1
|
Johnson MG, Barrett M. Review: Exploring correctness, usefulness, and feasibility of potential physiological operational welfare indicators for farmed insects to establish research priorities. Animal 2025:101501. [PMID: 40288947 DOI: 10.1016/j.animal.2025.101501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
While insects are already the largest group of terrestrial food and feed livestock animals in terms of absolute number of individuals, the insect farming industry is expected to continue growing rapidly in order to meet the nutritional demands of the human population during the 21st century. Accordingly, consumers, producers, legislators, and industry-adjacent researchers have expressed interest in further research and assessment of farmed insect welfare. Operational indicators of animal welfare are those that can be used to putatively assess the welfare of animals in the absence of true indicators of affective state (e.g., valenced/emotional state) and are commonly used for farmed vertebrate livestock species; however, significant behavioral and physiological differences between vertebrates and insects means these indicators must be examined for their correctness, usefulness, and feasibility prior to use with insect livestock. The most valuable operational welfare indicators would (1) correctly correspond to the insect's putative welfare state; (2) provide useful information about what is affecting the insect's welfare; and (3) be feasible for deployment at a large scale on farms. As there are many possible indicators that could be further researched in insects, evaluating the likely correctness, feasibility, and usefulness of these indicators in insects will allow researchers to prioritize which indicators to investigate first for use on farms. Thus, in this review, we explore whether physiological or somatic indicators of farmed vertebrate welfare, including whole-body, immune, neurobiological, and respiratory/cardiac indicators, may be correct, feasible, and useful for assessing farmed insect welfare. We review insect physiological systems, as well as any existing, welfare-relevant data from farmed or closely related insects. We end by proposing a priority list for physiological, operational welfare indicators that are most likely to correctly, usefully, and feasibly assess farmed insect welfare, which may guide indicator validation research priorities for insect welfare scientists.
Collapse
Affiliation(s)
- M G Johnson
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - M Barrett
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN 46202 USA.
| |
Collapse
|
2
|
Gu G, Wang Z, Lin T, Wang S, Li J, Dong S, Nieh JC, Tan K. Bee fear responses are mediated by dopamine and influence cognition. J Anim Ecol 2025; 94:112-124. [PMID: 39562840 DOI: 10.1111/1365-2656.14224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 10/02/2024] [Indexed: 11/21/2024]
Abstract
Predatory threats, even when they do not involve direct consumption (non-consumptive effects, NCEs), can profoundly influence the physiology and behaviour of prey. For example, honeybees that encounter hornet predators show responses similar to fear. However, the physiological mechanisms that are connected with this fear-like response and their effects on bee cognition and olfaction remain largely unknown. We show that bees decreased time spent near the hornet, demonstrated fearful behaviour and moved with greater velocity to escape. After a prolonged 24-h exposure, bees adopted defensive clustering, displayed greater predator avoidance, and experienced a decline in brain dopamine levels. Prolonged predator exposure also diminished bee olfactory sensitivity to odours and their mechanical sensitivity to air currents, contributing to impaired olfactory learning. However, boosting brain dopamine reversed one fear-like behaviour (average bee velocity in the presence of a hornet) and rescued olfactory sensitivity and learning. We therefore provide evidence linking dopamine to sensory and cognitive declines associated with fear in an insect.
Collapse
Affiliation(s)
- Gaoying Gu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziqi Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Lin
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Sainan Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianjun Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Shihao Dong
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - James C Nieh
- Department of Ecology, Behavior, and Evolution, School of Biological Sciences, University of California San Diego, La Jolla, California, USA
| | - Ken Tan
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
3
|
Vilarem C, Blanchard S, Julien F, Vétillard A, Piou V. Lactic acid treatment on infested honey bees works through a local way of action against Varroa destructor. Sci Rep 2024; 14:27092. [PMID: 39511289 PMCID: PMC11544202 DOI: 10.1038/s41598-024-78371-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
Lactic acid is an alternative treatment to hard chemicals against Varroa destructor, the parasitic mite of the Western honey bee Apis mellifera. This soft acaricide is used only for small apiaries due to its laborious administration. However, the mode of action of this honey bee medication remains unknown. Previous studies showed that a direct contact between the arolia of V. destructor and lactic acid altered their morphology and led to an impairment of grip. Yet, there is no evidence for the way of action of lactic acid in a realistic in-hive scenario, i.e. after an indirect exposure of the mite through honey bees. We investigated the nature of lactic acid activity in the hive treatment context. The local and/or systemic way of action of this honey bee treatment against V. destructor was studied through a behavioural and toxicological approach at the individual level. On one hand, we confirmed the altered morphology for the arolia of mites and studied the evolution of the process over time. On the other hand, we found that haemolymph contaminated with lactic acid did not kill the feeding parasitic mite. These findings support a local mode of action. In order to unravel the sequence of events leading to the local contact between the acid and the mite on bees, we also documented the olfactory valence of lactic acid for A. mellifera and V. destructor. This work provides a new comprehension of lactic acid activity against the parasitic mite through honey bee exposure and gives new opportunities for control strategies against V. destructor.
Collapse
Affiliation(s)
- Caroline Vilarem
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR5300, CNRS-Université de Toulouse III-IRD, Université Paul Sabatier, Toulouse, 31077, France
- M2i Biocontrol, Parnac, 46140, France
| | - Solène Blanchard
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR5300, CNRS-Université de Toulouse III-IRD, Université Paul Sabatier, Toulouse, 31077, France
| | - Frédéric Julien
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR5300, CNRS-Université de Toulouse III-IRD, Université Paul Sabatier, Toulouse, 31077, France
| | - Angélique Vétillard
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR5300, CNRS-Université de Toulouse III-IRD, Université Paul Sabatier, Toulouse, 31077, France.
- Conservatoire National des Arts et Métiers (CNAM), Unité Métabiot, Ploufragan, 22440, France.
| | - Vincent Piou
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR5300, CNRS-Université de Toulouse III-IRD, Université Paul Sabatier, Toulouse, 31077, France.
| |
Collapse
|
4
|
Procenko O, Read JCA, Nityananda V. Physically stressed bees expect less reward in an active choice judgement bias test. Proc Biol Sci 2024; 291:20240512. [PMID: 39378898 PMCID: PMC11461053 DOI: 10.1098/rspb.2024.0512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/15/2024] [Accepted: 08/14/2024] [Indexed: 10/10/2024] Open
Abstract
Emotion-like states in animals are commonly assessed using judgment bias tests that measure judgements of ambiguous cues. Some studies have used these tests to argue for emotion-like states in insects. However, most of these results could have other explanations, including changes in motivation and attention. To control for these explanations, we developed a novel judgment bias test, requiring bumblebees to make an active choice indicating their interpretation of ambiguous stimuli. Bumblebees were trained to associate high or low rewards, in two different reward chambers, with distinct colours. We subsequently presented bees with ambiguous colours between the two learnt colours. In response, physically stressed bees were less likely than control bees to enter the reward chamber associated with high reward. Signal detection and drift diffusion models showed that stressed bees were more likely to choose low reward locations in response to ambiguous cues. The signal detection model further showed that the behaviour of stressed bees was explained by a reduction in the estimated probability of high rewards. We thus provide strong evidence for judgement biases in bees and suggest that their stress-induced behaviour is explained by reduced expectation of higher rewards, as expected for a pessimistic judgement bias.
Collapse
Affiliation(s)
- Olga Procenko
- Biosciences Institute, Newcastle University, Henry Wellcome Building, Framlington Place, Newcastle upon TyneNE2 4HH, UK
| | - Jenny C. A. Read
- Biosciences Institute, Newcastle University, Henry Wellcome Building, Framlington Place, Newcastle upon TyneNE2 4HH, UK
| | - Vivek Nityananda
- Biosciences Institute, Newcastle University, Henry Wellcome Building, Framlington Place, Newcastle upon TyneNE2 4HH, UK
| |
Collapse
|
5
|
Kahnau P, Jaap A, Urmersbach B, Diederich K, Lewejohann L. Development of an IntelliCage-based cognitive bias test for mice. OPEN RESEARCH EUROPE 2023; 2:128. [PMID: 37799631 PMCID: PMC10548109 DOI: 10.12688/openreseurope.15294.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/02/2023] [Indexed: 03/28/2024]
Abstract
The cognitive bias test is used to measure the emotional state of animals with regard to future expectations. Thus, the test offers a unique possibility to assess animal welfare with regard to housing and testing conditions of laboratory animals. So far, however, performing such a test is time-consuming and requires the presence of an experimenter. Therefore, we developed an automated and home-cage based cognitive bias test based on the IntelliCage system. We present several developmental steps to improve the experimental design leading to a successful measurement of cognitive bias in group-housed female C57BL/6J mice. The automated and home-cage based test design allows to obtain individual data from group-housed mice, to test the mice in their familiar environment, and during their active phase. By connecting the test-cage to the home-cage via a gating system, the mice participated in the test on a self-chosen schedule, indicating high motivation to actively participate in the experiment. We propose that this should have a positive effect on the animals themselves as well as on the data. Unexpectedly, the mice showed an optimistic cognitive bias after enrichment was removed and additional restraining. An optimistic expectation of the future as a consequence of worsening environmental conditions, however, can also be interpreted as an active coping strategy in which a potential profit is sought to be maximized through a higher willingness to take risks.
Collapse
Affiliation(s)
- Pia Kahnau
- Laboratory Animal Science, German Federal Institute for Risk Assessment, Berlin, 10589, Germany
| | - Anne Jaap
- Laboratory Animal Science, German Federal Institute for Risk Assessment, Berlin, 10589, Germany
| | - Birk Urmersbach
- Laboratory Animal Science, German Federal Institute for Risk Assessment, Berlin, 10589, Germany
| | - Kai Diederich
- Laboratory Animal Science, German Federal Institute for Risk Assessment, Berlin, 10589, Germany
| | - Lars Lewejohann
- Laboratory Animal Science, German Federal Institute for Risk Assessment, Berlin, 10589, Germany
- Insitute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, 14163, Germany
| |
Collapse
|
6
|
Kahnau P, Jaap A, Urmersbach B, Diederich K, Lewejohann L. Development of an IntelliCage-based cognitive bias test for mice. OPEN RESEARCH EUROPE 2023; 2:128. [PMID: 37799631 PMCID: PMC10548109 DOI: 10.12688/openreseurope.15294.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/02/2023] [Indexed: 10/07/2023]
Abstract
The cognitive bias test is used to measure the emotional state of animals with regard to future expectations. Thus, the test offers a unique possibility to assess animal welfare with regard to housing and testing conditions of laboratory animals. So far, however, performing such a test is time-consuming and requires the presence of an experimenter. Therefore, we developed an automated and home-cage based cognitive bias test based on the IntelliCage system. We present several developmental steps to improve the experimental design leading to a successful measurement of cognitive bias in group-housed female C57BL/6J mice. The automated and home-cage based test design allows to obtain individual data from group-housed mice, to test the mice in their familiar environment, and during their active phase. By connecting the test-cage to the home-cage via a gating system, the mice participated in the test on a self-chosen schedule, indicating high motivation to actively participate in the experiment. We propose that this should have a positive effect on the animals themselves as well as on the data. Unexpectedly, the mice showed an optimistic cognitive bias after enrichment was removed and additional restraining. An optimistic expectation of the future as a consequence of worsening environmental conditions, however, can also be interpreted as an active coping strategy in which a potential profit is sought to be maximized through a higher willingness to take risks.
Collapse
Affiliation(s)
- Pia Kahnau
- Laboratory Animal Science, German Federal Institute for Risk Assessment, Berlin, 10589, Germany
| | - Anne Jaap
- Laboratory Animal Science, German Federal Institute for Risk Assessment, Berlin, 10589, Germany
| | - Birk Urmersbach
- Laboratory Animal Science, German Federal Institute for Risk Assessment, Berlin, 10589, Germany
| | - Kai Diederich
- Laboratory Animal Science, German Federal Institute for Risk Assessment, Berlin, 10589, Germany
| | - Lars Lewejohann
- Laboratory Animal Science, German Federal Institute for Risk Assessment, Berlin, 10589, Germany
- Insitute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, 14163, Germany
| |
Collapse
|
7
|
Strang C, Muth F. Judgement bias may be explained by shifts in stimulus response curves. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221322. [PMID: 37035286 PMCID: PMC10073905 DOI: 10.1098/rsos.221322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Judgement bias, or 'optimism' and 'pessimism', has been demonstrated across many taxa, yet the cognitive mechanisms underlying this behaviour remain unclear. In an optimism paradigm, animals are trained to an association, and, if given a positive experience, behave more favourably towards 'ambiguous' stimuli. We tested whether this effect could be explained by changes to stimulus response gradients by giving bees a task where their response was tested across a wider gradient of stimuli than typically tested. In line with previous work, we found that bees given a positive experience demonstrated judgement bias, being more likely to visit ambiguous stimuli. However, bees were also less likely to visit a stimulus on the other side of the rewarded stimulus (S+), and as such had a shifted stimulus response curve, showing a diminished peak shift response. In two follow-up experiments we tested the hypothesis that our manipulation altered bees' stimulus response curves via changes to the peak shift response by reducing peak shift in controls. We found that, in support of our hypothesis, elimination of peak shift also eliminated differences between treatments. Our results point towards a cognitive explanation of 'optimistic' behaviour in non-human animals and offer a new paradigm for considering emotion-like states.
Collapse
Affiliation(s)
- Caroline Strang
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
- School of Behavioural and Social Sciences, Brescia University College, London, Ontario, Canada N6G 1H2
| | - Felicity Muth
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
8
|
Does Approach-Avoidance Behavior in Response to Ambiguous Cues Reflect Depressive Interpretation Bias? Related but Distinct. COGNITIVE THERAPY AND RESEARCH 2020. [DOI: 10.1007/s10608-020-10133-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Kahnau P, Habedank A, Diederich K, Lewejohann L. Behavioral Methods for Severity Assessment. Animals (Basel) 2020; 10:ani10071136. [PMID: 32635341 PMCID: PMC7401632 DOI: 10.3390/ani10071136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 01/02/2023] Open
Abstract
Simple Summary In 2017, 9.4 million animals were used for research and testing in the European Union. Animal testing always entails the potential for harm caused to the animals. In order to minimize animal suffering, it is of ethical and scientific interest to have a research-based severity assessment of animal experiments. In the past, many methods have been developed to investigate animal suffering. Initially, the focus was on physiological parameters, such as body weight or glucocorticoids as an indicator of stress. In addition, the animals’ behavior has come more into focus and has been included as an indicator of severity. However, in order to obtain a comprehensive understanding of animal suffering, an animal’s individual perspective should also be taken into account. Preference tests might be used, for example, to “ask” animals what they prefer, and providing such goods in turn allows, among other things, to improve housing conditions. In this review, different methods are introduced, which can be used to investigate and evaluate animal suffering and well-being with a special focus on animal-centric strategies. Abstract It has become mandatory for the application for allowance of animal experimentation to rate the severity of the experimental procedures. In order to minimize suffering related to animal experimentation it is therefore crucial to develop appropriate methods for the assessment of animal suffering. Physiological parameters such as hormones or body weight are used to assess stress in laboratory animals. However, such physiological parameters alone are often difficult to interpret and leave a wide scope for interpretation. More recently, behavior, feelings and emotions have come increasingly into the focus of welfare research. Tests like preference tests or cognitive bias tests give insight on how animals evaluate certain situations or objects, how they feel and what their emotional state is. These methods should be combined in order to obtain a comprehensive understanding of the well-being of laboratory animals.
Collapse
Affiliation(s)
- Pia Kahnau
- German Federal Institute for Risk Assessment (BfR), German Center for the Protection of Laboratory Animals (Bf3R), 12277 Berlin, Germany; (A.H.); (K.D.); (L.L.)
- Correspondence: ; Tel.: +49-30-18412-29202
| | - Anne Habedank
- German Federal Institute for Risk Assessment (BfR), German Center for the Protection of Laboratory Animals (Bf3R), 12277 Berlin, Germany; (A.H.); (K.D.); (L.L.)
| | - Kai Diederich
- German Federal Institute for Risk Assessment (BfR), German Center for the Protection of Laboratory Animals (Bf3R), 12277 Berlin, Germany; (A.H.); (K.D.); (L.L.)
| | - Lars Lewejohann
- German Federal Institute for Risk Assessment (BfR), German Center for the Protection of Laboratory Animals (Bf3R), 12277 Berlin, Germany; (A.H.); (K.D.); (L.L.)
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, 14163 Berlin, Germany
| |
Collapse
|
10
|
Negative emotional contagion and cognitive bias in common ravens ( Corvus corax). Proc Natl Acad Sci U S A 2019; 116:11547-11552. [PMID: 31110007 DOI: 10.1073/pnas.1817066116] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Emotional contagion is described as an emotional state matching between subjects, and has been suggested to facilitate communication and coordination in complex social groups. Empirical studies typically focus on the measurement of behavioral contagion and emotional arousal, yet, while highly important, such an approach often disregards an additional evaluation of the underlying emotional valence. Here, we studied emotional contagion in ravens by applying a judgment bias paradigm to assess emotional valence. We experimentally manipulated positive and negative affective states in demonstrator ravens, to which they responded with increased attention and interest in the positive condition, as well as increased redirected behavior and a left-eye lateralization in the negative condition. During this emotion manipulation, another raven observed the demonstrator's behavior, and we used a bias paradigm to assess the emotional valence of the observer to determine whether emotional contagion had occurred. Observers showed a pessimism bias toward the presented ambiguous stimuli after perceiving demonstrators in a negative state, indicating emotional state matching based on the demonstrators' behavioral cues and confirming our prediction of negative emotional contagion. We did not find any judgment bias in the positive condition. This result critically expands upon observational studies of contagious play in ravens, providing experimental evidence that emotional contagion is present not only in mammalian but also in avian species. Importantly, this finding also acts as a stepping stone toward understanding the evolution of empathy, as this essential social skill may have emerged across these taxa in response to similar socioecological challenges.
Collapse
|
11
|
Deakin A, Mendl M, Browne WJ, Paul ES, Hodge JJL. State-dependent judgement bias in Drosophila: evidence for evolutionarily primitive affective processes. Biol Lett 2018; 14:rsbl.2017.0779. [PMID: 29491031 PMCID: PMC5830672 DOI: 10.1098/rsbl.2017.0779] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/05/2018] [Indexed: 12/20/2022] Open
Abstract
Affective states influence decision-making under ambiguity in humans and other animals. Individuals in a negative state tend to interpret ambiguous cues more negatively than individuals in a positive state. We demonstrate that the fruit fly, Drosophila melanogaster, also exhibits state-dependent changes in cue interpretation. Drosophila were trained on a Go/Go task to approach a positive (P) odour associated with a sugar reward and actively avoid a negative (N) odour associated with shock. Trained flies were then either shaken to induce a purported negative state or left undisturbed (control), and given a choice between: air or P; air or N; air or ambiguous odour (1 : 1 blend of P : N). Shaken flies were significantly less likely to approach the ambiguous odour than control flies. This ‘judgement bias’ may be mediated by changes in neural activity that reflect evolutionarily primitive affective states. We cannot say whether such states are consciously experienced, but use of this model organism's versatile experimental tool kit may facilitate elucidation of their neural and genetic basis.
Collapse
Affiliation(s)
- Amanda Deakin
- Centre for Behavioural Biology, Bristol Veterinary School, University of Bristol, Langford, UK
| | - Michael Mendl
- Centre for Behavioural Biology, Bristol Veterinary School, University of Bristol, Langford, UK
| | - William J Browne
- Centre for Multilevel Modelling, University of Bristol, Bristol, UK
| | - Elizabeth S Paul
- Centre for Behavioural Biology, Bristol Veterinary School, University of Bristol, Langford, UK
| | - James J L Hodge
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
12
|
Perry CJ, Baciadonna L. Studying emotion in invertebrates: what has been done, what can be measured and what they can provide. ACTA ACUST UNITED AC 2018; 220:3856-3868. [PMID: 29093185 DOI: 10.1242/jeb.151308] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Until recently, whether invertebrates might exhibit emotions was unknown. This possibility has traditionally been dismissed by many as emotions are frequently defined with reference to human subjective experience, and invertebrates are often not considered to have the neural requirements for such sophisticated abilities. However, emotions are understood in humans and other vertebrates to be multifaceted brain states, comprising dissociable subjective, cognitive, behavioural and physiological components. In addition, accumulating literature is providing evidence of the impressive cognitive capacities and behavioural flexibility of invertebrates. Alongside these, within the past few years, a number of studies have adapted methods for assessing emotions in humans and other animals, to invertebrates, with intriguing results. Sea slugs, bees, crayfish, snails, crabs, flies and ants have all been shown to display various cognitive, behavioural and/or physiological phenomena that indicate internal states reminiscent of what we consider to be emotions. Given the limited neural architecture of many invertebrates, and the powerful tools available within invertebrate research, these results provide new opportunities for unveiling the neural mechanisms behind emotions and open new avenues towards the pharmacological manipulation of emotion and its genetic dissection, with advantages for disease research and therapeutic drug discovery. Here, we review the increasing evidence that invertebrates display some form of emotion, discuss the various methods used for assessing emotions in invertebrates and consider what can be garnered from further emotion research on invertebrates in terms of the evolution and underlying neural basis of emotion in a comparative context.
Collapse
Affiliation(s)
- Clint J Perry
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Luigi Baciadonna
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
13
|
Baracchi D, Lihoreau M, Giurfa M. Do Insects Have Emotions? Some Insights from Bumble Bees. Front Behav Neurosci 2017; 11:157. [PMID: 28878636 PMCID: PMC5572325 DOI: 10.3389/fnbeh.2017.00157] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/08/2017] [Indexed: 11/13/2022] Open
Abstract
While our conceptual understanding of emotions is largely based on human subjective experiences, research in comparative cognition has shown growing interest in the existence and identification of "emotion-like" states in non-human animals. There is still ongoing debate about the nature of emotions in animals (especially invertebrates), and certainly their existence and the existence of certain expressive behaviors displaying internal emotional states raise a number of exciting and challenging questions. Interestingly, at least superficially, insects (bees and flies) seem to fulfill the basic requirements of emotional behavior. Yet, recent works go a step further by adopting terminologies and interpretational frameworks that could have been considered as crude anthropocentrism and that now seem acceptable in the scientific literature on invertebrate behavior and cognition. This change in paradigm requires, therefore, that the question of emotions in invertebrates is reconsidered from a cautious perspective and with parsimonious explanations. Here we review and discuss this controversial topic based on the recent finding that bumblebees experience positive emotions while experiencing unexpected sucrose rewards, but also incorporating a broader survey of recent literature in which similar claims have been done for other invertebrates. We maintain that caution is warranted before attributing emotion-like states to honey bees and bumble bees as some experimental caveats may undermine definitive conclusions. We suggest that interpreting many of these findings in terms of motivational drives may be less anthropocentrically biased and more cautious, at least until more careful experiments warrant the use of an emotion-related terminology.
Collapse
Affiliation(s)
- David Baracchi
- Research Center on Animal Cognition, Center for Integrative Biology, Centre National de la Recherche Scientifique, University of ToulouseToulouse, France.,Laboratoire d'Ethologie Expérimentale et Comparée, Université Paris 13Paris, France
| | - Mathieu Lihoreau
- Research Center on Animal Cognition, Center for Integrative Biology, Centre National de la Recherche Scientifique, University of ToulouseToulouse, France
| | - Martin Giurfa
- Research Center on Animal Cognition, Center for Integrative Biology, Centre National de la Recherche Scientifique, University of ToulouseToulouse, France
| |
Collapse
|
14
|
Jones S, Paul ES, Dayan P, Robinson ESJ, Mendl M. Pavlovian influences on learning differ between rats and mice in a counter-balanced Go/NoGo judgement bias task. Behav Brain Res 2017; 331:214-224. [PMID: 28549647 PMCID: PMC5480777 DOI: 10.1016/j.bbr.2017.05.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/12/2017] [Accepted: 05/17/2017] [Indexed: 11/17/2022]
Abstract
Judgement bias tests of animal affect and hence welfare assume that the animal's responses to ambiguous stimuli, which may herald positive or negative outcomes, are under instrumental control and reflect 'optimism' or 'pessimism' about what will happen. However, Pavlovian control favours responses (e.g. approach or withdrawal) according to the valence associated with a stimulus, rather than the anticipated response outcomes. Typically, positive contexts promote action and approach whilst negative contexts promote inhibition or withdrawal. The prevalence of Go-for-reward (Go-pos) and NoGo-to-avoid-punishment (NoGo-neg) judgement bias tasks reflects this Pavlovian influence. A Pavlovian increase or decrease in activity or vigour has also been argued to accompany positive or negative affective states, and this may interfere with instrumental Go or NoGo decisions under ambiguity based on anticipated decision outcomes. One approach to these issues is to develop counter-balanced Go-pos/NoGo-neg and Go-neg/NoGo-pos tasks. Here we implement such tasks in Sprague Dawley rats and C57BL/6J mice using food and air-puff as decision outcomes. We find striking species/strain differences with rats achieving criterion performance on the Go-pos/NoGo-neg task but failing to learn the Go-neg/NoGo-pos task, in line with predictions, whilst mice do exactly the opposite. Pavlovian predispositions may thus differ between species, for example reflecting foraging and predation ecology and/or baseline activity rates. Learning failures are restricted to cues predicting a negative outcome; use of a more powerful air-puff stimulus may thus allow implementation of a fully counter-balanced task. Rats and mice achieve criterion faster than in comparable automated tasks and also show the expected generalisation of responses across ambiguous tones. A fully counter-balanced task thus offers a potentially rapidly implemented and automated method for assessing animal welfare, identifying welfare problems and areas for welfare improvement and 3Rs Refinement, and assessing the effectiveness of refinements.
Collapse
Affiliation(s)
- Samantha Jones
- Centre for Behavioural Biology, School of Veterinary Science, University of Bristol, UK
| | - Elizabeth S Paul
- Centre for Behavioural Biology, School of Veterinary Science, University of Bristol, UK
| | - Peter Dayan
- Gatsby Computational Neuroscience Unit, University College London, UK
| | - Emma S J Robinson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, UK
| | - Michael Mendl
- Centre for Behavioural Biology, School of Veterinary Science, University of Bristol, UK.
| |
Collapse
|