1
|
Dong Y, Lengyel G, Shivkumar S, Anzai A, DiRisio GF, Haefner RM, DeAngelis GC. Rewarding animals based on their subjective percepts is enabled by online Bayesian estimation of perceptual biases. PLoS Biol 2025; 23:e3002764. [PMID: 40393031 DOI: 10.1371/journal.pbio.3002764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 04/29/2025] [Indexed: 05/22/2025] Open
Abstract
Elucidating the neural basis of perceptual biases, such as those produced by visual illusions, can provide powerful insights into the neural mechanisms of perceptual inference. However, studying the subjective percepts of animals poses a fundamental challenge: unlike human participants, animals cannot be verbally instructed to report what they see, hear, or feel. Instead, they must be trained to perform a task for reward, and researchers must infer from their responses what the animal perceived. However, animals' responses are shaped by reward feedback, thus raising the major concern that the reward regimen may alter the animal's decision strategy or even their intrinsic perceptual biases. Using simulations of a reinforcement learning agent, we demonstrate that conventional reward strategies fail to allow accurate estimation of perceptual biases. We developed a method that estimates perceptual bias during task performance and then computes the reward for each trial based on the evolving estimate of the animal's perceptual bias. Our approach makes use of multiple stimulus contexts to dissociate perceptual biases from decision-related biases. Starting with an informative prior, our Bayesian method updates a posterior over the perceptual bias after each trial. The prior can be specified based on data from past sessions, thus reducing the variability of the online estimate and allowing it to converge to a stable value over a small number of trials. After validating our method on synthetic data, we apply it to estimate perceptual biases of monkeys in a motion direction discrimination task in which varying background optic flow induces robust perceptual biases. This method overcomes an important challenge to understanding the neural basis of subjective percepts.
Collapse
Affiliation(s)
- Yelin Dong
- Department of Brain and Cognitive Sciences & Center for Visual Science, University of Rochester, Rochester, New York, New York, United States of America
| | - Gabor Lengyel
- Department of Brain and Cognitive Sciences & Center for Visual Science, University of Rochester, Rochester, New York, New York, United States of America
| | - Sabyasachi Shivkumar
- Department of Brain and Cognitive Sciences & Center for Visual Science, University of Rochester, Rochester, New York, New York, United States of America
- Zuckerman Institute, Columbia University, New York, New York, United States of America
| | - Akiyuki Anzai
- Department of Brain and Cognitive Sciences & Center for Visual Science, University of Rochester, Rochester, New York, New York, United States of America
| | - Grace F DiRisio
- Department of Brain and Cognitive Sciences & Center for Visual Science, University of Rochester, Rochester, New York, New York, United States of America
| | - Ralf M Haefner
- Department of Brain and Cognitive Sciences & Center for Visual Science, University of Rochester, Rochester, New York, New York, United States of America
| | - Gregory C DeAngelis
- Department of Brain and Cognitive Sciences & Center for Visual Science, University of Rochester, Rochester, New York, New York, United States of America
| |
Collapse
|
2
|
Wu N, Zhou B, Agrochao M, Clark DA. Broken time-reversal symmetry in visual motion detection. Proc Natl Acad Sci U S A 2025; 122:e2410768122. [PMID: 40048271 PMCID: PMC11912477 DOI: 10.1073/pnas.2410768122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/09/2025] [Indexed: 03/12/2025] Open
Abstract
Our intuition suggests that when a movie is played in reverse, our perception of motion at each location in the reversed movie will be perfectly inverted compared to the original. This intuition is also reflected in classical theoretical and practical models of motion estimation, in which velocity flow fields invert when inputs are reversed in time. However, here we report that this symmetry of motion perception upon time reversal is broken in real visual systems. We designed a set of visual stimuli to investigate time reversal symmetry breaking in the fruit fly Drosophila's well-studied optomotor rotation behavior. We identified a suite of stimuli with a wide variety of properties that can uncover broken time reversal symmetry in fly behavioral responses. We then trained neural network models to predict the velocity of scenes with both natural and artificial contrast distributions. Training with naturalistic contrast distributions yielded models that broke time reversal symmetry, even when the training data themselves were time reversal symmetric. We show analytically and numerically that the breaking of time reversal symmetry in the model responses can arise from contrast asymmetry in the training data, but can also arise from other features of the contrast distribution. Furthermore, shallower neural network models can exhibit stronger symmetry breaking than deeper ones, suggesting that less flexible neural networks may be more prone to time reversal symmetry breaking. Overall, these results reveal a surprising feature of biological motion detectors and suggest that it could arise from constrained optimization in natural environments.
Collapse
Affiliation(s)
| | - Baohua Zhou
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT06511
| | - Margarida Agrochao
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT06511
| | - Damon A. Clark
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT06511
- Department of Physics, Yale University, New Haven, CT06511
- Department of Neuroscience, Yale University, New Haven, CT06511
- Quantitative Biology Institute, Yale University, New Haven, CT06511
- Wu Tsai Institute, Yale University, New Haven, CT06511
| |
Collapse
|
3
|
Dong Y, Lengyel G, Shivkumar S, Anzai A, DiRisio GF, Haefner RM, DeAngelis GC. How to reward animals based on their subjective percepts: A Bayesian approach to online estimation of perceptual biases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.25.605047. [PMID: 39091868 PMCID: PMC11291170 DOI: 10.1101/2024.07.25.605047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Elucidating the neural basis of perceptual biases, such as those produced by visual illusions, can provide powerful insights into the neural mechanisms of perceptual inference. However, studying the subjective percepts of animals poses a fundamental challenge: unlike human participants, animals cannot be verbally instructed to report what they see, hear, or feel. Instead, they must be trained to perform a task for reward, and researchers must infer from their responses what the animal perceived. However, animals' responses are shaped by reward feedback, thus raising the major concern that the reward regimen may alter the animal's decision strategy or even their intrinsic perceptual biases. Using simulations of a reinforcement learning agent, we demonstrate that conventional reward strategies fail to allow accurate estimation of perceptual biases. We developed a method that estimates perceptual bias during task performance and then computes the reward for each trial based on the evolving estimate of the animal's perceptual bias. Our approach makes use of multiple stimulus contexts to dissociate perceptual biases from decision-related biases. Starting with an informative prior, our Bayesian method updates a posterior over the perceptual bias after each trial. The prior can be specified based on data from past sessions, thus reducing the variability of the online estimates and allowing it to converge to a stable estimate over a small number of trials. After validating our method on synthetic data, we apply it to estimate perceptual biases of monkeys in a motion direction discrimination task in which varying background optic flow induces robust perceptual biases. This method overcomes an important challenge to understanding the neural basis of subjective percepts.
Collapse
Affiliation(s)
- Yelin Dong
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA
| | - Gabor Lengyel
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA
| | - Sabyasachi Shivkumar
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA
- Zuckerman Institute, Columbia University, New York, NY, USA
| | - Akiyuki Anzai
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA
| | - Grace F DiRisio
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA
| | - Ralf M Haefner
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA
| | - Gregory C DeAngelis
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA
| |
Collapse
|
4
|
Di Santo S, Dipoppa M, Keller A, Roth M, Scanziani M, Miller KD. Contextual modulation emerges by integrating feedforward and feedback processing in mouse visual cortex. Cell Rep 2025; 44:115088. [PMID: 39709599 DOI: 10.1016/j.celrep.2024.115088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/27/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024] Open
Abstract
Sensory systems use context to infer meaning. Accordingly, context profoundly influences neural responses to sensory stimuli. However, a cohesive understanding of the circuit mechanisms governing contextual effects across different stimulus conditions is still lacking. Here we present a unified circuit model of mouse visual cortex that accounts for the main standard forms of contextual modulation. This data-driven and biologically realistic circuit, including three primary inhibitory cell types, sheds light on how bottom-up, top-down, and recurrent inputs are integrated across retinotopic space to generate contextual effects in layer 2/3. We establish causal relationships between neural responses, geometrical features of the inputs, and the connectivity patterns. The model not only reveals how a single canonical cortical circuit differently modulates sensory response depending on context but also generates multiple testable predictions, offering insights that apply to broader neural circuitry.
Collapse
Affiliation(s)
- Serena Di Santo
- Center for Theoretical Neuroscience and Mortimer B Zuckerman Mind Brain Behavior Institute, Columbia University, New York City, NY 10027, USA; Departamento de Electromagnetismo y Física de la Materia and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, 18071 Granada, Spain.
| | - Mario Dipoppa
- Center for Theoretical Neuroscience and Mortimer B Zuckerman Mind Brain Behavior Institute, Columbia University, New York City, NY 10027, USA; Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Andreas Keller
- Department of Biomedicine, University of Basel, 4056 Basel, Switzerland; Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Morgane Roth
- Department of Biomedicine, University of Basel, 4056 Basel, Switzerland; Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Massimo Scanziani
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kenneth D Miller
- Center for Theoretical Neuroscience and Mortimer B Zuckerman Mind Brain Behavior Institute, Columbia University, New York City, NY 10027, USA; Department of Neuroscience, Swartz Program in Theoretical Neuroscience, Kavli Institute for Brain Science, College of Physicians and Surgeons and Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York City, NY 10027, USA
| |
Collapse
|
5
|
Wu N, Zhou B, Agrochao M, Clark DA. Broken time reversal symmetry in visual motion detection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.08.598068. [PMID: 38915608 PMCID: PMC11195140 DOI: 10.1101/2024.06.08.598068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Our intuition suggests that when a movie is played in reverse, our perception of motion in the reversed movie will be perfectly inverted compared to the original. This intuition is also reflected in many classical theoretical and practical models of motion detection. However, here we demonstrate that this symmetry of motion perception upon time reversal is often broken in real visual systems. In this work, we designed a set of visual stimuli to investigate how stimulus symmetries affect time reversal symmetry breaking in the fruit fly Drosophila's well-studied optomotor rotation behavior. We discovered a suite of new stimuli with a wide variety of different properties that can lead to broken time reversal symmetries in fly behavioral responses. We then trained neural network models to predict the velocity of scenes with both natural and artificial contrast distributions. Training with naturalistic contrast distributions yielded models that break time reversal symmetry, even when the training data was time reversal symmetric. We show analytically and numerically that the breaking of time reversal symmetry in the model responses can arise from contrast asymmetry in the training data, but can also arise from other features of the contrast distribution. Furthermore, shallower neural network models can exhibit stronger symmetry breaking than deeper ones, suggesting that less flexible neural networks promote some forms of time reversal symmetry breaking. Overall, these results reveal a surprising feature of biological motion detectors and suggest that it could arise from constrained optimization in natural environments.
Collapse
Affiliation(s)
- Nathan Wu
- Yale College, New Haven, CT 06511, USA
| | - Baohua Zhou
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Margarida Agrochao
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Damon A. Clark
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Department of Physics, Yale University, New Haven, CT 06511, USA
- Department of Neuroscience, Yale University, New Haven, CT 06511, USA
- Quantitative Biology Institute, Yale University, New Haven, CT 06511, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
6
|
Liu X, Cheng Z, Lin H, Tan J, Chen W, Bao Y, Liu Y, Zhong L, Yao Y, Wang L, Wang J, Gu Y. Decoding effects of psychoactive drugs in a high-dimensional space of eye movements in monkeys. Natl Sci Rev 2023; 10:nwad255. [PMID: 38046372 PMCID: PMC10689211 DOI: 10.1093/nsr/nwad255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/25/2023] [Accepted: 09/18/2023] [Indexed: 12/05/2023] Open
Abstract
Oculomotor behavior has been shown to be correlated with mental disorders in clinics, making it promising for disease diagnosis. Here we developed a thorough oculomotor test toolkit, involving saccade, smooth pursuit, and fixation, allowing the examination of multiple oculomotor parameters in monkey models induced by psychoactive drugs. Eye movements were recorded after daily injections of phencyclidine (PCP) (3.0 mg/kg), ketamine (0.8 mg/kg) or controlled saline in two macaque monkeys. Both drugs led to robust reduction in accuracy and increment in reaction time during high cognitive-demanding tasks. Saccades, smooth pursuit, and fixation stability were also significantly impaired. During fixation, the involuntary microsaccades exhibited increased amplitudes and were biased toward the lower visual field. Pupillary response was reduced during cognitive tasks. Both drugs also increased sensitivity to auditory cues as reflected in auditory evoked potentials (AEPs). Thus, our animal model induced by psychoactive drugs produced largely similar abnormalities to that in patients with schizophrenia. Importantly, a classifier based on dimension reduction and machine learning could reliably identify altered states induced by different drugs (PCP, ketamine and saline, accuracy = 93%). The high performance of the classifier was reserved even when data from one monkey were used for training and testing the other subject (averaged classification accuracy = 90%). Thus, despite heterogeneity in baseline oculomotor behavior between the two monkeys, our model allows data transferability across individuals, which could be beneficial for future evaluation of pharmaceutical or physical therapy validity.
Collapse
Affiliation(s)
- Xu Liu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | | | - He Lin
- The Third Research Institute of Ministry of Public Security, Shanghai 200031, China
| | - Jiangxiu Tan
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenyao Chen
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yichuan Bao
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ying Liu
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lei Zhong
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yitian Yao
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liping Wang
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yong Gu
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Kirubeswaran OR, Storrs KR. Inconsistent illusory motion in predictive coding deep neural networks. Vision Res 2023; 206:108195. [PMID: 36801664 DOI: 10.1016/j.visres.2023.108195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/19/2023]
Abstract
Why do we perceive illusory motion in some static images? Several accounts point to eye movements, response latencies to different image elements, or interactions between image patterns and motion energy detectors. Recently PredNet, a recurrent deep neural network (DNN) based on predictive coding principles, was reported to reproduce the "Rotating Snakes" illusion, suggesting a role for predictive coding. We begin by replicating this finding, then use a series of "in silico" psychophysics and electrophysiology experiments to examine whether PredNet behaves consistently with human observers and non-human primate neural data. A pretrained PredNet predicted illusory motion for all subcomponents of the Rotating Snakes pattern, consistent with human observers. However, we found no simple response delays in internal units, unlike evidence from electrophysiological data. PredNet's detection of motion in gradients seemed dependent on contrast, but depends predominantly on luminance in humans. Finally, we examined the robustness of the illusion across ten PredNets of identical architecture, retrained on the same video data. There was large variation across network instances in whether they reproduced the Rotating Snakes illusion, and what motion, if any, they predicted for simplified variants. Unlike human observers, no network predicted motion for greyscale variants of the Rotating Snakes pattern. Our results sound a cautionary note: even when a DNN successfully reproduces some idiosyncrasy of human vision, more detailed investigation can reveal inconsistencies between humans and the network, and between different instances of the same network. These inconsistencies suggest that predictive coding does not reliably give rise to human-like illusory motion.
Collapse
Affiliation(s)
| | - Katherine R Storrs
- Department of Experimental Psychology, Justus Liebig University Giessen, Germany; Centre for Mind, Brain and Behaviour (CMBB), University of Marburg and Justus Liebig University Giessen, Germany; School of Psychology, University of Auckland, New Zealand
| |
Collapse
|
8
|
Consistently Inconsistent Perceptual Illusions in Nonhuman Primates: The Importance of Individual Differences. Animals (Basel) 2022; 13:ani13010022. [PMID: 36611632 PMCID: PMC9817689 DOI: 10.3390/ani13010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Perceptual illusions, and especially visual illusions, are of great interest not only to scientists, but to all people who experience them. From a scientific perspective, illusory visual experiences are informative about the nature of visual processes and the translation of sensory experiences to perceptual information that can then be used to guide behavior. It has been widely reported that some nonhuman species share these illusory experiences with humans. However, it is consistently the case that not all members of a species experience illusions in the same way. In fact, individual differences in susceptibility may be more typical than universal experiences of any given illusion. Focusing on research with the same nonhuman primates who were given a variety of perceptual illusion tasks, this "consistent inconsistency" is clearly evident. Additionally, this can even be true in assessments of human illusory experiences. Individual differences in susceptibility offer an important avenue for better understanding idiosyncratic aspects of visual perception, and the goal of isolating any possible universal principles of visual perception (in primates and beyond) should address these individual differences.
Collapse
|
9
|
Seeing Things: A Community Science Investigation into Motion Illusion Susceptibility in Domestic Cats ( Felis silvestris catus) and Dogs ( Canis lupus familiaris). Animals (Basel) 2022; 12:ani12243562. [PMID: 36552482 PMCID: PMC9774501 DOI: 10.3390/ani12243562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/25/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Illusions-visual fields that distort perception-can inform the understanding of visual perception and its evolution. An example of one such illusion, the Rotating Snakes illusion, causes the perception of motion in a series of static concentric circles. The current study investigated pet dogs' and cats' perception of the Rotating Snakes illusion in a community science paradigm. The results reveal that neither species spent significantly more time at the illusion than at either of the controls, failing to indicate susceptibility to the illusion. Specific behavioral data at each stimulus reveal that the most common behaviors of both species were Inactive and Stationary, while Locomotion and Pawing were the least common, supporting the finding that susceptibility may not be present. This study is the first to examine susceptibility to the Rotating Snakes illusion in dogs, as well as to directly compare the phenomenon between dogs and cats. We suggest future studies might consider exploring alternative methods in testing susceptibility to motion illusions in non-human animals.
Collapse
|
10
|
Kobayashi T, Kitaoka A, Kosaka M, Tanaka K, Watanabe E. Motion illusion-like patterns extracted from photo and art images using predictive deep neural networks. Sci Rep 2022; 12:3893. [PMID: 35273206 PMCID: PMC8913633 DOI: 10.1038/s41598-022-07438-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 02/18/2022] [Indexed: 11/09/2022] Open
Abstract
In our previous study, we successfully reproduced the illusory motion perceived in the rotating snakes illusion using deep neural networks incorporating predictive coding theory. In the present study, we further examined the properties of the network using a set of 1500 images, including ordinary static images of paintings and photographs and images of various types of motion illusions. Results showed that the networks clearly classified a group of illusory images and others and reproduced illusory motions against various types of illusions similar to human perception. Notably, the networks occasionally detected anomalous motion vectors, even in ordinally static images where humans were unable to perceive any illusory motion. Additionally, illusion-like designs with repeating patterns were generated using areas where anomalous vectors were detected, and psychophysical experiments were conducted, in which illusory motion perception in the generated designs was detected. The observed inaccuracy of the networks will provide useful information for further understanding information processing associated with human vision.
Collapse
Affiliation(s)
- Taisuke Kobayashi
- Laboratory of Neurophysiology, National Institute for Basic Biology, Higashiyama 5-1, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
| | - Akiyoshi Kitaoka
- College of Comprehensive Psychology, Ritsumeikan University, Iwakura-cho 2-150, Ibaraki, Osaka, 567-8570, Japan
| | - Manabu Kosaka
- Code_monsters group, Laboratory of Neurophysiology, National Institute for Basic Biology, Higashiyama 5-1, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
| | - Kenta Tanaka
- Code_monsters group, Laboratory of Neurophysiology, National Institute for Basic Biology, Higashiyama 5-1, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
| | - Eiji Watanabe
- Laboratory of Neurophysiology, National Institute for Basic Biology, Higashiyama 5-1, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan. .,Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Miura, Kanagawa, 240-0193, Japan.
| |
Collapse
|
11
|
Liu X, Li H, Wang Y, Lei T, Wang J, Spillmann L, Andolina IM, Wang W. From Receptive to Perceptive Fields: Size-Dependent Asymmetries in Both Negative Afterimages and Subcortical On and Off Post-Stimulus Responses. J Neurosci 2021; 41:7813-7830. [PMID: 34326144 PMCID: PMC8445057 DOI: 10.1523/jneurosci.0300-21.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 11/21/2022] Open
Abstract
Negative afterimages are perceptual phenomena that occur after physical stimuli disappear from sight. Their origin is linked to transient post-stimulus responses of visual neurons. The receptive fields (RFs) of these subcortical ON- and OFF-center neurons exhibit antagonistic interactions between central and surrounding visual space, resulting in selectivity for stimulus polarity and size. These two features are closely intertwined, yet their relationship to negative afterimage perception remains unknown. Here we tested whether size differentially affects the perception of bright and dark negative afterimages in humans of both sexes, and how this correlates with neural mechanisms in subcortical ON and OFF cells. Psychophysically, we found a size-dependent asymmetry whereby dark disks produce stronger and longer-lasting negative afterimages than bright disks of equal contrast at sizes >0.8°. Neurophysiological recordings from retinal and relay cells in female cat dorsal lateral geniculate nucleus showed that subcortical ON cells exhibited stronger sustained post-stimulus responses to dark disks, than OFF cells to bright disks, at sizes >1°. These sizes agree with the emergence of center-surround antagonism, revealing stronger suppression to opposite-polarity stimuli for OFF versus ON cells, particularly in dorsal lateral geniculate nucleus. Using a network-based retino-geniculate model, we confirmed stronger antagonism and temporal transience for OFF-cell post-stimulus rebound responses. A V1 population model demonstrated that both strength and duration asymmetries can be propagated to downstream cortical areas. Our results demonstrate how size-dependent antagonism impacts both the neuronal post-stimulus response and the resulting afterimage percepts, thereby supporting the idea of perceptual RFs reflecting the underlying neuronal RF organization of single cells.SIGNIFICANCE STATEMENT Visual illusions occur when sensory inputs and perceptual outcomes do not match, and provide a valuable tool to understand transformations from neural to perceptual responses. A classic example are negative afterimages that remain visible after a stimulus is removed from view. Such perceptions are linked to responses in early visual neurons, yet the details remain poorly understood. Combining human psychophysics, neurophysiological recordings in cats and retino-thalamo-cortical computational modeling, our study reveals how stimulus size and the receptive-field structure of subcortical ON and OFF cells contributes to the parallel asymmetries between neural and perceptual responses to bright versus dark afterimages. Thus, this work provides a deeper link from the underlying neural mechanisms to the resultant perceptual outcomes.
Collapse
Affiliation(s)
- Xu Liu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ye Wang
- State Key Laboratory of Media Convergence and Communication, Neuroscience and Intelligent Media Institute, Communication University of China, Beijing, 100024, China
| | - Tianhao Lei
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jijun Wang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 200030, China
| | - Lothar Spillmann
- Department of Neurology, University of Freiburg, Freiburg, 79085, Germany
| | - Ian Max Andolina
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Center for Brain and Brain-inspired Intelligence Technology, Shanghai, 200031, China
| | - Wei Wang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Center for Brain and Brain-inspired Intelligence Technology, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
12
|
The Challenge of Illusory Perception of Animals: The Impact of Methodological Variability in Cross-Species Investigation. Animals (Basel) 2021; 11:ani11061618. [PMID: 34070792 PMCID: PMC8228898 DOI: 10.3390/ani11061618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/20/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Research in neurobiology and ethology has given us a glimpse into the different perceptual worlds of animals. More recently, visual illusions have been used in behavioural research to compare the perception between different animal species. The studies conducted so far have provided contradictory results, raising the possibility that different methodological approaches might influence illusory perception. Here, we review the literature on this topic, considering both field and laboratory studies. In addition, we compare the two approaches used in laboratories, namely spontaneous choice tests and training procedures, highlighting both their relevance and their potential weaknesses. Adopting both procedures has the potential to combine their advantages. Although this twofold approach has seldomly been adopted, we expect it will become more widely used in the near future in order to shed light on the heterogeneous pattern observed in the literature of visual illusions. Abstract Although we live on the same planet, there are countless different ways of seeing the surroundings that reflect the different individual experiences and selective pressures. In recent decades, visual illusions have been used in behavioural research to compare the perception between different vertebrate species. The studies conducted so far have provided contradictory results, suggesting that the underlying perceptual mechanisms may differ across species. Besides the differentiation of the perceptual mechanisms, another explanation could be taken into account. Indeed, the different studies often used different methodologies that could have potentially introduced confounding factors. In fact, the possibility exists that the illusory perception is influenced by the different methodologies and the test design. Almost every study of this research field has been conducted in laboratories adopting two different methodological approaches: a spontaneous choice test or a training procedure. In the spontaneous choice test, a subject is presented with biologically relevant stimuli in an illusory context, whereas, in the training procedure, a subject has to undergo an extensive training during which neutral stimuli are associated with a biologically relevant reward. Here, we review the literature on this topic, highlighting both the relevance and the potential weaknesses of the different methodological approaches.
Collapse
|
13
|
Do Domestic Dogs ( Canis lupus familiaris) Perceive Numerosity Illusions? Animals (Basel) 2020; 10:ani10122304. [PMID: 33291842 PMCID: PMC7762053 DOI: 10.3390/ani10122304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/18/2020] [Accepted: 12/02/2020] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Studying visual illusions in animals allows researchers to reveal similarities and differences between how human and non-human species perceive the world around them. Recently, investigations into dogs have found evidence for the differential perception of visual illusions, when compared with human observers. Here, we extended this line of investigation by testing dogs’ susceptibility to numerosity illusions. This type of illusion occurs when an individual under- or overestimates the number of objects presented in a visual scene owing to the spatial arrangement of the objects. In the current study, we observed the spontaneous likelihood for dogs to approach a larger quantity of food items. In Experiment 1, we first established whether dogs would try to maximize their food intake within the experimental context. Following this, Experiments 2 and 3 presented food items arranged so as to generate a well-known numerosity illusion—the Solitaire illusion. Overall, dogs were able to select the larger quantity of food (Experiment 1), but did not exhibit any evidence of a numerosity misperception in Experiments 2 and 3. Our results reinforce the idea that dogs’ representation of the world differs significantly from ours. Abstract Recent studies have showed that domestic dogs are only scantly susceptible to visual illusions, suggesting that the perceptual mechanisms might be different in humans and dogs. However, to date, none of these studies have utilized illusions that are linked to quantity discrimination. In the current study, we tested whether dogs are susceptible to a linear version of the Solitaire illusion, a robust numerosity illusion experienced by most humans. In the first experiment, we tested dogs’ ability to discriminate items in a 0.67 and 0.75 numerical ratio. The results showed that dogs’ quantity discrimination abilities fall in between these two ratios. In Experiment 2, we presented the dogs with the Solitaire illusion pattern using a spontaneous procedure. No evidence supporting any numerosity misperception was found. This conclusion was replicated in Experiment 3, where we manipulated dogs’ initial experience with the stimuli and their contrast with the background. The lack of dogs’ susceptibility to the Solitaire illusion suggests that numerical estimation of dogs is not influenced by the spatial arrangement of the items to be enumerated. In view of the existing evidence, the effect may be extended to dogs’ quantitative abilities at large.
Collapse
|
14
|
Agrochao M, Tanaka R, Salazar-Gatzimas E, Clark DA. Mechanism for analogous illusory motion perception in flies and humans. Proc Natl Acad Sci U S A 2020; 117:23044-23053. [PMID: 32839324 PMCID: PMC7502748 DOI: 10.1073/pnas.2002937117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Visual motion detection is one of the most important computations performed by visual circuits. Yet, we perceive vivid illusory motion in stationary, periodic luminance gradients that contain no true motion. This illusion is shared by diverse vertebrate species, but theories proposed to explain this illusion have remained difficult to test. Here, we demonstrate that in the fruit fly Drosophila, the illusory motion percept is generated by unbalanced contributions of direction-selective neurons' responses to stationary edges. First, we found that flies, like humans, perceive sustained motion in the stationary gradients. The percept was abolished when the elementary motion detector neurons T4 and T5 were silenced. In vivo calcium imaging revealed that T4 and T5 neurons encode the location and polarity of stationary edges. Furthermore, our proposed mechanistic model allowed us to predictably manipulate both the magnitude and direction of the fly's illusory percept by selectively silencing either T4 or T5 neurons. Interestingly, human brains possess the same mechanistic ingredients that drive our model in flies. When we adapted human observers to moving light edges or dark edges, we could manipulate the magnitude and direction of their percepts as well, suggesting that mechanisms similar to the fly's may also underlie this illusion in humans. By taking a comparative approach that exploits Drosophila neurogenetics, our results provide a causal, mechanistic account for a long-known visual illusion. These results argue that this illusion arises from architectures for motion detection that are shared across phyla.
Collapse
Affiliation(s)
- Margarida Agrochao
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
| | - Ryosuke Tanaka
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511
| | | | - Damon A Clark
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511;
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511
- Department of Physics, Yale University, New Haven, CT 06511
- Department of Neuroscience, Yale University, New Haven, CT 06511
| |
Collapse
|
15
|
Everything is subjective under water surface, too: visual illusions in fish. Anim Cogn 2020; 23:251-264. [PMID: 31897795 DOI: 10.1007/s10071-019-01341-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 12/20/2022]
Abstract
The study of visual illusions has captured the attention of comparative psychologists since the last century, given the unquestionable advantage of investigating complex perceptual mechanisms with relatively simple visual patterns. To date, the observation of animal behavior in the presence of visual illusions has been largely confined to mammal and bird studies. Recently, there has been increasing interest in investigating fish, too. The attention has been particularly focused on guppies, redtail splitfin and bamboo sharks. Overall, the tested species were shown to experience a human-like perception of different illusory phenomena involving size, number, motion, brightness estimation and illusory contours. However, in some cases, no illusory effects, or evidence for a reverse illusion, were also reported. Here, we review the current state of the art in this field. We conclude that a wider investigation of visual illusions in fish is fundamental to form a broader comprehension of perceptual systems of vertebrates. Furthermore, we believe that this type of investigation could help us to address general important issues in perceptual studies, such as the role of ecology in shaping perceptual systems, the existence of interindividual variability in the visual perception of nonhuman species and the role of cortical activity in the emergence of visual illusions.
Collapse
|
16
|
Regaiolli B, Rizzo A, Ottolini G, Miletto Petrazzini ME, Spiezio C, Agrillo C. Motion Illusions as Environmental Enrichment for Zoo Animals: A Preliminary Investigation on Lions ( Panthera leo). Front Psychol 2019; 10:2220. [PMID: 31636583 PMCID: PMC6788361 DOI: 10.3389/fpsyg.2019.02220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/17/2019] [Indexed: 11/13/2022] Open
Abstract
Investigating perceptual and cognitive abilities of zoo animals might help to improve their husbandry and enrich their daily life with new stimuli. Developing new environmental enrichment programs and devices is hence necessary to promote species-specific behaviors that need to be maintained in controlled environments. As far as we are aware, no study has ever tested the potential benefits of motion illusions as visual enrichment for zoo animals. Starting from a recent study showing that domestic cats are spontaneously attracted by a well-known motion illusion, the Rotating Snake (RS) illusion, we studied whether this illusion could be used as a visual enrichment for big cats. We observed the spontaneous behavior of three lionesses when three different visual stimuli were placed in their environment: the RS illusion and two control stimuli. The study involved two different periods: the baseline and the RS period, in which the visual stimuli were provided to the lionesses. To assess whether the lionesses were specifically attracted by the RS illusion, we collected data on the number of interactions with the stimuli, as well as on the total time spent interacting with them. To investigate the effect of the illusion on the animals' welfare, individual and social behaviors were studied, and compared between the two periods. The results showed that two lionesses out of three interacted more with the RS stimulus than with the two control stimuli. The fact that the lionesses seemed to be more inclined to interact with the RS stimulus indirectly suggests the intriguing possibility that they were attracted by the illusory motion. Moreover, behavioral changes between the two periods were reported for one of the lionesses, highlighting a reduction in self-directed behaviors and an increase in attentive behaviors, and suggesting positive welfare implications. Thus, behavioral observations made before and during the presentation of the stimuli showed that our visual enrichment actually provided positive effects in lionesses. These results call for the development of future studies on the use of visual illusions in the enrichment programs of zoo animals.
Collapse
Affiliation(s)
- Barbara Regaiolli
- Research and Conservation Department, Parco Natura Viva – Garda Zoological Park, Bussolengo, Italy
| | - Angelo Rizzo
- Research and Conservation Department, Parco Natura Viva – Garda Zoological Park, Bussolengo, Italy
| | - Giorgio Ottolini
- Research and Conservation Department, Parco Natura Viva – Garda Zoological Park, Bussolengo, Italy
| | | | - Caterina Spiezio
- Research and Conservation Department, Parco Natura Viva – Garda Zoological Park, Bussolengo, Italy
| | - Christian Agrillo
- Department of General Psychology, University of Padova, Padua, Italy
| |
Collapse
|
17
|
Pennartz CMA, Farisco M, Evers K. Indicators and Criteria of Consciousness in Animals and Intelligent Machines: An Inside-Out Approach. Front Syst Neurosci 2019; 13:25. [PMID: 31379521 PMCID: PMC6660257 DOI: 10.3389/fnsys.2019.00025] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/24/2019] [Indexed: 01/02/2023] Open
Abstract
In today's society, it becomes increasingly important to assess which non-human and non-verbal beings possess consciousness. This review article aims to delineate criteria for consciousness especially in animals, while also taking into account intelligent artifacts. First, we circumscribe what we mean with "consciousness" and describe key features of subjective experience: qualitative richness, situatedness, intentionality and interpretation, integration and the combination of dynamic and stabilizing properties. We argue that consciousness has a biological function, which is to present the subject with a multimodal, situational survey of the surrounding world and body, subserving complex decision-making and goal-directed behavior. This survey reflects the brain's capacity for internal modeling of external events underlying changes in sensory state. Next, we follow an inside-out approach: how can the features of conscious experience, correlating to mechanisms inside the brain, be logically coupled to externally observable ("outside") properties? Instead of proposing criteria that would each define a "hard" threshold for consciousness, we outline six indicators: (i) goal-directed behavior and model-based learning; (ii) anatomic and physiological substrates for generating integrative multimodal representations; (iii) psychometrics and meta-cognition; (iv) episodic memory; (v) susceptibility to illusions and multistable perception; and (vi) specific visuospatial behaviors. Rather than emphasizing a particular indicator as being decisive, we propose that the consistency amongst these indicators can serve to assess consciousness in particular species. The integration of scores on the various indicators yields an overall, graded criterion for consciousness, somewhat comparable to the Glasgow Coma Scale for unresponsive patients. When considering theoretically derived measures of consciousness, it is argued that their validity should not be assessed on the basis of a single quantifiable measure, but requires cross-examination across multiple pieces of evidence, including the indicators proposed here. Current intelligent machines, including deep learning neural networks (DLNNs) and agile robots, are not indicated to be conscious yet. Instead of assessing machine consciousness by a brief Turing-type of test, evidence for it may gradually accumulate when we study machines ethologically and across time, considering multiple behaviors that require flexibility, improvisation, spontaneous problem-solving and the situational conspectus typically associated with conscious experience.
Collapse
Affiliation(s)
- Cyriel M. A. Pennartz
- Department of Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Research Priority Area, Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Michele Farisco
- Centre for Research Ethics and Bioethics, Uppsala University, Uppsala, Sweden
- Biogem, Biology and Molecular Genetics Institute, Ariano Irpino, Italy
| | - Kathinka Evers
- Centre for Research Ethics and Bioethics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
18
|
Abstract
Visual illusions are objects that are made up of elements that are arranged in such a way as to result in erroneous perception of the objects’ physical properties. Visual illusions are used to study visual perception in humans and nonhuman animals, since they provide insight into the psychological and cognitive processes underlying the perceptual system. In a set of three experiments, we examined whether dogs were able to learn a relational discrimination and to perceive the Müller-Lyer illusion. In Experiment 1, dogs were trained to discriminate line lengths using a two-alternative forced choice procedure on a touchscreen. Upon learning the discrimination, dogs’ generalization to novel exemplars and the threshold of their abilities were tested. In the second experiment, dogs were presented with the Müller-Lyer illusion as test trials, alongside additional test trials that controlled for overall stimulus size. Dogs appeared to perceive the illusion; however, control trials revealed that they were using global size to solve the task. Experiment 3 presented modified stimuli that have been known to enhance perception of the illusion in other species. However, the dogs’ performance remained the same. These findings reveal evidence of relational learning in dogs. However, their failure to perceive the illusion emphasizes the importance of using a full array of control trials when examining these paradigms, and it suggests that visual acuity may play a crucial role in this perceptual phenomenon.
Collapse
|
19
|
Agrillo C, Beran MJ, Parrish AE. Exploring the Jastrow Illusion in Humans ( Homo sapiens), Rhesus Monkeys ( Macaca mulatta), and Capuchin Monkeys ( Sapajus apella). Perception 2019; 48:367-385. [PMID: 30913960 DOI: 10.1177/0301006619838181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In the Jastrow size illusion, two vertically stacked but offset stimuli of identical size are misperceived such that the bottom stimulus is overestimated relative to the top stimulus due to their spatial layout. In this study, we explored whether nonhuman primates perceive this geometric illusion in the same manner as humans. Human adults, rhesus macaques, and capuchin monkeys were presented with a computerized size discrimination task including Jastrow illusion probe trials. Consistent with previous results, humans perceived the illusory stimuli, validating the current experimental approach. Adults selected the bottom figure as larger in illusion trials with identical shapes, and performance was facilitated in trials with a true size difference when the larger figure was positioned at bottom. Monkeys performed very well in trials with a true size difference including difficult discriminations (5% difference in stimuli size), but they did not show evidence of the Jastrow illusion. They were indifferent between top and bottom stimuli in the illusory arrangement, showing no evidence of a human-like (or reversed) bias. These results are considered in light of differences in perceptual processing across primates and in comparison to previous comparative studies of the Jastrow and other size illusions.
Collapse
Affiliation(s)
| | - Michael J Beran
- Department of Psychology, Georgia State University, Atlanta, GA, USA; Language Research Center, Georgia State University, Atlanta, GA, USA
| | | |
Collapse
|
20
|
A computerized testing system for primates: Cognition, welfare, and the Rumbaughx. Behav Processes 2018; 156:37-50. [DOI: 10.1016/j.beproc.2017.12.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 11/08/2017] [Accepted: 12/19/2017] [Indexed: 02/06/2023]
|
21
|
Miletto Petrazzini ME, Bisazza A, Agrillo C. Do domestic dogs (Canis lupus familiaris) perceive the Delboeuf illusion? Anim Cogn 2016; 20:427-434. [PMID: 27999956 DOI: 10.1007/s10071-016-1066-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 10/24/2016] [Accepted: 12/08/2016] [Indexed: 12/26/2022]
Abstract
In the last decade, visual illusions have been repeatedly used as a tool to compare visual perception among species. Several studies have investigated whether non-human primates perceive visual illusions in a human-like fashion, but little attention has been paid to other mammals, and sensitivity to visual illusions has been never investigated in the dog. Here, we studied whether domestic dogs perceive the Delboeuf illusion. In human and non-human primates, this illusion creates a misperception of item size as a function of its surrounding context. To examine this effect in dogs, we adapted the spontaneous preference paradigm recently used with chimpanzees. Subjects were presented with two plates containing food. In control trials, two different amounts of food were presented in two identical plates. In this circumstance, dogs were expected to select the larger amount. In test trials, equal food portion sizes were presented in two plates differing in size: if dogs perceived the illusion as primates do, they were expected to select the amount of food presented in the smaller plate. Dogs significantly discriminated the two alternatives in control trials, whereas their performance did not differ from chance in test trials with the illusory pattern. The fact that dogs do not seem to be susceptible to the Delboeuf illusion suggests a potential discontinuity in the perceptual biases affecting size judgments between primates and dogs.
Collapse
Affiliation(s)
| | - Angelo Bisazza
- Department of General Psychology, University of Padova, Via Venezia 8, 35131, Padua, Italy
| | - Christian Agrillo
- Department of General Psychology, University of Padova, Via Venezia 8, 35131, Padua, Italy.
| |
Collapse
|
22
|
Agrillo C, Parrish AE, Beran MJ. How Illusory Is the Solitaire Illusion? Assessing the Degree of Misperception of Numerosity in Adult Humans. Front Psychol 2016; 7:1663. [PMID: 27833577 PMCID: PMC5081449 DOI: 10.3389/fpsyg.2016.01663] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 10/11/2016] [Indexed: 11/25/2022] Open
Abstract
The Solitaire illusion occurs when the spatial arrangement of items influences the subjective estimation of their quantity. Unlike other illusory phenomena frequently reported in humans and often also in non-human animals, evidence of the Solitaire illusion in species other than humans remains weak. However, before concluding that this perceptual bias affects quantity judgments differently in human and non-human animals, further investigations on the strength of the Solitaire illusion is required. To date, no study has assessed the exact misperception of numerosity generated by the Solitaire arrangement, and the possibility exists that the numerical effects generated by the illusion are too subtle to be detected by non-human animals. The present study investigated the strength of this illusion in adult humans. In a relative numerosity task, participants were required to select which array contained more blue items in the presence of two arrays made of identical blue and yellow items. Participants perceived the Solitaire illusion as predicted, overestimating the Solitaire array with centrally clustered blue items as more numerous than the Solitaire array with blue items on the perimeter. Their performance in the presence of the Solitaire array was similar to that observed in control trials with numerical ratios larger than 0.67, suggesting that the illusory array produces a substantial overestimation of the number of blue items in one array relative to the other. This aspect was more directly investigated in a numerosity identification task in which participants were required to estimate the number of blue items when single arrays were presented one at a time. In the presence of the Solitaire array, participants slightly overestimated the number of items when they were centrally located while they underestimated the number of items when those items were located on the perimeter. Items located on the perimeter were perceived to be 76% as numerous as centrally located items. The magnitude of misperception of numerosity reported here may represent a useful tool to help to understand whether non-human animals have different perceptual mechanisms or, instead, do not display adequate numerical abilities to spot the illusory difference generated in the Solitaire array.
Collapse
Affiliation(s)
- Christian Agrillo
- Department of General Psychology, University of Padova Padova, Italy
| | - Audrey E Parrish
- Language Research Center, Georgia State University Atlanta, GA, USA
| | - Michael J Beran
- Language Research Center, Georgia State University Atlanta, GA, USA
| |
Collapse
|
23
|
Gori S, Molteni M, Facoetti A. Visual Illusions: An Interesting Tool to Investigate Developmental Dyslexia and Autism Spectrum Disorder. Front Hum Neurosci 2016; 10:175. [PMID: 27199702 PMCID: PMC4842763 DOI: 10.3389/fnhum.2016.00175] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 04/06/2016] [Indexed: 11/13/2022] Open
Abstract
A visual illusion refers to a percept that is different in some aspect from the physical stimulus. Illusions are a powerful non-invasive tool for understanding the neurobiology of vision, telling us, indirectly, how the brain processes visual stimuli. There are some neurodevelopmental disorders characterized by visual deficits. Surprisingly, just a few studies investigated illusory perception in clinical populations. Our aim is to review the literature supporting a possible role for visual illusions in helping us understand the visual deficits in developmental dyslexia and autism spectrum disorder. Future studies could develop new tools - based on visual illusions - to identify an early risk for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Simone Gori
- Department of Human and Social Sciences, University of BergamoBergamo, Italy
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio MedeaBosisio Parini, Italy
| | - Massimo Molteni
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio MedeaBosisio Parini, Italy
| | - Andrea Facoetti
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio MedeaBosisio Parini, Italy
- Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of PadovaPadua, Italy
| |
Collapse
|
24
|
Abstract
Illusions have mainly been classified according to their phenomenological appearance. Here, I plead for a new classification approach based on processing areas or mechanisms. Classifying visual illusions according to processing areas or mechanisms may not only be valuable for a better understanding of the visual system but also for diagnostics of impairments, degenerative effects, and lesions (from retina to striate and extra-striate cortex).
Collapse
|
25
|
“Shall We Play a Game?”: Improving Reading Through Action Video Games in Developmental Dyslexia. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2015. [DOI: 10.1007/s40474-015-0064-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Gori S, Seitz AR, Ronconi L, Franceschini S, Facoetti A. Multiple Causal Links Between Magnocellular-Dorsal Pathway Deficit and Developmental Dyslexia. Cereb Cortex 2015; 26:4356-4369. [PMID: 26400914 DOI: 10.1093/cercor/bhv206] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Although impaired auditory-phonological processing is the most popular explanation of developmental dyslexia (DD), the literature shows that the combination of several causes rather than a single factor contributes to DD. Functioning of the visual magnocellular-dorsal (MD) pathway, which plays a key role in motion perception, is a much debated, but heavily suspected factor contributing to DD. Here, we employ a comprehensive approach that incorporates all the accepted methods required to test the relationship between the MD pathway dysfunction and DD. The results of 4 experiments show that (1) Motion perception is impaired in children with dyslexia in comparison both with age-match and with reading-level controls; (2) pre-reading visual motion perception-independently from auditory-phonological skill-predicts future reading development, and (3) targeted MD trainings-not involving any auditory-phonological stimulation-leads to improved reading skill in children and adults with DD. Our findings demonstrate, for the first time, a causal relationship between MD deficits and DD, virtually closing a 30-year long debate. Since MD dysfunction can be diagnosed much earlier than reading and language disorders, our findings pave the way for low resource-intensive, early prevention programs that could drastically reduce the incidence of DD.
Collapse
Affiliation(s)
- Simone Gori
- Department of Human and Social Sciences, University of Bergamo, Bergamo 24129, Italy Child Psychopathology Unit, Scientific Institute "E. Medea", Bosisio Parini, Lecco 23842, Italy
| | - Aaron R Seitz
- Department of Psychology, University of California - Riverside, Riverside, CA, USA
| | - Luca Ronconi
- Child Psychopathology Unit, Scientific Institute "E. Medea", Bosisio Parini, Lecco 23842, Italy Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, Padova 35131, Italy
| | - Sandro Franceschini
- Child Psychopathology Unit, Scientific Institute "E. Medea", Bosisio Parini, Lecco 23842, Italy Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, Padova 35131, Italy
| | - Andrea Facoetti
- Child Psychopathology Unit, Scientific Institute "E. Medea", Bosisio Parini, Lecco 23842, Italy Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, Padova 35131, Italy
| |
Collapse
|