209] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
Chitosan (CS) films were developed incorporating peptide HX-12C. The films were studied to determine their microstructures, physical properties, release properties of peptide HX-12C and functional properties. The results indicated that there may be hydrogen bonding interactions between CS and peptide HX-12C, thereby creating a homogeneous internal microstructure and lower crystallinity (10.8-12.8 %). Compared with CS film, CS-HX-12C films displayed lower light transmission, MC (20.8-19.9 %), WVP (8.82-8.59 × 10-11·g·m-1·s-1·Pa-1), OTR (0.015-0.037 cc/(m2.day)) and higher WS (15.7-32.4 %) values. Moreover, controlled-release experiments showed that pH, ionic strength and temperature could all significantly affect the release of peptide HX-12C from the films. Finally, the increase of pH value and TVC and lipid oxidation of fresh pork were delayed due to the treatment with CS-2%HX-12C film. However, incorporating peptide HX-12C into CS films did not improve the mechanical properties of the films and their effects against protein oxidation. Our results suggest that the CS-based antimicrobial packaging films integrated with peptide HX-12C exhibit the potential for fresh pork preservation.
Collapse
Affiliation(s)
- Xiaofang Luo
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 425199 Yongzhou, China
| | - Yafang Peng
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 425199 Yongzhou, China
| | - Zuodong Qin
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 425199 Yongzhou, China.
| | - Wufei Tang
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 425199 Yongzhou, China
| | - Gregory J Duns
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 425199 Yongzhou, China
| | - Wubliker Dessie
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 425199 Yongzhou, China
| | - Nongyue He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Yimin Tan
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China.
| |
Collapse
|
7
|
Decker AP, Mechesso AF, Zhou Y, Xu C, Wang G. Hydrophobic diversification is the key to simultaneously increased antifungal activity and decreased cytotoxicity of two ab initio designed peptides. Peptides 2022; 158:170880. [PMID: 36167253 DOI: 10.1016/j.peptides.2022.170880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 11/23/2022]
Abstract
The fact that some antimicrobial peptides have been utilized clinically and as food preservatives stimulated the efforts in search of new candidates. In our previous studies, we succeeded in designing potent peptides against methicillin-resistant Staphylococcus aureus (MRSA), severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2), and Ebola viruses based on the database filtering technology. The designed peptides were proved highly potent. However, this ab initio method has not been utilized to design antifungal peptides. This study report two novel antifungal peptides with 21 and 15 amino acids designed by more effectively extracting the most probable parameters from ∼1200 antifungal peptides in the antimicrobial peptide database (APD). Subsequent hydrophobic diversification led to two peptide variants with enhanced activity against four fungal strains but reduced cytotoxicity to four mammalian cell lines. DFTAFP-1A (KWSGAAAKKLKSLLSGLGKLL) and DFTAFP-2A (KWSGLLLKLGAASKL) retained activity against Zygosaccharomyces bailii at pH 5.6 and 6.3 or after autoclave. The peptides could permeabilize fungal membranes and adopted helical conformations in membrane mimetic micelles. Collectively, this study demonstrated not only the successful design of two novel antifungal peptides based on the APD database but also optimization of desired peptide properties. This improved database approach may be utilized to design useful peptides to combat other drug-resistant pathogens as well.
Collapse
Affiliation(s)
- Aaron P Decker
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198-5900, USA
| | - Abraham Fikru Mechesso
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198-5900, USA
| | - Yuzhen Zhou
- Department of Statistics, University of Nebraska, Lincoln, NE 68583-0963, USA
| | - Changmu Xu
- The Food Processing Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198-5900, USA.
| |
Collapse
|