1
|
Kawabe T, Akiyama R, Yokosaka T. The influence of eye position on the animacy impression of a cube-shaped robot in motion. Iperception 2025; 16:20416695251323769. [PMID: 40129450 PMCID: PMC11931162 DOI: 10.1177/20416695251323769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/09/2025] [Indexed: 03/26/2025] Open
Abstract
Human observers can sometimes attribute animacy or agency to non-living objects, such as robots, perceiving them as if they were alive. In particular, the movement pattern of non-living things is a key feature for perceiving life. It is also well known that the pattern of the eyes is also an important feature for the perception of the sense of life. The present study investigated how the animacy impression of a cube-shaped robot moving along the Perlin noise trajectory could be influenced by the visual patterns of the eyes, such as eye positions and gaze directions. The eyes were presented on the top surface of the cube-shaped robot. Participants were asked to rate animacy impressions of the robot. These impressions included the impression of a live animal, having intention and moving in a self-propelled manner. These impressions were consistently higher when the eyes were presented on the side of the robot's direction of motion than when they were presented on the side orthogonal to, or opposite to, the robot's direction of motion. In general, the animacy impressions were largely comparable regardless of whether the robot's gaze direction aligned with, was orthogonal to, or opposed its motion direction. However, the impression of intention was stronger when the gaze direction at the front side of the object was consistent with the motion direction than when it was inconsistent. We discuss the evolutionary role of eye position in determining animacy impressions.
Collapse
|
2
|
De Agrò M, Galpayage Dona HS, Vallortigara G. Seeing life in the teeming world: animacy perception in arthropods. Front Psychol 2024; 15:1492239. [PMID: 39640042 PMCID: PMC11617153 DOI: 10.3389/fpsyg.2024.1492239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
The term "animacy perception" describes the ability of animals to detect cues that indicate whether a particular object in the environment is alive or not. Such skill is crucial for survival, as it allows for the rapid identification of animated agents, being them potential social partners, or dangers to avoid. The literature on animacy perception is rich, and the ability has been found to be present in a wide variety of vertebrate taxa. Many studies suggest arthropods also possess this perceptual ability, however, the term "animacy" has not often been explicitly used in the research focused on these models. Here, we review the current literature providing evidence of animacy perception in arthropods, focusing especially on studies of prey categorization, predator avoidance, and social interactions. First, we present evidence for the detection of biological motion, which involves recognizing the spatio-temporal patterns characteristic of liveliness. We also consider the congruency between shape and motion that gives rise to animacy percept, like the maintenance of a motion direction aligned with the main body axis. Next, we discuss how some arthropods use static visual cues, such as facial markings, to detect and recognize individuals. We explore the mechanisms, development, and neural basis of this face detection system, focusing on the well-studied paper wasps. Finally, we discuss thanatosis-a behavior in which an animal feigns death to disrupt cues of liveliness-as evidence for the active manipulation of animacy perception in arthropods.
Collapse
Affiliation(s)
- Massimo De Agrò
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| | | | | |
Collapse
|
3
|
Lu X, Hu Z, Xin Y, Yang T, Wang Y, Zhang P, Liu N, Jiang Y. Detecting biological motion signals in human and monkey superior colliculus: a subcortical-cortical pathway for biological motion perception. Nat Commun 2024; 15:9606. [PMID: 39505906 PMCID: PMC11542025 DOI: 10.1038/s41467-024-53968-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 10/25/2024] [Indexed: 11/08/2024] Open
Abstract
Most vertebrates, including humans, are highly adept at detecting and encoding biological motion, even when it is portrayed by just a few point lights attached to the head and major joints. However, the function of subcortical regions in biological motion perception has been scarcely explored. Here, we investigate the role of the superior colliculus in local biological motion processing. Using high-field (3 T) and ultra-high-field (7 T) functional magnetic resonance imaging, we record the neural responses of the superior colliculus to scrambled point-light walkers (with local kinematics retained) in both humans and male macaque monkeys. Results show that the superior colliculus, especially the superficial layers, selectively responds to local biological motion. Furthermore, dynamic causal modeling analysis reveals a subcortical-cortical functional pathway that transmits local biological motion signals from the superior colliculus via the middle temporal visual complex to the posterior superior temporal sulcus in the human brain. These findings suggest the existence of a cross-species mechanism in the superior colliculus that facilitates the detection of local biological motion at the early stage of the visual processing stream.
Collapse
Affiliation(s)
- Xiqian Lu
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Zhaoqi Hu
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yumeng Xin
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tianshu Yang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Peng Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ning Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Yi Jiang
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Lorenzi E, Nadalin G, Morandi-Raikova A, Mayer U, Vallortigara G. Noncortical coding of biological motion in newborn chicks' brain. Cereb Cortex 2024; 34:bhae262. [PMID: 38918076 PMCID: PMC11909798 DOI: 10.1093/cercor/bhae262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Biological motion, the typical movement of vertebrates, is perceptually salient for many animal species. Newly hatched domestic chicks and human newborns show a spontaneous preference for simple biological motion stimuli (point-light displays) at birth prior to any visual learning. Despite evidence of such preference at birth, neural studies performed so far have focused on a specialized neural network involving primarily cortical areas. Here, we presented newly hatched visually naïve domestic chicks to either biological or rigid motion stimuli and measured for the first time their brain activation. Immediate Early Gene (c-Fos) expression revealed selective activation in the preoptic area of the hypothalamus and the nucleus taeniae of the amygdala. These results suggest that subpallial/subcortical regions play a crucial role in biological motion perception at hatching, paving the way for future studies on adult animals, including humans.
Collapse
Affiliation(s)
- Elena Lorenzi
- CIMeC, University of Trento, piazza della Manifattura 1, Rovereto, TN 30868, Italy
| | - Giulia Nadalin
- CIMeC, University of Trento, piazza della Manifattura 1, Rovereto, TN 30868, Italy
| | | | - Uwe Mayer
- CIMeC, University of Trento, piazza della Manifattura 1, Rovereto, TN 30868, Italy
| | - Giorgio Vallortigara
- CIMeC, University of Trento, piazza della Manifattura 1, Rovereto, TN 30868, Italy
| |
Collapse
|
5
|
Lebel A, Zhang L, Gonçalves D. Chemical and Visual Cues as Modulators of the Stress Response to Social Isolation in the Marine Medaka, Oryzias melastigma. Zebrafish 2024; 21:15-27. [PMID: 38377346 DOI: 10.1089/zeb.2023.0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
The marine medaka is emerging as a potential behavioral model organism for ocean studies, namely on marine ecotoxicology. However, not much is known on the behavior of the species and behavioral assays lack standardization. This study assesses the marine medaka as a potential model for chemical communication. We investigated how short exposure to visual and chemical cues mediated the stress response to social isolation with the light/dark preference test (LDPT) and the open field test (OFT). After a 5-day isolation period, and 1 h before testing, isolated fish were randomly assigned to one of four groups: (1) placed in visual contact with conspecifics; (2) exposed to a flow of holding water from a group of conspecifics; (3) exposed to both visual and chemical cues from conspecifics; or (4) not exposed to any stimuli (controls). During the LDPT, the distance traveled and transitions between zones were more pronounced in animals exposed to the conspecific's chemical stimuli. The time spent in each area did not differ between the groups, but a clear preference for the bright area in all animals indicates robust phototaxis. During the OFT, animals exposed only to chemical cues initially traveled more than those exposed to visual or both stimuli, and displayed lower thigmotaxis. Taken together, results show that chemical cues play a significant role in exploratory behavior in this species and confirm the LDPT and OFT as suitable tests for investigating chemical communication in this species.
Collapse
Affiliation(s)
- Alexandre Lebel
- Institute of Science and Environment, University of Saint Joseph, Macao, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Marine Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - David Gonçalves
- Institute of Science and Environment, University of Saint Joseph, Macao, China
| |
Collapse
|
6
|
Lu K, Wu J, Tang S, Wang Y, Zhang L, Chai F, Liang XF. Altered Visual Function in Short-Wave-Sensitive 1 ( sws1) Gene Knockout Japanese Medaka ( Oryzias latipes) Larvae. Cells 2023; 12:2157. [PMID: 37681889 PMCID: PMC10486665 DOI: 10.3390/cells12172157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/29/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023] Open
Abstract
Visual perception plays a crucial role in foraging, avoiding predators, mate selection, and communication. The regulation of color vision is largely dependent on opsin, which is the first step in the formation of the visual transduction cascade in photoreceptor cells. Short-wave-sensitive 1 (sws1) is a visual pigment that mediates short-wavelength light transduction in vertebrates. The depletion of sws1 resulted in increased M-opsin in mice. However, there is still no report on the visual function of sws1 in teleost fish. Here, we constructed the sws1 knockout medaka using CRISPR/Cas9 technology. The 6 dph (days post-hatching) medaka sws1-/- larvae exhibited significantly decreased food intake and total length at the first feeding stage, and the mRNA levels of orexigenic genes (npy and agrp) were significantly upregulated after feeding. The swimming speed was significantly reduced during the period of dark-light transition stimulation in the sws1-mutant larvae. Histological analysis showed that the thickness of the lens was reduced, whereas the thickness of the ganglion cell layer (GCL) was significantly increased in sws1-/- medaka larvae. Additionally, the deletion of sws1 decreased the mRNA levels of genes involved in phototransduction (gnb3b, grk7a, grk7b, and pde6c). We also observed increased retinal cell apoptosis and oxidative stress in sws1 knockout medaka larvae. Collectively, these results suggest that sws1 deficiency in medaka larvae may impair visual function and cause retinal cell apoptosis, which is associated with the downregulation of photoconduction expression and oxidative stress.
Collapse
Affiliation(s)
- Ke Lu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (K.L.); (Y.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Jiaqi Wu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (K.L.); (Y.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Shulin Tang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (K.L.); (Y.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Yuye Wang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (K.L.); (Y.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Lixin Zhang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (K.L.); (Y.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Farui Chai
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (K.L.); (Y.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (K.L.); (Y.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
7
|
Seki T, Takeuchi H, Ansai S. Optogenetic control of medaka behavior with channelrhodopsin. Dev Growth Differ 2023; 65:288-299. [PMID: 37354208 DOI: 10.1111/dgd.12872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/15/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023]
Abstract
Optogenetics enables the manipulation of neural activity with high spatiotemporal resolution in genetically defined neurons. The method is widely used in various model animals in the neuroscience and physiology fields. Channelrhodopsins are robust tools for optogenetic manipulation, but they have not yet been used for studies in medaka. In the present study, we used the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated knock-in approach to establish a transgenic medaka strain expressing the Chloromonas oogama channelrhodopsin (CoChR) in the ISL LIM homeobox 1 (isl1) locus. We demonstrated that light stimuli elicited specific behavioral responses, such as bending or turning locomotion in the embryos and pectoral fin movements in the larvae and adults. The response probabilities and intensities of these movements could be controlled by adjusting the intensity, duration, or wavelength of each light stimulus. Furthermore, we demonstrated that the pectoral fin movements in the adult stage could be elicited using a laser pointer to irradiate region including the caudal hind brain and the rostral spinal cord. Our results indicate that CoChR allows for manipulation of medaka behaviors by activating targeted neurons, which will further our understanding of the detailed neural mechanisms of motor control or social behaviors in medaka.
Collapse
Affiliation(s)
- Takahide Seki
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hideaki Takeuchi
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Satoshi Ansai
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- Laboratory of Genome Editing Breeding, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
Kudo D, Yasugi M, Ninomiya N, Suyama S, Yamamoto H. Reduction of converging distance change in an aquatic display formed with aerial imaging by retro-reflection in conjugated optical structure. OPTICS EXPRESS 2023; 31:10965-10977. [PMID: 37155743 DOI: 10.1364/oe.479940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
This paper proposes an optical system for aquatic display that shows an image in water. The aquatic image is formed by utilizing aerial imaging by retro-reflection, which converges light by a retro-reflector and a beam splitter. Refraction on intersection between air and another material causes spherical aberration, which changes light-converging distance. In order to reduce the converging distance change, the light-source component is filled with water so that the optical system becomes conjugate including the medium. We analyzed converging of light in water by simulations. Furthermore, we have confirmed effectiveness of conjugated optical structure experimentally by use of a prototype.
Collapse
|
9
|
Lemaire BS, Vallortigara G. Life is in motion (through a chick's eye). Anim Cogn 2023; 26:129-140. [PMID: 36222937 PMCID: PMC9877072 DOI: 10.1007/s10071-022-01703-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 01/29/2023]
Abstract
Cognitive scientists, social psychologists, computer scientists, neuroscientists, ethologists and many others have all wondered how brains detect and interpret the motion of living organisms. It appears that specific cues, incorporated into our brains by natural selection, serve to signal the presence of living organisms. A simple geometric figure such as a triangle put in motion with specific kinematic rules can look alive, and it can even seem to have intentions and goals. In this article, we survey decades of parallel investigations on the motion cues that drive animacy perception-the sensation that something is alive-in non-human animals, especially in precocial species, such as the domestic chick, to identify inborn biological predispositions. At the same time, we highlight the relevance of these studies for an understanding of human typical and atypical cognitive development.
Collapse
Affiliation(s)
- Bastien S Lemaire
- Center for Mind and Brain Sciences, University of Trento, Trento, Italy.
| | | |
Collapse
|
10
|
Ma X, Yuan X, Liu J, Shen L, Yu Y, Zhou W, Liu Z, Jiang Y. Gravity-Dependent Animacy Perception in Zebrafish. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9829016. [PMID: 36128180 PMCID: PMC9470206 DOI: 10.34133/2022/9829016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022]
Abstract
Biological motion (BM), depicted by a handful of point lights attached to the major joints, conveys rich animacy information, which is significantly disrupted if BM is shown upside down. This well-known inversion effect in BM perception is conserved in terrestrial vertebrates and is presumably a manifestation of an evolutionarily endowed perceptual filter (i.e., life motion detector) tuned to gravity-compatible BM. However, it remains unknown whether aquatic animals, living in a completely different environment from terrestrial animals, perceive BM in a gravity-dependent manner. Here, taking advantage of their typical shoaling behaviors, we used zebrafish as a model animal to examine the ability of teleosts to discriminate between upright (gravity-compatible) and inverted (gravity-incompatible) BM signals. We recorded their swimming trajectories and quantified their preference based on dwelling time and head orientation. The results obtained from three experiments consistently showed that zebrafish spent significantly more time swimming in proximity to and orienting towards the upright BM relative to the inverted BM or other gravity-incompatible point-light stimuli (i.e., the non-BM). More intriguingly, when the recorded point-light video clips of fish were directly compared with those of human walkers and pigeons, we could identify a unique and consistent pattern of accelerating movements in the vertical (gravity) direction. These findings, to our knowledge, demonstrate for the first time the inversion effect in BM perception in simple aquatic vertebrates and suggest that the evolutionary origin of gravity-dependent BM processing may be traced back to ancient aquatic animals.
Collapse
Affiliation(s)
- Xiaohan Ma
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Xiangyong Yuan
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Jiahuan Liu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Shen
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Yiwen Yu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Wen Zhou
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Zuxiang Liu
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
| | - Yi Jiang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Institute for Brain Research, Beijing 102206, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
| |
Collapse
|
11
|
Lucon-Xiccato T, Loosli F, Conti F, Foulkes NS, Bertolucci C. Comparison of anxiety-like and social behaviour in medaka and zebrafish. Sci Rep 2022; 12:10926. [PMID: 35764691 PMCID: PMC9239998 DOI: 10.1038/s41598-022-14978-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/15/2022] [Indexed: 11/09/2022] Open
Abstract
The medaka, Oryzias latipes, is rapidly growing in importance as a model in behavioural research. However, our knowledge of its behaviour is still incomplete. In this study, we analysed the performance of medaka in 3 tests for anxiety-like behaviour (open-field test, scototaxis test, and diving test) and in 3 sociability tests (shoaling test with live stimuli, octagonal mirror test, and a modified shoaling test with mirror stimulus). The behavioural response of medaka was qualitatively similar to that observed in other teleosts in the open-field test (thigmotaxis), and in 2 sociability tests, the shoaling test and in the octagonal mirror test (attraction towards the social stimulus). In the remaining tests, medaka did not show typical anxiety (i.e., avoidance of light environments and preference for swimming at the bottom of the aquarium) and social responses (attraction towards the social stimulus). As a reference, we compared the behaviour of the medaka to that of a teleost species with well-studied behaviour, the zebrafish, tested under the same conditions. This interspecies comparison indicates several quantitative and qualitative differences across all tests, providing further evidence that the medaka responds differently to the experimental settings compared to other fish models.
Collapse
Affiliation(s)
- Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Felix Loosli
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Francesca Conti
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Nicholas S Foulkes
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
12
|
Kaneko E, Sato H, Fukamachi S. Validation of the three-chamber strategy for studying mate choice in medaka. PLoS One 2021; 16:e0259741. [PMID: 34780539 PMCID: PMC8592428 DOI: 10.1371/journal.pone.0259741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/25/2021] [Indexed: 11/18/2022] Open
Abstract
The three-chamber experiment, in which one test animal can choose between two animals placed in physically inaccessible compartments, is a widely adopted strategy for studying sexual preference in animals. Medaka, a small freshwater teleost, is an emerging model for dissecting the neurological/physiological mechanisms underlying mate choice for which intriguing findings have been accumulating. The three-chamber strategy has rarely been adopted in this species; therefore, here we investigated its validity using medaka colour variants that mate assortatively. First, a total of 551 movies, in which a test male and two choice females interacted for 30 min under a free-swimming condition, were manually analysed. The sexual preference of the males, calculated as a courtship ratio, was highly consistent between human observers (r > 0.96), supporting the objectivity of this manual-counting strategy. Second, we tested two types of three-chamber apparatuses, in which choice fish were presented in either a face-to-face or side-by-side location. Test fish (regardless of sex) spent most of the time associating with choice fish in the compartments. However, their sexual preference, calculated as an association ratio, was poorly reproduced when the locations of the choice fish were swapped. Third, the sexual preferences of males quantified using the manual-counting and either of the three-chamber strategies did not correlate (r = 0.147 or 0.297). Hence, we concluded that, even for individuals of a species like medaka, which spawn every day, sexual preference could not be reliably evaluated using the three-chamber strategy. Optimization of the protocol may solve this problem; however, the explanation for the observation that animals that are ready for spawning persist with never-accessible mating partners must be reconsidered.
Collapse
Affiliation(s)
- Ena Kaneko
- Department of Chemical and Biological Sciences, Laboratory of Evolutionary Genetics, Japan Women’s University, Bunkyo-ku, Tokyo, Japan
| | - Hinako Sato
- Department of Chemical and Biological Sciences, Laboratory of Evolutionary Genetics, Japan Women’s University, Bunkyo-ku, Tokyo, Japan
| | - Shoji Fukamachi
- Department of Chemical and Biological Sciences, Laboratory of Evolutionary Genetics, Japan Women’s University, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
13
|
Hosoya O, Chung M, Ansai S, Takeuchi H, Miyaji M. A modified Tet-ON system minimizing leaky expression for cell-type specific gene induction in medaka fish. Dev Growth Differ 2021; 63:397-405. [PMID: 34375435 DOI: 10.1111/dgd.12743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/28/2021] [Accepted: 07/27/2021] [Indexed: 12/18/2022]
Abstract
The Tet-ON system is an important molecular tool for temporally and spatially-controlled inducible gene expression. Here, we developed a Tet-ON system to induce transgene expression specifically in the rod photoreceptors of medaka fish. Our modified reverse tetracycline-controlled transcriptional transactivator (rtTAm) with 5 amino acid substitutions dramatically improved the leakiness of the transgene in medaka fish. We generated a transgenic line carrying a self-reporting vector with the rtTAm gene driven by the Xenopus rhodopsin promoter and a tetracycline response element (TRE) followed by the green fluorescent protein (GFP) gene. We demonstrated that GFP fluorescence was restricted to the rod photoreceptors in the presence of doxycycline in larval fish (9 days post-fertilization). The GFP fluorescence intensity was enhanced with longer durations of doxycycline treatment up to 72 h and in a dose-dependent manner (5-45 μg/ml). These findings demonstrate that the Tet-ON system using rtTAm allows for spatiotemporal control of transgene expression, at least in the rod photoreceptors, in medaka fish.
Collapse
Affiliation(s)
- Osamu Hosoya
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Myung Chung
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan.,Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Satoshi Ansai
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hideaki Takeuchi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.,Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Mary Miyaji
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
14
|
Wang Z, Han S, Xu Z, Du P, Li X. Assessment on the adverse effects on different kinds of fish induced by methamphetamine during the natural attenuation process based on adverse outcome pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146587. [PMID: 33773348 DOI: 10.1016/j.scitotenv.2021.146587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
The adverse effects on model fish induced by methamphetamine (METH) have been revealed. However, the toxicity of METH on different kinds of non-model fish during the natural attenuation remained unclear. Hence, in this study, we for the first time established a static lab-scale aquatic ecosystem spiked with METH (initial levels at 25 μg/L) for 40 days to estimate its metabolism and toxicity in Chinese medaka, rosy bitterling, loach, and mosquito fish. The concentrations of METH in water and fish's brain were detected termly. The physiological functions, histopathology of brain, neurotransmitters contents, and expressions of associated genes of the four kinds of fish were determined at day 0, 20, and 40, respectively. The results indicated METH could be remarkably accumulated in fish brains with the distribution factor vs water (DFw) at 232.5-folds, and attenuated both in water and fish body during the exposure. METH caused physiological functions (i.e., swimming trajectories, locomotion distances, and feeding rates) disorders of the four kinds of fish, and stimulated surfacing behavior of loach. Tissue and macro/micromolecular biomarkers including histopathology, neurotransmitters (i.e., dopamine, serotonin, and norepinephrine), and mRNA, were similarly affected by METH. Mitogen-activated protein kinase (MAPKs) signaling pathway, P53-regulated apoptosis signaling pathway, N-methyl-d-aspartate-dopamine system, and mTOR signaling pathway of different kinds of fish were regulated by METH. Additionally, the impairments of the physiological and macromolecular indicators of fish could be alleviated as the natural attenuation of METH occurred. All the biomarkers, as well as the recovery effects during the exposure were integrated onto an adverse outcome pathway (AOP) framework. The key event was the micromolecular indicators (genes). The adverse outcomes at individual and population levels would result in the ecological consequences, implying the imperative to consider the natural attenuation process while assessing the environmental risk of METH.
Collapse
Affiliation(s)
- Zhenglu Wang
- College of Oceanography, Hohai University, Nanjing, Jiangsu 210098, PR China
| | - Sheng Han
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Zeqiong Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, PR China
| | - Peng Du
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China.
| | - Xiqing Li
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| |
Collapse
|
15
|
Sato Y, Kitazaki M, Itakura S, Morita T, Sakuraba Y, Tomonaga M, Hirata S. Great apes' understanding of biomechanics: eye-tracking experiments using three-dimensional computer-generated animations. Primates 2021; 62:735-747. [PMID: 34302253 DOI: 10.1007/s10329-021-00932-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/30/2021] [Indexed: 11/27/2022]
Abstract
Visual processing of the body movements of other animals is important for adaptive animal behaviors. It is widely known that animals can distinguish articulated animal movements even when they are just represented by points of light such that only information about biological motion is retained. However, the extent to which nonhuman great apes comprehend the underlying structural and physiological constraints affecting each moving body part, i.e., biomechanics, is still unclear. To address this, we examined the understanding of biomechanics in bonobos (Pan paniscus) and chimpanzees (Pan troglodytes), following a previous study on humans (Homo sapiens). Apes underwent eye tracking while viewing three-dimensional computer-generated (CG) animations of biomechanically possible or impossible elbow movements performed by a human, robot, or nonhuman ape. Overall, apes did not differentiate their gaze between possible and impossible movements of elbows. However, some apes looked at elbows for longer when viewing impossible vs. possible robot movements, which indicates that they may have had knowledge of biomechanics and that this knowledge could be extended to a novel agent. These mixed results make it difficult to draw a firm conclusion regarding the extent to which apes understand biomechanics. We discuss some methodological features that may be responsible for the results, as well as implications for future nonhuman animal studies involving the presentation of CG animations or measurement of gaze behaviors.
Collapse
Affiliation(s)
- Yutaro Sato
- Wildlife Research Center, Kyoto University, 2-24 Tanakasekiden, Sakyo, Kyoto, 6068203, Japan.
| | - Michiteru Kitazaki
- Department of Computer Science and Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempakucho, Toyohashi, Aichi, 441-8580, Japan
| | - Shoji Itakura
- Center for Baby Science, Doshisha University, 4-1-1 Kizugawadai, Kizugawa, Kyoto, 6190225, Japan
| | - Tomoyo Morita
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Yoko Sakuraba
- Wildlife Research Center, Kyoto University, 2-24 Tanakasekiden, Sakyo, Kyoto, 6068203, Japan
- Center for Research and Education of Wildlife, Kyoto City Zoo, Okazaki Koen, Okazakihoshojicho, Sakyo, Kyoto, 6068333, Japan
| | | | - Satoshi Hirata
- Wildlife Research Center, Kyoto University, 2-24 Tanakasekiden, Sakyo, Kyoto, 6068203, Japan
| |
Collapse
|
16
|
De Agrò M, Rößler DC, Kim K, Shamble PS. Perception of biological motion by jumping spiders. PLoS Biol 2021; 19:e3001172. [PMID: 34264925 PMCID: PMC8282030 DOI: 10.1371/journal.pbio.3001172] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/11/2021] [Indexed: 11/26/2022] Open
Abstract
The body of most creatures is composed of interconnected joints. During motion, the spatial location of these joints changes, but they must maintain their distances to one another, effectively moving semirigidly. This pattern, termed "biological motion" in the literature, can be used as a visual cue, enabling many animals (including humans) to distinguish animate from inanimate objects. Crucially, even artificially created scrambled stimuli, with no recognizable structure but that maintains semirigid movement patterns, are perceived as animated. However, to date, biological motion perception has only been reported in vertebrates. Due to their highly developed visual system and complex visual behaviors, we investigated the capability of jumping spiders to discriminate biological from nonbiological motion using point-light display stimuli. These kinds of stimuli maintain motion information while being devoid of structure. By constraining spiders on a spherical treadmill, we simultaneously presented 2 point-light displays with specific dynamic traits and registered their preference by observing which pattern they turned toward. Spiders clearly demonstrated the ability to discriminate between biological motion and random stimuli, but curiously turned preferentially toward the latter. However, they showed no preference between biological and scrambled displays, results that match responses produced by vertebrates. Crucially, spiders turned toward the stimuli when these were only visible by the lateral eyes, evidence that this task may be eye specific. This represents the first demonstration of biological motion recognition in an invertebrate, posing crucial questions about the evolutionary history of this ability and complex visual processing in nonvertebrate systems.
Collapse
Affiliation(s)
- Massimo De Agrò
- John Harvard Distinguished Science Fellows Program, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Zoology, Regensburg University, Regensburg, Germany
| | - Daniela C. Rößler
- John Harvard Distinguished Science Fellows Program, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Kris Kim
- John Harvard Distinguished Science Fellows Program, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Paul S. Shamble
- John Harvard Distinguished Science Fellows Program, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
17
|
Audira G, Siregar P, Chen KHC, Roldan MJM, Huang JC, Lai HT, Hsiao CD. Interspecies Behavioral Variability of Medaka Fish Assessed by Comparative Phenomics. Int J Mol Sci 2021; 22:ijms22115686. [PMID: 34073632 PMCID: PMC8197923 DOI: 10.3390/ijms22115686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 12/12/2022] Open
Abstract
Recently, medaka has been used as a model organism in various research fields. However, even though it possesses several advantages over zebrafish, fewer studies were done in medaka compared to zebrafish, especially with regard to its behavior. Thus, to provide more information regarding its behavior and to demonstrate the behavioral differences between several species of medaka, we compared the behavioral performance and biomarker expression in the brain between four medaka fishes, Oryzias latipes, Oryzias dancena, Oryzias woworae, and Oryzias sinensis. We found that each medaka species explicitly exhibited different behaviors to each other, which might be related to the different basal levels of several biomarkers. Furthermore, by phenomics and genomic-based clustering, the differences between these medaka fishes were further investigated. Here, the phenomic-based clustering was based on the behavior results, while the genomic-based clustering was based on the sequence of the nd2 gene. As we expected, both clusterings showed some resemblances to each other in terms of the interspecies relationship between medaka and zebrafish. However, this similarity was not displayed by both clusterings in the medaka interspecies comparisons. Therefore, these results suggest a re-interpretation of several prior studies in comparative biology. We hope that these results contribute to the growing database of medaka fish phenotypes and provide one of the foundations for future phenomics studies of medaka fish.
Collapse
Affiliation(s)
- Gilbert Audira
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (G.A.); (P.S.)
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| | - Petrus Siregar
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (G.A.); (P.S.)
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| | - Kelvin H.-C. Chen
- Department of Applied Chemistry, National Pingtung University, Pingtung 900391, Taiwan;
| | - Marri Jmelou M. Roldan
- Faculty of Pharmacy and The Graduate School, University of Santo Tomas, Manila 1008, Philippines;
| | - Jong-Chin Huang
- Department of Applied Chemistry, National Pingtung University, Pingtung 900391, Taiwan;
- Correspondence: (J.-C.H.); (H.-T.L.); (C.-D.H.)
| | - Hong-Thih Lai
- Department of Aquatic Biosciences, National Chiayi University, 300 University Rd., Chiayi 600, Taiwan
- Correspondence: (J.-C.H.); (H.-T.L.); (C.-D.H.)
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (G.A.); (P.S.)
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Research Center for Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Correspondence: (J.-C.H.); (H.-T.L.); (C.-D.H.)
| |
Collapse
|
18
|
Spatiotemporal dynamics of responses to biological motion in the human brain. Cortex 2021; 136:124-139. [PMID: 33545617 DOI: 10.1016/j.cortex.2020.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/27/2020] [Accepted: 12/10/2020] [Indexed: 01/01/2023]
Abstract
We sought to understand the spatiotemporal characteristics of biological motion perception. We presented observers with biological motion walkers that differed in terms of form coherence or kinematics (i.e., the presence or absence of natural acceleration). Participants were asked to discriminate the facing direction of the stimuli while their magnetoencephalographic responses were concurrently imaged. We found that two univariate response components can be observed around ~200 msec and ~650 msec post-stimulus onset, each engaging lateral-occipital and parietal cortex prior to temporal and frontal cortex. Moreover, while univariate responses show biological motion form-specificity only after 300 msec, multivariate patterns specific to form can be well discriminated from those for local cues as early as 100 msec after stimulus onset. By finally examining the representational similarity of fMRI and MEG patterned responses, we show that early responses to biological motion are most likely sourced to occipital cortex while later responses likely originate from extrastriate body areas.
Collapse
|
19
|
Auld HL, Godin JGJ. Courtship behaviour influences social partner choice in male guppies. BEHAVIOUR 2020. [DOI: 10.1163/1568539x-bja10032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Although male courtship displays have evolved primarily to sexually attract females, they also generate inadvertent public information that potentially reveals the courter’s relative sexual attractiveness and the perceived quality and sexual receptivity of the female being courted to nearby eavesdropping male competitors, who in turn may use this information to bias their social partner choices. We tested this hypothesis by first presenting individual eavesdropping male guppies (Poecilia reticulata) the opportunity to simultaneously observe two demonstrator males whose courtship behaviour was manipulated experimentally to differ, following which we tested them for their preference to associate socially with either demonstrator males. Test males preferentially associated with the demonstrator male who they had previously observed courting a female over the other (non-courting) demonstrator. This social association preference was not expressed in the absence of a female to court. Our findings highlight the potential for sexual behaviour influencing male-male social associations in nature.
Collapse
Affiliation(s)
- Heather L. Auld
- aDepartment of Biology, Carleton University, Ottawa, ON, Canada
- bPresent address: Coastal Oregon Marine Experiment Station, Oregon State University, Newport, OR, USA
| | | |
Collapse
|
20
|
Nunes AR, Carreira L, Anbalagan S, Blechman J, Levkowitz G, Oliveira RF. Perceptual mechanisms of social affiliation in zebrafish. Sci Rep 2020; 10:3642. [PMID: 32107434 PMCID: PMC7046791 DOI: 10.1038/s41598-020-60154-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/06/2020] [Indexed: 12/22/2022] Open
Abstract
Social living animals need to recognize the presence of conspecifics in the environment in order to engage in adaptive social interactions. Social cues can be detected through different sensory modalities, including vision. Two main visual features can convey information about the presence of conspecifics: body form and biological motion (BM). Given the role that oxytocin plays in social behavior regulation across vertebrates, particularly in the salience and reward values of social stimuli, we hypothesized that it may also be involved in the modulation of perceptual mechanisms for conspecific detection. Here, using videoplaybacks, we assessed the role of conspecific form and BM in zebrafish social affiliation, and how oxytocin regulates the perception of these cues. We demonstrated that while each visual cue is important for social attraction, BM promotes a higher fish engagement than the static conspecific form alone. Moreover, using a mutant line for one of the two oxytocin receptors, we show that oxytocin signaling is involved in the regulation of BM detection but not conspecific form recognition. In summary, our results indicate that, apart from oxytocin role in the regulation of social behaviors through its effect on higher-order cognitive mechanisms, it may regulate social behavior by modulating very basic perceptual mechanisms underlying the detection of socially-relevant cues.
Collapse
Affiliation(s)
| | | | - Savani Anbalagan
- Weizmann Institute of Science, Rehovot, Israel.,ReMedy-International Research Agenda Unit, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland; Laboratory of Glial Biology, Centre of New Technologies, University of Warsaw, 02-097, Warsaw, Poland
| | | | | | - Rui F Oliveira
- Gulbenkian Institute of Science, Oeiras, Portugal. .,ISPA - Instituto Universitário, Lisboa, Portugal.
| |
Collapse
|
21
|
Complex visual analysis of ecologically relevant signals in Siamese fighting fish. Anim Cogn 2019; 23:41-53. [DOI: 10.1007/s10071-019-01313-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 09/03/2019] [Accepted: 09/24/2019] [Indexed: 12/27/2022]
|
22
|
Eatherington CJ, Marinelli L, Lõoke M, Battaglini L, Mongillo P. Local Dot Motion, Not Global Configuration, Determines Dogs' Preference for Point-Light Displays. Animals (Basel) 2019; 9:E661. [PMID: 31489919 PMCID: PMC6770411 DOI: 10.3390/ani9090661] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 11/21/2022] Open
Abstract
Visual perception remains an understudied area of dog cognition, particularly the perception of biological motion where the small amount of previous research has created an unclear impression regarding dogs' visual preference towards different types of point-light displays. To date, no thorough investigation has been conducted regarding which aspects of the motion contained in point-light displays attract dogs. To test this, pet dogs (N = 48) were presented with pairs of point-light displays with systematic manipulation of motion features (i.e., upright or inverted orientation, coherent or scrambled configuration, human or dog species). Results revealed a significant effect of inversion, with dogs directing significantly longer looking time towards upright than inverted dog point-light displays; no effect was found for scrambling or the scrambling-inversion interaction. No looking time bias was found when dogs were presented with human point-light displays, regardless of their orientation or configuration. The results of the current study imply that dogs' visual preference is driven by the motion of individual dots in accordance with gravity, rather than the point-light display's global arrangement, regardless their long exposure to human motion.
Collapse
Affiliation(s)
- Carla J Eatherington
- Laboratory of Applied Ethology, Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy.
| | - Lieta Marinelli
- Laboratory of Applied Ethology, Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy.
| | - Miina Lõoke
- Laboratory of Applied Ethology, Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy.
| | - Luca Battaglini
- Department of General Psychology, University of Padua, Via Venezia 8, 35131 Padova, Italy.
| | - Paolo Mongillo
- Laboratory of Applied Ethology, Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy.
| |
Collapse
|
23
|
Abstract
Historically, newborns, and especially premature newborns, were thought to "feel nothing." However, over the past decades, a growing body of evidence has shown that newborns are aware of their environment, but the extent and the onset of some sensory capacities remain largely unknown. The goal of this review is to update our current knowledge concerning newborns' perceptual world and how ready they are to cope with an entirely different sensory environment following birth. We aim to establish not only how and when each sensory ability arises during the pre-/postbirth period but also discuss how senses are studied. We conclude that although many studies converge to show that newborns are clearly sentient beings, much is still unknown. Further, we identify a series of internal and external factors that could explain discrepancies between studies, and we propose perspectives for future studies. Finally, through examples from animal studies, we illustrate the importance of this detailed knowledge to pursue the enhancement of newborns' daily living conditions. Indeed, this is a prerequisite for assessing the effects of the physical environment and routine procedures on newborns' welfare.
Collapse
|
24
|
Atsumi T, Ide M, Wada M. Spontaneous Discriminative Response to the Biological Motion Displays Involving a Walking Conspecific in Mice. Front Behav Neurosci 2018; 12:263. [PMID: 30459572 PMCID: PMC6232871 DOI: 10.3389/fnbeh.2018.00263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 10/17/2018] [Indexed: 11/13/2022] Open
Abstract
Recent translational studies using mice have contributed toward elucidating the neural, genetic, and molecular basis of social communication deficits. Nevertheless, many components of visual processes underlying mice sociality remain unresolved, including perception of bodily-movement. Here, we aimed to reveal the visual sensitivity of mice to information on bodily motion using biological motion displays depicted by simple geometric dots. We introduced biological motions extracted from walking mice vs. corresponding meaningless scrambled motions, in which the spatial configurations of each path of dots were shuffled. The apparatus was a three-chambered box with an opening between the chambers, and each side chamber had a monitor. We measured the exploration time of mice within the apparatus during the test, with two types of displays being presented. Mice spent more time in the chamber with the scrambled motion displays, indicating that animals spontaneously discriminated stimuli, with the scrambled motion being relatively novel. Furthermore, mice might have detected socially familiar cues from the biological motion displays. Subsequent testing revealed that additional mice showed no bias to the static versions of the stimuli used in the Movie test. Thus, we confirmed that mice modulated their behavior by focusing on the motion information of the stimuli, rather than the spatial configurations of each dot. Our findings provide a new perspective on how visual processing contributes to underlying social behavior in mice, potentially facilitating future translational studies of social deficits with respect to genetic and neural bases.
Collapse
Affiliation(s)
- Takeshi Atsumi
- Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Masakazu Ide
- Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
| | - Makoto Wada
- Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
| |
Collapse
|
25
|
Larsch J, Baier H. Biological Motion as an Innate Perceptual Mechanism Driving Social Affiliation. Curr Biol 2018; 28:3523-3532.e4. [DOI: 10.1016/j.cub.2018.09.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/13/2018] [Accepted: 09/10/2018] [Indexed: 12/31/2022]
|
26
|
Gonçalves A, Biro D. Comparative thanatology, an integrative approach: exploring sensory/cognitive aspects of death recognition in vertebrates and invertebrates. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170263. [PMID: 30012749 PMCID: PMC6053989 DOI: 10.1098/rstb.2017.0263] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2018] [Indexed: 11/12/2022] Open
Abstract
Evolutionary thanatology benefits from broad taxonomic comparisons of non-human animals' responses to death. Furthermore, exploring the sensory and cognitive bases of these responses promises to allow classification of the underlying mechanisms on a spectrum from phylogenetically ancient to more derived traits. We draw on studies of perception and cognition in invertebrate and vertebrate taxa (with a focus on arthropods, corvids, proboscids, cetaceans and primates) to explore the cues that these animals use to detect life and death in others, and discuss proximate and ultimate drivers behind their capacities to do so. Parallels in thanatological behaviour exhibited by the last four taxa suggest similar sensory-cognitive processing rules for dealing with corpses, the evolution of which may have been driven by complex social environments. Uniting these responses is a phenomenon we term 'animacy detection malfunction', whereupon the corpse, having both animate and inanimate attributes, creates states of fear/curiosity manifested as approach/avoidance behaviours in observers. We suggest that integrating diverse lines of evidence (including the 'uncanny valley' effect originating from the field of robotics) provides a promising way to advance the field, and conclude by proposing avenues for future research.This article is part of the theme issue 'Evolutionary thanatology: impacts of the dead on the living in humans and other animals'.
Collapse
Affiliation(s)
- André Gonçalves
- Language and Intelligence Section, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Dora Biro
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
27
|
Shibai A, Arimoto T, Yoshinaga T, Tsuchizawa Y, Khureltulga D, Brown ZP, Kakizuka T, Hosoda K. Attraction of posture and motion-trajectory elements of conspecific biological motion in medaka fish. Sci Rep 2018; 8:8589. [PMID: 29872061 PMCID: PMC5988670 DOI: 10.1038/s41598-018-26186-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/08/2018] [Indexed: 01/30/2023] Open
Abstract
Visual recognition of conspecifics is necessary for a wide range of social behaviours in many animals. Medaka (Japanese rice fish), a commonly used model organism, are known to be attracted by the biological motion of conspecifics. However, biological motion is a composite of both body-shape motion and entire-field motion trajectory (i.e., posture or motion-trajectory elements, respectively), and it has not been revealed which element mediates the attractiveness. Here, we show that either posture or motion-trajectory elements alone can attract medaka. We decomposed biological motion of the medaka into the two elements and synthesized visual stimuli that contain both, either, or none of the two elements. We found that medaka were attracted by visual stimuli that contain at least one of the two elements. In the context of other known static visual information regarding the medaka, the potential multiplicity of information regarding conspecific recognition has further accumulated. Our strategy of decomposing biological motion into these partial elements is applicable to other animals, and further studies using this technique will enhance the basic understanding of visual recognition of conspecifics.
Collapse
Affiliation(s)
- Atsushi Shibai
- Graduate School of Information Science and Technology, Osaka University, Yamadaoka 1-5, Suita, Osaka, 565-0871, Japan.
| | - Tsunehiro Arimoto
- Graduate School of Engineering Science, Osaka University, Machikaneyama-cho 1-3, Toyonaka, Osaka, 560-8531, Japan
| | - Tsukasa Yoshinaga
- Graduate School of Engineering Science, Osaka University, Machikaneyama-cho 1-3, Toyonaka, Osaka, 560-8531, Japan
| | - Yuta Tsuchizawa
- Graduate School of Frontier Bioscience, Osaka University, Yamadaoka 1-3, Suita, Osaka, 565-0871, Japan
| | - Dashdavaa Khureltulga
- Graduate School of Information Science and Technology, Osaka University, Yamadaoka 1-5, Suita, Osaka, 565-0871, Japan
| | - Zuben P Brown
- Graduate School of Frontier Bioscience, Osaka University, Yamadaoka 1-3, Suita, Osaka, 565-0871, Japan
| | - Taishi Kakizuka
- Graduate School of Frontier Bioscience, Osaka University, Yamadaoka 1-3, Suita, Osaka, 565-0871, Japan
| | - Kazufumi Hosoda
- Graduate School of Information Science and Technology, Osaka University, Yamadaoka 1-5, Suita, Osaka, 565-0871, Japan.
- Institute for Academic Initiatives, Osaka University, Yamadaoka 1-5, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
28
|
Discrimination of movement and visual transfer abilities in cichlids (Pseudotropheus zebra). Behav Ecol Sociobiol 2018. [DOI: 10.1007/s00265-018-2476-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
29
|
Frohnwieser A, Pike TW, Murray JC, Wilkinson A. Perception of artificial conspecifics by bearded dragons (Pogona vitticeps). Integr Zool 2018; 14:214-222. [PMID: 29316228 DOI: 10.1111/1749-4877.12303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Artificial animals are increasingly used as conspecific stimuli in animal behavior research. However, researchers often have an incomplete understanding of how the species under study perceives conspecifics, and, hence, which features are needed for a stimulus to be perceived appropriately. To investigate the features that bearded dragons (Pogona vitticeps) attend to, we measured their lateralized eye use when assessing a successive range of stimuli. These ranged through several stages of realism in artificial conspecifics, to see how features such as color, the presence of eyes, body shape and motion influence behavior. We found differences in lateralized eye use depending on the sex of the observing bearded dragon and the artificial conspecific, as well as the artificial conspecific's behavior. Therefore, this approach can inform the design of robotic animals that elicit biologically-meaningful responses in live animals.
Collapse
Affiliation(s)
| | - Thomas W Pike
- School of Life Sciences, University of Lincoln, Lincoln, UK
| | - John C Murray
- School of Computer Science, University of Lincoln, Lincoln, UK
| | - Anna Wilkinson
- School of Life Sciences, University of Lincoln, Lincoln, UK.,Wildlife Research Center, Kyoto University, Kyoto, Japan
| |
Collapse
|
30
|
Shimmura T, Nakayama T, Shinomiya A, Fukamachi S, Yasugi M, Watanabe E, Shimo T, Senga T, Nishimura T, Tanaka M, Kamei Y, Naruse K, Yoshimura T. Dynamic plasticity in phototransduction regulates seasonal changes in color perception. Nat Commun 2017; 8:412. [PMID: 28871081 PMCID: PMC5583187 DOI: 10.1038/s41467-017-00432-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/28/2017] [Indexed: 12/05/2022] Open
Abstract
To cope with seasonal changes in the environment, organisms adapt their physiology and behavior. Although color perception varies among seasons, the underlying molecular basis and its physiological significance remain unclear. Here we show that dynamic plasticity in phototransduction regulates seasonal changes in color perception in medaka fish. Medaka are active and exhibit clear phototaxis in conditions simulating summer, but remain at the bottom of the tank and fail to exhibit phototaxis in conditions simulating winter. Mate preference tests using virtual fish created with computer graphics demonstrate that medaka are more attracted to orange-red-colored model fish in summer than in winter. Transcriptome analysis of the eye reveals dynamic seasonal changes in the expression of genes encoding photopigments and their downstream pathways. Behavioral analysis of photopigment-null fish shows significant differences from wild type, suggesting that plasticity in color perception is crucial for the emergence of seasonally regulated behaviors. Animal coloration and behavior can change seasonally, but it is unclear if visual sensitivity to color shifts as well. Here, Shimmura et al. show that medaka undergo seasonal behavioral change accompanied by altered expression of opsin genes, resulting in reduced visual sensitivity to mates during winter-like conditions.
Collapse
Affiliation(s)
- Tsuyoshi Shimmura
- Division of Seasonal Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan.,Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Hayama, 240-0193, Japan.,Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan.,Department of Biological Production, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Tomoya Nakayama
- Division of Seasonal Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan.,Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Ai Shinomiya
- Division of Seasonal Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan.,Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Hayama, 240-0193, Japan
| | - Shoji Fukamachi
- Department of Chemical and Biological Sciences, Japan Women's University, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Masaki Yasugi
- Laboratory of Neurophysiology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan
| | - Eiji Watanabe
- Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Hayama, 240-0193, Japan.,Laboratory of Neurophysiology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan
| | - Takayuki Shimo
- Division of Seasonal Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan.,Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Takumi Senga
- Division of Seasonal Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan.,Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Toshiya Nishimura
- Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Okazaki, Aichi, 444-8787, Japan.,Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Minoru Tanaka
- Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Hayama, 240-0193, Japan.,Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Okazaki, Aichi, 444-8787, Japan.,Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Yasuhiro Kamei
- Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Hayama, 240-0193, Japan.,Spectrography and Bioimaging Facility, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan
| | - Kiyoshi Naruse
- Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Hayama, 240-0193, Japan.,Laboratory of Bioresources, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan
| | - Takashi Yoshimura
- Division of Seasonal Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan. .,Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan. .,Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan. .,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Aichi, Japan.
| |
Collapse
|
31
|
Scherer U, Godin JGJ, Schuett W. Validation of 2D-animated pictures as an investigative tool in the behavioural sciences: A case study with a West African cichlid fish,Pelvicachromis pulcher. Ethology 2017. [DOI: 10.1111/eth.12630] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Ulrike Scherer
- Biocentre Grindel; Zoological Institute; University of Hamburg; Hamburg Germany
| | | | - Wiebke Schuett
- Biocentre Grindel; Zoological Institute; University of Hamburg; Hamburg Germany
| |
Collapse
|
32
|
Okuyama T, Yokoi S, Takeuchi H. Molecular basis of social competence in medaka fish. Dev Growth Differ 2017; 59:211-218. [DOI: 10.1111/dgd.12359] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Teruhiro Okuyama
- RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory; Department of Biology and Department of Brain and Cognitive Sciences; Massachusetts Institute of Technology (MIT); Cambridge MA 02139 USA
| | - Saori Yokoi
- Laboratory of Bioresources; National Institute for Basic Biology; Nishigonaka 38 Myodaiji Okazaki 444-8585 Aichi Japan
| | - Hideaki Takeuchi
- Graduate School of Natural Science and Technology; Okayama University; Tsushimanaka 3-1-1 Kita-ku Okayama-shi Okayama 700-8530 Japan
| |
Collapse
|
33
|
Di Giorgio E, Loveland JL, Mayer U, Rosa-Salva O, Versace E, Vallortigara G. Filial responses as predisposed and learned preferences: Early attachment in chicks and babies. Behav Brain Res 2017; 325:90-104. [DOI: 10.1016/j.bbr.2016.09.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 12/25/2022]
|
34
|
Three-dimensional computer graphic animations for studying social approach behaviour in medaka fish: Effects of systematic manipulation of morphological and motion cues. PLoS One 2017; 12:e0175059. [PMID: 28399163 PMCID: PMC5388324 DOI: 10.1371/journal.pone.0175059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/20/2017] [Indexed: 12/15/2022] Open
Abstract
We studied social approach behaviour in medaka fish using three-dimensional computer graphic (3DCG) animations based on the morphological features and motion characteristics obtained from real fish. This is the first study which used 3DCG animations and examined the relative effects of morphological and motion cues on social approach behaviour in medaka. Various visual stimuli, e.g., lack of motion, lack of colour, alternation in shape, lack of locomotion, lack of body motion, and normal virtual fish in which all four features (colour, shape, locomotion, and body motion) were reconstructed, were created and presented to fish using a computer display. Medaka fish presented with normal virtual fish spent a long time in proximity to the display, whereas time spent near the display was decreased in other groups when compared with normal virtual medaka group. The results suggested that the naturalness of visual cues contributes to the induction of social approach behaviour. Differential effects between body motion and locomotion were also detected. 3DCG animations can be a useful tool to study the mechanisms of visual processing and social behaviour in medaka.
Collapse
|
35
|
Müller K, Smielik I, Hütwohl JM, Gierszewski S, Witte K, Kuhnert KD. The virtual lover: variable and easily guided 3D fish animations as an innovative tool in mate-choice experiments with sailfin mollies-I. Design and implementation. Curr Zool 2017; 63:55-64. [PMID: 29491963 PMCID: PMC5804152 DOI: 10.1093/cz/zow106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 10/19/2016] [Indexed: 11/15/2022] Open
Abstract
Animal behavior researchers often face problems regarding standardization and reproducibility of their experiments. This has led to the partial substitution of live animals with artificial virtual stimuli. In addition to standardization and reproducibility, virtual stimuli open new options for researchers since they are easily changeable in morphology and appearance, and their behavior can be defined. In this article, a novel toolchain to conduct behavior experiments with fish is presented by a case study in sailfin mollies Poecilia latipinna. As the toolchain holds many different and novel features, it offers new possibilities for studies in behavioral animal research and promotes the standardization of experiments. The presented method includes options to design, animate, and present virtual stimuli to live fish. The designing tool offers an easy and user-friendly way to define size, coloration, and morphology of stimuli and moreover it is able to configure virtual stimuli randomly without any user influence. Furthermore, the toolchain brings a novel method to animate stimuli in a semiautomatic way with the help of a game controller. These created swimming paths can be applied to different stimuli in real time. A presentation tool combines models and swimming paths regarding formerly defined playlists, and presents the stimuli onto 2 screens. Experiments with live sailfin mollies validated the usage of the created virtual 3D fish models in mate-choice experiments.
Collapse
Affiliation(s)
- Klaus Müller
- Department of Electrical Engineering & Computer Science, Institute of Real-Time Learning Systems, University of Siegen, Hölderlinstraße 3, Siegen, 57076, GermanyResearch Group of Ecology and Behavioral Biology, Institute of Biology, University of Siegen, Adolf-Reichwein-Straße 2, Siegen, 57068, Germany
| | - Ievgen Smielik
- Department of Electrical Engineering & Computer Science, Institute of Real-Time Learning Systems, University of Siegen, Hölderlinstraße 3, Siegen, 57076, GermanyResearch Group of Ecology and Behavioral Biology, Institute of Biology, University of Siegen, Adolf-Reichwein-Straße 2, Siegen, 57068, Germany
| | - Jan-Marco Hütwohl
- Department of Electrical Engineering & Computer Science, Institute of Real-Time Learning Systems, University of Siegen, Hölderlinstraße 3, Siegen, 57076, GermanyResearch Group of Ecology and Behavioral Biology, Institute of Biology, University of Siegen, Adolf-Reichwein-Straße 2, Siegen, 57068, Germany
| | - Stefanie Gierszewski
- Department of Electrical Engineering & Computer Science, Institute of Real-Time Learning Systems, University of Siegen, Hölderlinstraße 3, Siegen, 57076, GermanyResearch Group of Ecology and Behavioral Biology, Institute of Biology, University of Siegen, Adolf-Reichwein-Straße 2, Siegen, 57068, Germany
| | - Klaudia Witte
- Department of Electrical Engineering & Computer Science, Institute of Real-Time Learning Systems, University of Siegen, Hölderlinstraße 3, Siegen, 57076, GermanyResearch Group of Ecology and Behavioral Biology, Institute of Biology, University of Siegen, Adolf-Reichwein-Straße 2, Siegen, 57068, Germany
| | - Klaus-Dieter Kuhnert
- Department of Electrical Engineering & Computer Science, Institute of Real-Time Learning Systems, University of Siegen, Hölderlinstraße 3, Siegen, 57076, GermanyResearch Group of Ecology and Behavioral Biology, Institute of Biology, University of Siegen, Adolf-Reichwein-Straße 2, Siegen, 57068, Germany
| |
Collapse
|
36
|
Chouinard-Thuly L, Gierszewski S, Rosenthal GG, Reader SM, Rieucau G, Woo KL, Gerlai R, Tedore C, Ingley SJ, Stowers JR, Frommen JG, Dolins FL, Witte K. Technical and conceptual considerations for using animated stimuli in studies of animal behavior. Curr Zool 2017; 63:5-19. [PMID: 29491958 PMCID: PMC5804155 DOI: 10.1093/cz/zow104] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 10/12/2016] [Indexed: 11/14/2022] Open
Abstract
Rapid technical advances in the field of computer animation (CA) and virtual reality (VR) have opened new avenues in animal behavior research. Animated stimuli are powerful tools as they offer standardization, repeatability, and complete control over the stimulus presented, thereby "reducing" and "replacing" the animals used, and "refining" the experimental design in line with the 3Rs. However, appropriate use of these technologies raises conceptual and technical questions. In this review, we offer guidelines for common technical and conceptual considerations related to the use of animated stimuli in animal behavior research. Following the steps required to create an animated stimulus, we discuss (I) the creation, (II) the presentation, and (III) the validation of CAs and VRs. Although our review is geared toward computer-graphically designed stimuli, considerations on presentation and validation also apply to video playbacks. CA and VR allow both new behavioral questions to be addressed and existing questions to be addressed in new ways, thus we expect a rich future for these methods in both ultimate and proximate studies of animal behavior.
Collapse
Affiliation(s)
- Laura Chouinard-Thuly
- Department of Biology, McGill University, 1205 Docteur Penfield, Montréal, Quebec, Canada H3A 1B1
| | - Stefanie Gierszewski
- Research Group of Ecology and Behavioral Biology, Institute of Biology, University of Siegen, Adolf-Reichwein Str. 2, Siegen 57068, Germany
| | - Gil G. Rosenthal
- Ecology & Evolutionary Biology, Texas A&M University, 3258 TAMU College Station, TX 77843, USA
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, Calnali, Hidalgo, México
| | - Simon M. Reader
- Department of Biology, McGill University, 1205 Docteur Penfield, Montréal, Quebec, Canada H3A 1B1
| | - Guillaume Rieucau
- Department of Biological Sciences, Florida International University, 3000 Northeast 151 Street, North Miami, FL 33181, USA
| | - Kevin L. Woo
- SUNY Empire State College, Metropolitan Center, 325 Hudson Street, New York, NY 10013-1005, USA
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario, Canada L5L 1C6
| | - Cynthia Tedore
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, Lund 22362, Sweden
| | - Spencer J. Ingley
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Coker Hall, Chapel Hill, NC 27599, USA
| | - John R. Stowers
- Research Institute of Molecular Pathology IMP, Vienna Biocenter VBC, Dr. Bohr-Gasse 7, Vienna 1030, Austria
- loopbio gmbh, Hauptstrasse 93, Kritzendorf 3420, Austria
| | - Joachim G. Frommen
- Department of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50a, Hinterkappelen 3032, Switzerland
| | - Francine L. Dolins
- Department of Behavioral Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, MI 48128, USA
| | - Klaudia Witte
- Research Group of Ecology and Behavioral Biology, Institute of Biology, University of Siegen, Adolf-Reichwein Str. 2, Siegen 57068, Germany
| |
Collapse
|
37
|
Gierszewski S, Müller K, Smielik I, Hütwohl JM, Kuhnert KD, Witte K. The virtual lover: variable and easily guided 3D fish animations as an innovative tool in mate-choice experiments with sailfin mollies-II. Validation. Curr Zool 2017; 63:65-74. [PMID: 29491964 PMCID: PMC5804156 DOI: 10.1093/cz/zow108] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 10/24/2016] [Indexed: 01/30/2023] Open
Abstract
The use of computer animation in behavioral research is a state-of-the-art method for designing and presenting animated animals to live test animals. The major advantages of computer animations are: (1) the creation of animated animal stimuli with high variability of morphology and even behavior; (2) animated stimuli provide highly standardized, controlled and repeatable testing procedures; and (3) they allow a reduction in the number of live test animals regarding the 3Rs principle. But the use of animated animals should be attended by a thorough validation for each test species to verify that behavior measured with live animals toward virtual animals can also be expected with natural stimuli. Here we present results on the validation of a custom-made simulation for animated 3D sailfin mollies Poecilia latipinna and show that responses of live test females were as strong to an animated fish as to a video or a live male fish. Movement of an animated stimulus was important but female response was stronger toward a swimming 3D fish stimulus than to a "swimming" box. Moreover, male test fish were able to discriminate between animated male and female stimuli; hence, rendering the animated 3D fish a useful tool in mate-choice experiments with sailfin mollies.
Collapse
Affiliation(s)
- Stefanie Gierszewski
- Research Group of Ecology and Behavioral Biology, Institute of Biology, University of Siegen, Adolf-Reichwein-Straße 2, Siegen, 57068, Germany
| | - Klaus Müller
- Institute of Real-Time Learning Systems, Department of Electrical Engineering & Computer Science, University of Siegen, Hölderlinstraße 3, Siegen, 57076, Germany
| | - Ievgen Smielik
- Institute of Real-Time Learning Systems, Department of Electrical Engineering & Computer Science, University of Siegen, Hölderlinstraße 3, Siegen, 57076, Germany
| | - Jan-Marco Hütwohl
- Institute of Real-Time Learning Systems, Department of Electrical Engineering & Computer Science, University of Siegen, Hölderlinstraße 3, Siegen, 57076, Germany
| | - Klaus-Dieter Kuhnert
- Institute of Real-Time Learning Systems, Department of Electrical Engineering & Computer Science, University of Siegen, Hölderlinstraße 3, Siegen, 57076, Germany
| | - Klaudia Witte
- Research Group of Ecology and Behavioral Biology, Institute of Biology, University of Siegen, Adolf-Reichwein-Straße 2, Siegen, 57068, Germany
| |
Collapse
|
38
|
Principal function of mineralocorticoid signaling suggested by constitutive knockout of the mineralocorticoid receptor in medaka fish. Sci Rep 2016; 6:37991. [PMID: 27897263 PMCID: PMC5126551 DOI: 10.1038/srep37991] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/03/2016] [Indexed: 01/10/2023] Open
Abstract
As in osmoregulation, mineralocorticoid signaling is implicated in the control of brain-behavior actions. Nevertheless, the understanding of this role is limited, partly due to the mortality of mineralocorticoid receptor (MR)-knockout (KO) mice due to impaired Na+ reabsorption. In teleost fish, a distinct mineralocorticoid system has only been identified recently. Here, we generated a constitutive MR-KO medaka as the first adult-viable MR-KO animal, since MR expression is modest in osmoregulatory organs but high in the brain of adult medaka as for most teleosts. Hyper- and hypo-osmoregulation were normal in MR-KO medaka. When we studied the behavioral phenotypes based on the central MR localization, however, MR-KO medaka failed to track moving dots despite having an increase in acceleration of swimming. These findings reinforce previous results showing a minor role for mineralocorticoid signaling in fish osmoregulation, and provide the first convincing evidence that MR is required for normal locomotor activity in response to visual motion stimuli, but not for the recognition of these stimuli per se. We suggest that MR potentially integrates brain-behavioral and visual responses, which might be a conserved function of mineralocorticoid signaling through vertebrates. Importantly, this fish model allows for the possible identification of novel aspects of mineralocorticoid signaling.
Collapse
|
39
|
Ansai S, Hosokawa H, Maegawa S, Kinoshita M. Chronic fluoxetine treatment induces anxiolytic responses and altered social behaviors in medaka, Oryzias latipes. Behav Brain Res 2016; 303:126-36. [PMID: 26821288 DOI: 10.1016/j.bbr.2016.01.050] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/17/2015] [Accepted: 01/22/2016] [Indexed: 12/13/2022]
Abstract
Medaka (Oryzias latipes) is a small freshwater teleost that is an emerging model system for neurobehavioral research and toxicological testing. The selective serotonin reuptake inhibitor class of antidepressants such as fluoxetine is one of the widely prescribed drugs, but little is known about the effects of these drugs on medaka behaviors. To assess the behavioral effects of fluoxetine, we chronically administrated fluoxetine to medaka adult fish and analyzed the anxiety-related and social behaviors using five behavioral paradigms (diving, open-field, light-dark transition, mirror-biting, and social interaction) with an automated behavioral testing system. Fish chronically treated with fluoxetine exhibited anxiolytic responses such as an overall increased time spent in the top area in the diving test and an increased time spent in center area in the open-field test. Analysis of socially evoked behavior showed that chronic fluoxetine administration decreased the number of mirror biting times in the mirror-biting test and increased latency to first contact in the social interaction test. Additionally, chronic fluoxetine administration reduced the horizontal locomotor activity in the open-field test but not the vertical activity in the diving test. These investigations are mostly consistent with previous reports in the other teleost species and rodent models. These results indicate that behavioral assessment in medaka adult fish will become useful for screening of effects of pharmaceutical and toxicological compounds in animal behaviors.
Collapse
Affiliation(s)
- Satoshi Ansai
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Hiroshi Hosokawa
- Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Shingo Maegawa
- Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masato Kinoshita
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
40
|
Abril-de-Abreu R, Cruz J, Oliveira RF. Social Eavesdropping in Zebrafish: Tuning of Attention to Social Interactions. Sci Rep 2015; 5:12678. [PMID: 26242246 PMCID: PMC4525141 DOI: 10.1038/srep12678] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 07/06/2015] [Indexed: 11/16/2022] Open
Abstract
Group living animals may eavesdrop on signalling interactions between conspecifics in order to collect adaptively relevant information obtained from others, without incurring in the costs of first-hand information acquisition. This ability (aka social eavesdropping) is expected to impact Darwinian fitness, and hence predicts the evolution of cognitive processes that enable social animals to use public information available in the environment. These adaptive specializations in cognition may have evolved both at the level of learning and memory mechanisms, and at the level of input mechanisms, such as attention, which select the information that is available for learning. Here we used zebrafish to test if attention in a social species is tuned to the exchange of information between conspecifics. Our results show that zebrafish are more attentive towards interacting (i.e. fighting) than towards non-interacting pairs of conspecifics, with the exposure to fighting not increasing activity or stress levels. Moreover, using video playbacks to manipulate form features of the fighting fish, we show that during the assessment phase of the fight, bystanders’ attention is more driven by form features of the interacting opponents; whereas during the post-resolution phase, it is driven by biological movement features of the dominant fish chasing the subordinate fish.
Collapse
Affiliation(s)
- Rodrigo Abril-de-Abreu
- 1] Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal [2] ISPA - Instituto Universitário, Rua Jardim do Tabaco 34, 1149-041 Lisboa, Portugal [3] Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Av. de Brasilia, 1400-038 Lisboa, Portugal
| | - José Cruz
- 1] Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal [2] ISPA - Instituto Universitário, Rua Jardim do Tabaco 34, 1149-041 Lisboa, Portugal [3] Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Av. de Brasilia, 1400-038 Lisboa, Portugal
| | - Rui F Oliveira
- 1] Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal [2] ISPA - Instituto Universitário, Rua Jardim do Tabaco 34, 1149-041 Lisboa, Portugal [3] Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Av. de Brasilia, 1400-038 Lisboa, Portugal
| |
Collapse
|
41
|
Abril-de-Abreu R, Cruz AS, Oliveira RF. Social dominance modulates eavesdropping in zebrafish. ROYAL SOCIETY OPEN SCIENCE 2015; 2:150220. [PMID: 26361550 PMCID: PMC4555855 DOI: 10.1098/rsos.150220] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/27/2015] [Indexed: 05/16/2023]
Abstract
Group living animals may eavesdrop on signalling interactions between conspecifics and integrate it with their own past social experience in order to optimize the use of relevant information from others. However, little is known about this interplay between public (eavesdropped) and private social information. To investigate it, we first manipulated the dominance status of bystander zebrafish. Next, we either allowed or prevented bystanders from observing a fight. Finally, we assessed their behaviour towards the winners and losers of the interaction, using a custom-made video-tracking system and directional analysis. We found that only dominant bystanders who had seen the fight revealed a significant increase in directional focus (a measure of attention) towards the losers of the fights. Furthermore, our results indicate that information about the fighters' acquired status was collected from the signalling interaction itself and not from post-interaction status cues, which implies the existence of individual recognition in zebrafish. Thus, we show for the first time that zebrafish, a highly social model organism, eavesdrop on conspecific agonistic interactions and that this process is modulated by the eavesdroppers' dominance status. We suggest that this type of integration of public and private information may be ubiquitous in social learning processes.
Collapse
Affiliation(s)
- Rodrigo Abril-de-Abreu
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras 2780-156, Portugal
- ISPA—Instituto Universitário, Rua Jardim do Tabaco 34, Lisboa 1149-041, Portugal
- Champalimaud Neuroscience Programme, Avenida de Brasilia, Lisboa 1400-038, Portugal
| | - Ana S. Cruz
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras 2780-156, Portugal
- ISPA—Instituto Universitário, Rua Jardim do Tabaco 34, Lisboa 1149-041, Portugal
| | - Rui F. Oliveira
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras 2780-156, Portugal
- ISPA—Instituto Universitário, Rua Jardim do Tabaco 34, Lisboa 1149-041, Portugal
- Champalimaud Neuroscience Programme, Avenida de Brasilia, Lisboa 1400-038, Portugal
- Author for correspondence: Rui F. Oliveira e-mail:
| |
Collapse
|
42
|
Pigeons (Columba livia) fail to connect dots in learning biological motion. Anim Cogn 2015; 18:1187-91. [DOI: 10.1007/s10071-015-0880-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 04/30/2015] [Accepted: 05/21/2015] [Indexed: 10/23/2022]
|
43
|
Schluessel V, Kortekamp N, Cortes JAO, Klein A, Bleckmann H. Perception and discrimination of movement and biological motion patterns in fish. Anim Cogn 2015; 18:1077-91. [PMID: 25981056 DOI: 10.1007/s10071-015-0876-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/29/2015] [Accepted: 05/02/2015] [Indexed: 01/29/2023]
Abstract
Vision is of primary importance for many fish species, as is the recognition of movement. With the exception of one study, assessing the influence of conspecific movement on shoaling behaviour, the perception of biological motion in fish had not been studied in a cognitive context. The aim of the present study was therefore to assess the discrimination abilities of two teleost species in regard to simple and complex movement patterns of dots and objects, including biological motion patterns using point and point-light displays (PDs and PLDs). In two-alternative forced-choice experiments, in which choosing the designated positive stimulus was food-reinforced, fish were first tested in their ability to distinguish the video of a stationary black dot on a light background from the video of a moving black dot presented at different frequencies and amplitudes. While all fish succeeded in learning the task, performance declined with decreases in either or both parameters. In subsequent tests, cichlids and damselfish distinguished successfully between the videos of two dots moving at different speeds and amplitudes, between two moving dot patterns (sinus vs. expiring sinus) and between animated videos of two moving organisms (trout vs. eel). Transfer tests following the training of the latter showed that fish were unable to identify the positive stimulus (trout) by means of its PD alone, thereby indicating that the ability of humans to spontaneously recognize an organism based on its biological motion may not be present in fish. All participating individuals successfully discriminated between two PDs and two PLDs after a short period of training, indicating that biological motions presented in form of PLDs are perceived and can be distinguished. Results were the same for the presentation of dark dots on a light background and light dots on a dark background.
Collapse
Affiliation(s)
- V Schluessel
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115, Bonn, Germany,
| | | | | | | | | |
Collapse
|
44
|
Rugani R, Rosa Salva O, Regolin L, Vallortigara G. Brain asymmetry modulates perception of biological motion in newborn chicks (Gallus gallus). Behav Brain Res 2015; 290:1-7. [PMID: 25930217 DOI: 10.1016/j.bbr.2015.04.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/17/2015] [Accepted: 04/19/2015] [Indexed: 11/15/2022]
Abstract
Few light-points on the joints of a moving animal give the impression of biological motion (BM). Day-old chicks prefer BM to non-BM, suggesting a conserved predisposition to attend to moving animals. In humans and other mammals a network of regions, primarily in the right hemisphere, provides the neural substrate for BM perception. However, this has not been investigated in avians. In birds the information from each eye is mainly feeding to the contralateral hemisphere. To study brain asymmetry, we recorded the eye spontaneously used by chicks to inspect a BM stimulus. We also investigated the effect of lateralization following light exposure of the embryos. In Experiment 1, highly lateralized chicks aligned with the apparent direction of motion only when they were exposed to a BM-stimulus moving rightward first, monitoring it with the left-eye-system. In Experiment 2 weakly lateralized chicks did not show any behavioral asymmetry. Moreover, they counter aligned with the apparent direction of motion. Brain lateralization affects chicks behavior while processing and approaching a BM stimulus. Highly lateralized chicks aligned their body with the apparent direction of the BM, a behavior akin to a following response, monitoring the stimulus preferentially with their left eye. This suggests a right hemisphere dominance in BM processing. Weakly lateralized chicks counter-aligned with the apparent direction of the BM, facing it during interaction, and monitored it equally with both eyes. Environmental factors (light stimulation) seem to affect the development of lateralization, and consequently social behavior.
Collapse
Affiliation(s)
- Rosa Rugani
- Centre for Mind/Brain Sciences, University of Trento, Trento, Italy.
| | | | - Lucia Regolin
- Department of General Psychology, University of Padova, Padova, Italy
| | | |
Collapse
|
45
|
Rosa Salva O, Sovrano VA, Vallortigara G. What can fish brains tell us about visual perception? Front Neural Circuits 2014; 8:119. [PMID: 25324728 PMCID: PMC4179623 DOI: 10.3389/fncir.2014.00119] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/09/2014] [Indexed: 12/26/2022] Open
Abstract
Fish are a complex taxonomic group, whose diversity and distance from other vertebrates well suits the comparative investigation of brain and behavior: in fish species we observe substantial differences with respect to the telencephalic organization of other vertebrates and an astonishing variety in the development and complexity of pallial structures. We will concentrate on the contribution of research on fish behavioral biology for the understanding of the evolution of the visual system. We shall review evidence concerning perceptual effects that reflect fundamental principles of the visual system functioning, highlighting the similarities and differences between distant fish groups and with other vertebrates. We will focus on perceptual effects reflecting some of the main tasks that the visual system must attain. In particular, we will deal with subjective contours and optical illusions, invariance effects, second order motion and biological motion and, finally, perceptual binding of object properties in a unified higher level representation.
Collapse
Affiliation(s)
- Orsola Rosa Salva
- Center for Mind/Brain Sciences, University of TrentoRovereto, Trento, Italy
| | - Valeria Anna Sovrano
- Center for Mind/Brain Sciences, University of TrentoRovereto, Trento, Italy
- Dipartimento di Psicologia e Scienze Cognitive, University of TrentoRovereto, Trento, Italy
| | - Giorgio Vallortigara
- Center for Mind/Brain Sciences, University of TrentoRovereto, Trento, Italy
- Dipartimento di Psicologia e Scienze Cognitive, University of TrentoRovereto, Trento, Italy
| |
Collapse
|
46
|
Gerlai R. Social behavior of zebrafish: from synthetic images to biological mechanisms of shoaling. J Neurosci Methods 2014; 234:59-65. [PMID: 24793400 DOI: 10.1016/j.jneumeth.2014.04.028] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 04/20/2014] [Accepted: 04/24/2014] [Indexed: 11/16/2022]
Abstract
The zebrafish strikes a good balance between system complexity and practical simplicity and as a result it is becoming increasingly frequently utilized in biomedical research as a translational tool. Numerous human brain disorders are associated with abnormal social behavior and the zebrafish has been suggested for modeling such disorders. To start this line of research, however, one may need to first thoroughly examine the laboratory organism, zebrafish, and its features, social behavior in this case. Proper methods need be developed to induce and quantify social behavior. These paradigms may be able to open a window to the brain and facilitate the understanding of the biological mechanisms of social behavior and its abnormalities. This review is based on an oral paper presented at the last Measuring Behavior Conference, and as such it is mainly focused on research conducted in my own laboratory. Tracing the temporal progression of our own work, it discusses questions including what shoaling is, how it can be induced and measured and how it can be utilized in the modeling of certain human brain disorders, for example, alcohol induced abnormalities.
Collapse
Affiliation(s)
- Robert Gerlai
- University of Toronto Mississauga, Department of Psychology, Canada.
| |
Collapse
|