1
|
Morel M, Guldemond R, de la Garza MA, Bakker J. Memory-Based Navigation in Elephants: Implications for Survival Strategies and Conservation. Vet Sci 2025; 12:312. [PMID: 40284814 PMCID: PMC12030947 DOI: 10.3390/vetsci12040312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/23/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Elephants exhibit remarkable cognitive and social abilities, which are integral to their navigation, resource acquisition, and responses to environmental challenges such as climate change and human-wildlife conflict. Their capacity to acquire, recall, and utilise spatial information enables them to traverse large, fragmented landscapes, locate essential resources, and mitigate risks. While older elephants, particularly matriarchs, are often regarded as repositories of ecological knowledge, the mechanisms by which younger individuals acquire this information remain uncertain. Existing research suggests that elephants follow established movement patterns, yet direct evidence of intergenerational knowledge transfer is limited. This review synthesises current literature on elephant navigation and decision-making, exploring how their behavioural strategies contribute to resilience amid increasing anthropogenic pressures. Empirical studies indicate that elephants integrate environmental and social cues when selecting routes, accessing water, and avoiding human-dominated areas. However, the extent to which these behaviours arise from individual memory, social learning, or passive exposure to experienced individuals requires further investigation. Additionally, elephants function as ecosystem engineers, shaping landscapes, maintaining biodiversity, and contributing to climate resilience. Recent research highlights that elephants' ecological functions can indeed contribute to climate resilience, though the mechanisms are complex and context-dependent. In tropical forests, forest elephants (Loxodonta cyclotis) disproportionately disperse large-seeded, high-carbon-density tree species, which contribute significantly to above-ground carbon storage. Forest elephants can improve tropical forest carbon storage by 7%, as these elephants enhance the relative abundance of slow-growing, high-biomass trees through selective browsing and seed dispersal. In savannah ecosystems, elephants facilitate the turnover of woody vegetation and maintain grassland structure, which can increase albedo and promote carbon sequestration in soil through enhanced grass productivity and fire dynamics. However, the ecological benefits of such behaviours depend on population density and landscape context. While bulldozing vegetation may appear destructive, these behaviours often mimic natural disturbance regimes, promoting biodiversity and landscape heterogeneity, key components of climate-resilient ecosystems. Unlike anthropogenic clearing, elephant-led habitat modification is part of a long-evolved ecological process that supports nutrient cycling and seedling recruitment. Therefore, promoting connectivity through wildlife corridors supports not only elephant movement but also ecosystem functions that enhance resilience to climate variability. Future research should prioritise quantifying the net carbon impact of elephant movement and browsing in different biomes to further clarify their role in mitigating climate change. Conservation strategies informed by their movement patterns, such as wildlife corridors, conflict-reducing infrastructure, and habitat restoration, may enhance human-elephant coexistence while preserving their ecological roles. Protecting older individuals, who may retain critical environmental knowledge, is essential for sustaining elephant populations and the ecosystems they influence. Advancing research on elephant navigation and decision-making can provide valuable insights for biodiversity conservation and conflict mitigation efforts.
Collapse
Affiliation(s)
- Margot Morel
- Broadway Veterinary Group, Unit 1 The Links, Herne CT6 7FE, UK
| | - Robert Guldemond
- Conservation Ecology Research Unit, Department of Zoology and Entomology, University of Pretoria, cnr Lynnwood Road and Roper Street, Hatfield 0028, South Africa;
| | - Melissa A. de la Garza
- Michale E. Keeling Center for Comparative Medicine and Research, University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA;
| | - Jaco Bakker
- Animal Science Department, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands;
| |
Collapse
|
2
|
Hope SF, Willgohs KR, Dittakul S, Plotnik JM. Do elephants really never forget? What we know about elephant memory and a call for further investigation. Learn Behav 2025; 53:44-64. [PMID: 39438402 DOI: 10.3758/s13420-024-00655-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Despite popular culture's promotion of the elephant's ability to "never forget," there is remarkably limited empirical research on the memory capacities of any living elephant species (Asian, Elephas maximus; African savanna, Loxodonta africana; African forest, Loxodonta cyclotis). A growing body of literature on elephant cognition and behavioral ecology has provided insight into the elephant's ability to behave flexibly in changing physical and social environments, but little direct evidence of how memory might relate to this flexibility exists. In this paper, we review and discuss the potential relationships between what we know about elephant cognition and behavior and the elephants' memory for the world around them as they navigate their physical, social, and spatial environments. We also discuss future directions for investigating elephant memory and implications for such research on elephant conservation and human-elephant conflict mitigation.
Collapse
Affiliation(s)
- Sydney F Hope
- Department of Psychology, Hunter College, City University of New York, 695 Park Avenue, New York, NY, 10065, USA.
| | - Kaitlyn R Willgohs
- Department of Psychology, Hunter College, City University of New York, 695 Park Avenue, New York, NY, 10065, USA
- Department of Psychology, The Graduate Center, City University of New York, New York, NY, 10016, USA
| | - Sangpa Dittakul
- Department of Psychology, Hunter College, City University of New York, 695 Park Avenue, New York, NY, 10065, USA
- Golden Triangle Asian Elephant Foundation, Chiang Saen, Chiang Rai, 57150, Thailand
| | - Joshua M Plotnik
- Department of Psychology, Hunter College, City University of New York, 695 Park Avenue, New York, NY, 10065, USA.
- Department of Psychology, The Graduate Center, City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
3
|
Cheng S, Li BW, Garber PA, Xia DP, Li JH. Wild Tibetan Macaques Use a Route-Based Mental Map to Navigate in Large-Scale Space. Am J Primatol 2025; 87:e23720. [PMID: 39726120 DOI: 10.1002/ajp.23720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
Many animals face significant challenges in locating and acquiring resources that are unevenly distributed in space and time. In the case of nonhuman primates, it remains unclear how individuals remember goal locations and whether they navigate using a route-based or a coordinate-based mental representation when moving between out-of-sight feeding and resting sites (i.e., large-scale space). Here, we examine spatial memory and mental map formation in wild Tibetan macaques (Macaca thibetana) inhabiting a mountainous, forested ecosystem characterized by steep terrain that limits direct vision to 25 meters. We used an instantaneous scan sampling technique at 10-min intervals to record the behavior and location of macaques on Mt. Huangshan, Anhui Province, China, from September 2020 to August 2023. Over 214 days, we obtained 7180 GPS points of the macaques' locations. Our study revealed that the macaques reused 1264 route segments (average length 204.26 m) at least four times each. The number of feeding and resting sites around the habitual route segment, terrain roughness, and dense vegetation areas significantly influenced the use of route segments by our study group. In addition, we found evidence that the monkeys reused 48 nodes to reorient their travel path. We found that monkeys approached a revisited foraging or resting site from the same limited set of directions, which is inconsistent with a coordinate-based spatial representation. In addition, the direction in which the macaques left a feeding or resting site was significantly different from the straight-line direction required to reach their next feeding or resting site, suggesting that the macaques frequently reoriented their direction of travel to reach their goal. Finally, on average, macaques traveled 24% (CI = 1.24) farther than the straight-line distance to reach revisited feeding and resting sites. From our robust data set, we conclude that Tibetan macaques navigate large spaces using a route-based mental representation that appears to help them locate food resources in dense, rugged montane forests and heterogeneous habitats.
Collapse
Affiliation(s)
- Shi Cheng
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, Anhui, China
| | - Bo-Wen Li
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, Anhui, China
- School of Civil Engineering and Water Conservancy, Bengbu University, Bengbu, Anhui, China
| | - Paul A Garber
- Department of Anthropology, Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- International Center for Biodiversity and Primates Conservation, Dali University, Dali, Yunnan, China
| | - Dong-Po Xia
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, Anhui, China
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Jin-Hua Li
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, Anhui, China
- School of Life Sciences, Hefei Normal University, Hefei, Anhui, China
| |
Collapse
|
4
|
Robira B, Benhamou S, Obeki Bayanga E, Breuer T, Masi S. Changes in movement patterns in relation to sun conditions and spatial scales in wild western gorillas. Anim Cogn 2024; 27:37. [PMID: 38684551 PMCID: PMC11058680 DOI: 10.1007/s10071-024-01871-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 05/02/2024]
Abstract
For most primates living in tropical forests, food resources occur in patchworks of different habitats that vary seasonally in quality and quantity. Efficient navigation (i.e., spatial memory-based orientation) towards profitable food patches should enhance their foraging success. The mechanisms underpinning primate navigating ability remain nonetheless mostly unknown. Using GPS long-term tracking (596 days) of one group of wild western lowland gorillas (Gorilla gorilla gorilla), we investigated their ability to navigate at long distances, and tested for how the sun was used to navigate at any scale by improving landmark visibility and/or by acting as a compass. Long episodic movements ending at a distant swamp, a unique place in the home range where gorillas could find mineral-rich aquatic plants, were straighter and faster than their everyday foraging movements relying on spatial memory. This suggests intentional targeting of the swamp based on long-distance navigation skills, which can thus be efficient over a couple of kilometres. Interestingly, for both long-distance movements towards the swamp and everyday foraging movements, gorillas moved straighter under sunlight conditions even under a dense vegetation cover. By contrast, movement straightness was not markedly different when the sun elevation was low (the sun azimuth then being potentially usable as a compass) or high (so providing no directional information) and the sky was clear or overcast. This suggests that gorillas navigate their home range by relying on visual place recognition but do not use the sun azimuth as a compass. Like humans, who rely heavily on vision to navigate, gorillas should benefit from better lighting to help them identify landmarks as they move through shady forests. This study uncovers a neglected aspect of primate navigation. Spatial memory and vision might have played an important role in the evolutionary success of diurnal primate lineages.
Collapse
Affiliation(s)
- B Robira
- Centre d'Écologie Fonctionnelle et Évolutive, Université de Montpellier & CNRS, Montpellier, France.
- Eco-Anthropologie, Centre National de la Recherche Scientifique/Muséum National d'Histoire Naturelle, Université Paris Diderot, Sorbonne Paris Cité, Musée de L'Homme, Paris, France.
| | - S Benhamou
- Centre d'Écologie Fonctionnelle et Évolutive, Université de Montpellier & CNRS, Montpellier, France
- Associated to Cogitamus Lab,
| | - E Obeki Bayanga
- Congo Program, Mondika Research Center, Nouabalé-Ndoki National Park, Wildlife Conservation Society, Brazzaville, Republic of the Congo
| | - T Breuer
- Wildlife Conservation Society, Global Conservation Program, New-York, USA
- World Wide Fund for Nature, Berlin, Germany
| | - S Masi
- Eco-Anthropologie, Centre National de la Recherche Scientifique/Muséum National d'Histoire Naturelle, Université Paris Diderot, Sorbonne Paris Cité, Musée de L'Homme, Paris, France
| |
Collapse
|
5
|
Judson K, Sanz C, Ebombi TF, Massamba JM, Teberd P, Abea G, Mbebouti G, Matoumona JKB, Nkoussou EG, Zambarda A, Brogan S, Stephens C, Morgan D. Socioecological factors influencing intraspecific variation in ranging dynamics of western lowland gorillas (Gorilla gorilla gorilla) in Ndoki Forest. Am J Primatol 2024; 86:e23586. [PMID: 38151775 DOI: 10.1002/ajp.23586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 11/13/2023] [Accepted: 12/10/2023] [Indexed: 12/29/2023]
Abstract
Ranging dynamics are physical and behavioral representations of how different socioecological factors affect an organism's spatial decisions and space use strategies. Western lowland gorillas (Gorilla gorilla gorilla) are a model species to investigate the drivers of spatial dynamics based on both the natural variation in socioecological factors within the species and compared with their mountain gorilla counterparts. In this study, we evaluate the influences of resource seasonality and social dynamics on variation in home range size, utilization, and intergroup overlap among multiple gorilla groups over an 8-year study period in the northern Republic of Congo. This study shows that western lowland gorillas can have small home ranges comparable to mountain gorillas, rather than universally larger home ranges as previously supposed, and that home ranges are stable through time. The largest source of variation in space use was the degree of intergroup home range overlap. The study groups did not demonstrate intraspecific variation in range size nor changes in intergroup overlap with respect to seasonality of fruit resources, but all groups demonstrated expansion of monthly range and core area with group size, matching predictions of intragroup feeding competition. These findings highlight the potential impact of intergroup relationships on space use and prompt further research on the role of social dynamics in ranging strategies. In this study, we reveal a greater degree of variability and flexibility in gorilla ranging behavior than previously realized which is relevant to improving comparative studies and informing conservation strategies on behalf of these endangered primates.
Collapse
Affiliation(s)
- Kathryn Judson
- Department of Anthropology, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - Crickette Sanz
- Department of Anthropology, Washington University in Saint Louis, Saint Louis, Missouri, USA
- Wildlife Conservation Society, Congo Program, Brazzaville, Republic of Congo
| | | | - Jean Marie Massamba
- Wildlife Conservation Society, Congo Program, Brazzaville, Republic of Congo
| | - Prospère Teberd
- Wildlife Conservation Society, Congo Program, Brazzaville, Republic of Congo
| | - Gaston Abea
- Wildlife Conservation Society, Congo Program, Brazzaville, Republic of Congo
| | - Gaeton Mbebouti
- Wildlife Conservation Society, Congo Program, Brazzaville, Republic of Congo
| | | | | | - Alice Zambarda
- Wildlife Conservation Society, Congo Program, Brazzaville, Republic of Congo
| | - Sean Brogan
- Wildlife Conservation Society, Congo Program, Brazzaville, Republic of Congo
| | - Colleen Stephens
- Department of Anthropology, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - David Morgan
- Fisher Center for the Study and Conservation of Apes, Chicago, Illinois, USA
| |
Collapse
|
6
|
Burton-Roberts R, Cordes LS, Slotow R, Vanak AT, Thaker M, Govender N, Shannon G. Seasonal range fidelity of a megaherbivore in response to environmental change. Sci Rep 2022; 12:22008. [PMID: 36550171 PMCID: PMC9780231 DOI: 10.1038/s41598-022-25334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
For large herbivores living in highly dynamic environments, maintaining range fidelity has the potential to facilitate the exploitation of predictable resources while minimising energy expenditure. We evaluate this expectation by examining how the seasonal range fidelity of African elephants (Loxodonta africana) in the Kruger National Park, South Africa is affected by spatiotemporal variation in environmental conditions (vegetation quality, temperature, rainfall, and fire). Eight-years of GPS collar data were used to analyse the similarity in seasonal utilisation distributions for thirteen family groups. Elephants exhibited remarkable consistency in their seasonal range fidelity across the study with rainfall emerging as a key driver of space-use. Within years, high range fidelity from summer to autumn and from autumn to winter was driven by increased rainfall and the retention of high-quality vegetation. Across years, sequential autumn seasons demonstrated the lowest levels of range fidelity due to inter-annual variability in the wet to dry season transition, resulting in unpredictable resource availability. Understanding seasonal space use is important for determining the effects of future variability in environmental conditions on elephant populations, particularly when it comes to management interventions. Indeed, over the coming decades climate change is predicted to drive greater variability in rainfall and elevated temperatures in African savanna ecosystems. The impacts of climate change also present particular challenges for elephants living in fragmented or human-transformed habitats where the opportunity for seasonal range shifts are greatly constrained.
Collapse
Affiliation(s)
- Rhea Burton-Roberts
- grid.7362.00000000118820937School of Natural Sciences, Bangor University, Bangor, Gwynedd UK
| | - Line S. Cordes
- grid.7362.00000000118820937School of Ocean Sciences, Bangor University, Bangor, Gwynedd UK
| | - Rob Slotow
- grid.16463.360000 0001 0723 4123School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Abi Tamim Vanak
- grid.16463.360000 0001 0723 4123School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa ,grid.464760.70000 0000 8547 8046Centre for Biodiversity and Conservation, Ashoka Trust for Research in Ecology and the Environment, Bangalore, India
| | - Maria Thaker
- grid.34980.360000 0001 0482 5067Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India
| | - Navashni Govender
- grid.463628.d0000 0000 9533 5073Conservation Management, Kruger National Park, South African National Parks, Private Bag X402, Skukuza, 1350 South Africa ,grid.412139.c0000 0001 2191 3608School of Natural Resource Management, Nelson Mandela University, Private Bag X6531, George, 6530 South Africa
| | - Graeme Shannon
- grid.7362.00000000118820937School of Natural Sciences, Bangor University, Bangor, Gwynedd UK
| |
Collapse
|
7
|
Szabo B, Valencia-Aguilar A, Damas-Moreira I, Ringler E. Wild cognition - linking form and function of cognitive abilities within a natural context. Curr Opin Behav Sci 2022; 44:101115. [PMID: 38989158 PMCID: PMC7616152 DOI: 10.1016/j.cobeha.2022.101115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Interest in studying cognitive ecology has moved the field of animal cognition into the wild. Animals face many challenges such as finding food and other resources, avoiding and deterring predators and choosing the best mate to increase their reproductive success. To solve these dilemmas, animals need to rely on a range of cognitive abilities. Studying cognition in natural settings is a powerful approach revealing the link between adaptive form and biological function. Recent technological and analytical advances opened up completely new opportunities and research directions for studying animal cognition. Such innovative studies were able to disclose the variety in cognitive processes that animals use to survive and reproduce. Cognition indeed plays a major role in the daily lives of wild animals, in which the integration of many different types of information using a diverse range of cognitive processes enhances fitness.
Collapse
Affiliation(s)
- Birgit Szabo
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Anyelet Valencia-Aguilar
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Isabel Damas-Moreira
- Behavioural Ecology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Eva Ringler
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Watkins B, de Guinea M, Poindexter SA, Ganzhorn JU, Donati G, Eppley TM. Routes matter: the effect of seasonality on bamboo lemur navigational strategies. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Seigle-Ferrand J, Marchand P, Morellet N, Gaillard JM, Hewison AJM, Saïd S, Chaval Y, Santacreu H, Loison A, Yannic G, Garel M. On this side of the fence: Functional responses to linear landscape features shape the home range of large herbivores. J Anim Ecol 2021; 91:443-457. [PMID: 34753196 DOI: 10.1111/1365-2656.13633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 11/01/2021] [Indexed: 11/29/2022]
Abstract
Understanding the consequences of global change for animal movement is a major issue for conservation and management. In particular, habitat fragmentation generates increased densities of linear landscape features that can impede movements. While the influence of these features on animal movements has been intensively investigated, they may also play a key role at broader spatial scales (e.g. the home range scale) as resources, cover from predators/humans, corridors/barriers, or landmarks. How space use respond to varying densities of linear features has been mostly overlooked in large herbivores, in contrast to studies done on predators. Focusing on large herbivores should provide additional insights to understand how animals solve the trade-off between energy acquisition and mortality risk. Here, we investigated the role of anthropogenic (roads and tracks) and natural (ridges, valley bottoms and forest edges) linear features on home range features in five large herbivores. We analysed an extensive GPS monitoring data base of 710 individuals across nine populations, ranging from mountain areas mostly divided by natural features to lowlands that were highly fragmented by anthropogenic features. Nearly all of the linear features studied were found at the home range periphery, suggesting that large herbivores primarily use them as landmarks to delimit their home range. In contrast, for mountain species, ridges often occurred in the core range, probably related to their functional role in terms of resources and refuge. When the density of linear features was high, they no longer occurred predominantly at the home range periphery, but instead were found across much of the home range. We suggest that, in highly fragmented landscapes, large herbivores are constrained by the costs of memorising the spatial location of key features, and by the requirement for a minimum area to satisfy their vital needs. These patterns were mostly consistent in both males and females and across species, suggesting that linear features have a preponderant influence on how large herbivores perceive and use the landscape.
Collapse
Affiliation(s)
- J Seigle-Ferrand
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - P Marchand
- Off. Français de la Biodiversité, Unité Ongulés Sauvages, Portes du Soleil, Juvignac, France
| | - N Morellet
- Univ. Toulouse, INRAE, CEFS, Castanet Tolosan, France.,LTSER ZA Pyrénées Garonne, Auzeville Tolosane, France
| | - J-M Gaillard
- Univ, Lyon 1, CNRS, Lab Biometrie & Biol Evolut UMR 5558, Villeurbanne, France
| | - A J M Hewison
- Univ. Toulouse, INRAE, CEFS, Castanet Tolosan, France.,LTSER ZA Pyrénées Garonne, Auzeville Tolosane, France
| | - S Saïd
- Off. Français de la Biodiversité, Unité Ongulés Sauvages, Portes du Soleil, Juvignac, France.,Off. Français de la Biodiversité, Unité Flore et Végétation, Montfort, Birieux, France
| | - Y Chaval
- Univ. Toulouse, INRAE, CEFS, Castanet Tolosan, France.,LTSER ZA Pyrénées Garonne, Auzeville Tolosane, France
| | - H Santacreu
- Univ. Toulouse, INRAE, CEFS, Castanet Tolosan, France
| | - A Loison
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - G Yannic
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - M Garel
- Off. Français de la Biodiversité, Unité Ongulés Sauvages, 5 Allée Bethleem, Gières, France
| |
Collapse
|
10
|
Alyan SH. Short-range homing in camels: displacement experiments. Biol Open 2021; 10:271143. [PMID: 34357390 PMCID: PMC8353260 DOI: 10.1242/bio.058850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/23/2021] [Indexed: 11/20/2022] Open
Abstract
Camels (Camelus dromedarius) are known to have good navigational abilities and can find their home after displacement to far places; however, there are no studies available on the navigational strategies employed by the camels in homing behavior. Thus, the aim of this study was to investigate these strategies by displacing female camels equipped with GPS trackers 6 km away from home to totally unfamiliar locations. The experiments comprised displacing nursing or non-nursing female camels 6 km from their living pens to an unfamiliar release site. Some camels were taken to the release site on foot, others were hauled on a truck, both during daytime and nighttime. Displacements journeys were either in a straight direction to the release points, or they consisted of a convoluted path. As a result, camels that had straight outward journeys were able to return home efficiently and rather directly, but camels that had convoluted trips to the release point failed to do so. Moreover, impairing olfactory, visual, and auditory inputs by using mouth/nose muzzles, eye covers and headphones did not affect homing ability. Based on these experiments the most likely hypothesis is that during their small-scale round trips the camels relied on path integration, and that this strategy is disrupted when the camels were subjected to disorientation procedures before release. Summary: The study reports a series of experiments aimed at understanding the orientation mechanisms of Arabian camels in the Rub' al Khali desert in the UAE. Camels were taken either on foot or inside trucks to unfamiliar release points, some 6 km from their living pens. Camels homed successfully after simple displacements but seemed lost after a looping journey. It is inferred that camels use path integration, dead reckoning, after short simple displacements.
Collapse
Affiliation(s)
- Sofyan H Alyan
- Department of Biology, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| |
Collapse
|
11
|
de Guinea M, Estrada A, Nekaris KAI, Van Belle S. Cognitive maps in the wild: revealing the use of metric information in black howler monkey route navigation. J Exp Biol 2021; 224:271801. [PMID: 34384101 PMCID: PMC8380465 DOI: 10.1242/jeb.242430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/15/2021] [Indexed: 01/25/2023]
Abstract
When navigating, wild animals rely on internal representations of the external world – called ‘cognitive maps’ – to take movement decisions. Generally, flexible navigation is hypothesized to be supported by sophisticated spatial skills (i.e. Euclidean cognitive maps); however, constrained movements along habitual routes are the most commonly reported navigation strategy. Even though incorporating metric information (i.e. distances and angles between locations) in route-based cognitive maps would likely enhance an animal's navigation efficiency, there has been no evidence of this strategy reported for non-human animals to date. Here, we examined the properties of the cognitive map used by a wild population of primates by testing a series of cognitive hypotheses against spatially explicit movement simulations. We collected 3104 h of ranging and behavioural data on five groups of black howler monkeys (Alouatta pigra) at Palenque National Park, Mexico, from September 2016 through August 2017. We simulated correlated random walks mimicking the ranging behaviour of the study subjects and tested for differences between observed and simulated movement patterns. Our results indicated that black howler monkeys engaged in constrained movement patterns characterized by a high path recursion tendency, which limited their capacity to travel in straight lines and approach feeding trees from multiple directions. In addition, we found that the structure of observed route networks was more complex and efficient than simulated route networks, suggesting that black howler monkeys incorporate metric information into their cognitive map. Our findings not only expand the use of metric information during route navigation to non-human animals, but also highlight the importance of considering efficient route-based navigation as a cognitively demanding mechanism. Highlighted Article: Black howler monkeys rely on route-based cognitive maps, which constrain their movement decisions, but likely incorporate metric information to navigate more efficiently along frequently used routes.
Collapse
Affiliation(s)
- Miguel de Guinea
- School of Social Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.,Movement Ecology Lab, Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Alejandro Estrada
- Institute of Biology, National Autonomous University of Mexico, CP 04510 Mexico City, Mexico
| | | | - Sarie Van Belle
- Department of Anthropology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
12
|
Webber QMR, Hendrix JG, Robitaille AL, Vander Wal E. On the marginal value of swimming in woodland caribou. Ecology 2021; 102:e03491. [PMID: 34310697 DOI: 10.1002/ecy.3491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Quinn M R Webber
- Cognitive and Behavioural Ecology Interdisciplinary Program, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Jack G Hendrix
- Cognitive and Behavioural Ecology Interdisciplinary Program, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Alec L Robitaille
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Eric Vander Wal
- Cognitive and Behavioural Ecology Interdisciplinary Program, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.,Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
13
|
Wood M, Chamaillé-Jammes S, Hammerbacher A, Shrader AM. African elephants can detect water from natural and artificial sources via olfactory cues. Anim Cogn 2021; 25:53-61. [PMID: 34292432 DOI: 10.1007/s10071-021-01531-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 11/28/2022]
Abstract
Water is vital for mammals. Yet, as ephemeral sources can be difficult to find, it raises the question, how do mammals locate water? Elephants (Loxodonta africana) are water-dependent herbivores that possess exceptional olfactory capabilities, and it has been suggested that they may locate water via smell. However, there is no evidence to support this claim. To explore this, we performed two olfactory choice experiments with semi-tame elephants. In the first, we tested whether elephants could locate water using olfactory cues alone. For this, we used water from two natural dams and a drinking trough utilised by the elephants. Distilled water acted as a control. In the second, we explored whether elephants could detect three key volatile organic compounds (VOCs) commonly associated with water (geosmin, 2-methylisoborneol, and dimethyl sulphide). We found that the elephants could locate water olfactorily, but not the distilled water. Moreover, they were also able to detect the three VOCs associated with water. However, these VOCs were not in the odour profiles of the water sources in our experiments. This suggests that the elephants were either able to detect the unique odour profiles of the different water sources or used other VOCs that they associate with water. Ultimately, our findings indicate that elephants can locate water olfactorily at small spatial scales, but the extent to which they, and other mammals, can detect water over larger scales (e.g. km) remains unclear.
Collapse
Affiliation(s)
- Matthew Wood
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | - Simon Chamaillé-Jammes
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, South Africa.,CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| | - Almuth Hammerbacher
- Forestry and Agricultural Biotechnology Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Adrian M Shrader
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
14
|
Field evidence supporting monitoring of chemical information on pathways by male African elephants. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Janmaat KRL, de Guinea M, Collet J, Byrne RW, Robira B, van Loon E, Jang H, Biro D, Ramos-Fernández G, Ross C, Presotto A, Allritz M, Alavi S, Van Belle S. Using natural travel paths to infer and compare primate cognition in the wild. iScience 2021; 24:102343. [PMID: 33997670 PMCID: PMC8101046 DOI: 10.1016/j.isci.2021.102343] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Within comparative psychology, the evolution of animal cognition is typically studied either by comparing indirect measures of cognitive abilities (e.g., relative brain size) across many species or by conducting batteries of decision-making experiments among (typically) a few captive species. Here, we propose a third, complementary approach: inferring and comparing cognitive abilities through observational field records of natural information gradients and the associated variation in decision-making outcomes, using the ranging behavior of wild animals. To demonstrate the feasibility of our proposal, we present the results of a global survey assessing the availability of long-term ranging data sets from wild primates and the willingness of primatologists to share such data. We explore three ways in which such ranging data, with or without the associated behavioral and ecological data often collected by primatologists, might be used to infer and compare spatial cognition. Finally, we suggest how ecological complexity may be best incorporated into comparative analyses. Comparing animal ranging decisions in natural habitats has untapped potential How decisions vary with natural information gradients reveals wild animal cognition Ranging data on at least 164 populations of 105 wild primate species are available We present three thought analyses to compare cognition and explain its evolution
Collapse
Affiliation(s)
- Karline R L Janmaat
- Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands.,Department of Cognitive Psychology, Faculty of Social Sciences, Leiden University, Leiden, the Netherlands.,ARTIS Amsterdam Royal zoo, Amsterdam, the Netherlands
| | - Miguel de Guinea
- Department of Social Sciences, Oxford Brookes University, Oxford, UK
| | - Julien Collet
- Oxford Navigation Group, Department of Zoology, Oxford University, Oxford, UK
| | - Richard W Byrne
- Centre for Social Learning and Cognitive Evolution, School of Psychology and Neuroscience, University of St Andrews, St Andrew, UK.,Scottish Primate Research Group, Scotland, UK
| | - Benjamin Robira
- Centre d'Écologie Fonctionnelle et Évolutive, Université de Montpellier, Montpellier, France.,Eco-anthropologie, Muséum National d'Histoire Naturelle, CNRS, Université de Paris, Paris, France
| | - Emiel van Loon
- Theoretical and Computational Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Haneul Jang
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Dora Biro
- Oxford Navigation Group, Department of Zoology, Oxford University, Oxford, UK.,Department of Brain and Cognitive Sciences, University of Rochester, Rochester, USA
| | - Gabriel Ramos-Fernández
- Department of Mathematical Modelling of Social Systems, Institute for Research on Applied Mathematics and Systems, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Center for Complexity Sciences, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Cody Ross
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Andrea Presotto
- Department of Geography and Geosciences, Salisbury University, Salisbury, MA, USA
| | - Matthias Allritz
- School of Psychology and Neuroscience, University of St Andrews, Scotland, UK
| | - Shauhin Alavi
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behaviour, Konstanz, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Sarie Van Belle
- Department of Anthropology, University of Austin at Texas, Austin, TX, USA
| |
Collapse
|
16
|
Abstract
Harten, Katz, Goldshtein, Handel, and Yovel (Science, 369, 194-197, 2020) tracked fruit bats from their first flight and demonstrate that they can perform novel shortcuts both within and from outside their home ranges, fulfilling an important criterion of a cognitive map. Their richly detailed data set could be used to explore more key aspects of spatial cognition.
Collapse
|
17
|
Abreu F, Garber PA, Souto A, Presotto A, Schiel N. Navigating in a challenging semiarid environment: the use of a route-based mental map by a small-bodied neotropical primate. Anim Cogn 2021; 24:629-643. [PMID: 33394185 DOI: 10.1007/s10071-020-01465-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 11/27/2022]
Abstract
To increase efficiency in the search for resources, many animals rely on their spatial abilities. Specifically, primates have been reported to use mostly topological and rarely Euclidean maps when navigating in large-scale space. Here, we aimed to investigate if the navigation of wild common marmosets inhabiting a semiarid environment is consistent with a topological representation and how environmental factors affect navigation. We collected 497 h of direct behavioral and GPS information on a group of marmosets using a 2-min instantaneous focal animal sampling technique. We found that our study group reused not only long-route segments (mean of 1007 m) but entire daily routes, a pattern that is not commonly seen in primates. The most frequently reused route segments were the ones closer to feeding sites, distant to resting sites, and in areas sparse in tree vegetation. We also identified a total of 56 clustered direction change points indicating that the group modified their direction of travel. These changes in direction were influenced by their close proximity to resting and feeding sites. Despite our small sample size, the obtained results are important and consistent with the contention that common marmosets navigate using a topological map that seems to benefit these animals in response to the exploitation of clustered exudate trees. Based on our findings, we hypothesize that the Caatinga landscape imposes physical restrictions in our group's navigation such as gaps in vegetation, small trees and xerophytic plants. This study, based on preliminary evidence, raises the question of whether navigation patterns are an intrinsic characteristic of a species or are ecologically dependent and change according to the environment.
Collapse
Affiliation(s)
- Filipa Abreu
- Department of Biology, Federal Rural University of Pernambuco, R. Dom Manuel de Medeiros, s/n, Dois Irmãos, Recife, PE, 52171-900, Brazil.
| | - Paul A Garber
- Department of Anthropology, Program in Ecology, Evolution, and Conservation Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Antonio Souto
- Department of Zoology, Federal University of Pernambuco, Av. Professor Moraes Rego, 1235, Recife, PE, 50670-901, Brazil
| | - Andrea Presotto
- Department of Geography and Geosciences, Salisbury University, Salisbury, USA
| | - Nicola Schiel
- Department of Biology, Federal Rural University of Pernambuco, R. Dom Manuel de Medeiros, s/n, Dois Irmãos, Recife, PE, 52171-900, Brazil
| |
Collapse
|
18
|
Rozen-Rechels D, Valls-Fox H, Mabika CT, Chamaillé-Jammes S. Temperature as a constraint on the timing and duration of African elephant foraging trips. J Mammal 2020. [DOI: 10.1093/jmammal/gyaa129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
In arid and semiarid environments, water is a key resource that is limited in availability. During the dry season, perennial water sources such as water pans often are far apart and shape the daily movement routines of large herbivores. In hot environments, endotherms face a lethal risk of overheating that can be buffered by evaporative cooling. Behavioral adjustments are an alternative way to reduce thermal constraints on the organism. The trade-off between foraging and reaching water pans has been studied widely in arid environments; however, few studies have looked into how ambient temperature shapes individual trips between two visits to water. In this study, we tracked during the dry season the movement of eight GPS-collared African elephants (Loxodonta africana) cows from different herds in Hwange National Park, Zimbabwe. This species, the largest extant terrestrial animal, is particularly sensitive to heat due to its body size and the absence of sweat glands. We show that most foraging trips depart from water at nightfall, lowering the average temperature experienced during walking. This pattern is conserved across isolated elephant populations in African savannas. We also observed that higher temperatures at the beginning of the trip lead to shorter trips. We conclude that elephants adjust the timing of foraging trips to reduce the thermal constraints, arguing that further considerations of the thermal landscape of endotherms are important to understand their ecology.
Collapse
Affiliation(s)
- David Rozen-Rechels
- Sorbonne Université, CNRS, IRD, INRA, Institut d’écologie et des sciences de l’environnement (IEES), Paris, France
| | - Hugo Valls-Fox
- SELMET, Univ de Montpellier, CIRAD, INRA, Montpellier Sup. Agro, Montpellier, France
| | - Cheryl Tinashe Mabika
- Scientific Services, Zimbabwe Parks and Wildlife Management Authority, Hwange National Park, Zimbabwe
| | - Simon Chamaillé-Jammes
- CEFE, Univ de Montpellier, CNRS, EPHE, IRD, Unive Paul Valéry Montpellier 3, Montpellier, France
- Mammal Research Institute, Department of Zoology and Entomology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Hatfield, Pretoria, South Africa
| |
Collapse
|
19
|
Allen CRB, Brent LJN, Motsentwa T, Weiss MN, Croft DP. Importance of old bulls: leaders and followers in collective movements of all-male groups in African savannah elephants (Loxodonta africana). Sci Rep 2020; 10:13996. [PMID: 32883968 PMCID: PMC7471917 DOI: 10.1038/s41598-020-70682-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/29/2020] [Indexed: 11/09/2022] Open
Abstract
In long-lived social species, older individuals can provide fitness benefits to their groupmates through the imparting of ecological knowledge. Research in this area has largely focused on females in matrilineal societies where, for example, older female African savannah elephants (Loxodonta africana) are most effective at making decisions crucial to herd survival, and old post-reproductive female resident killer whales (Orcinus orca) lead collective movements in hunting grounds. In contrast, little is known about the role of older males as leaders in long-lived social species. By analysing leadership patterns of all-male African savannah elephant traveling groups along elephant pathways in Makgadikgadi Pans National Park, Botswana, we found that the oldest males were more likely to lead collective movements. Our results challenge the assumption that older male elephants are redundant in the population and raise concerns over the biased removal of old bulls that currently occurs in both legal trophy hunting and illegal poaching. Selective harvesting of older males could have detrimental effects on the wider elephant society through loss of leaders crucial to younger male navigation in unknown, risky environments.
Collapse
Affiliation(s)
- Connie R B Allen
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QG, UK.
| | - Lauren J N Brent
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QG, UK
| | - Thatayaone Motsentwa
- Elephants for Africa, 5 Balfour Road, London, N5 2HB, UK.,Elephants for Africa, Mailbox 148 HAK, Maun, Botswana
| | - Michael N Weiss
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QG, UK
| | - Darren P Croft
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QG, UK
| |
Collapse
|
20
|
Recipient of the IETS Lifetime Achievement Award: Dr Richard Fayrer-Hosken, BVSc, PhD. Reprod Fertil Dev 2020. [DOI: 10.1071/rdv32n2_aw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
21
|
de Guinea M, Estrada A, Nekaris KAI, Van Belle S. Arboreal route navigation in a Neotropical mammal: energetic implications associated with tree monitoring and landscape attributes. MOVEMENT ECOLOGY 2019; 7:39. [PMID: 31890215 PMCID: PMC6918719 DOI: 10.1186/s40462-019-0187-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Although navigating along a network of routes might constrain animal movement flexibility, it may be an energetically efficient strategy. Routinely using the same route allows for visually monitoring of food resources, which might reduce the cognitive load and as such facilitate the process of movement decision-making. Similarly, locating routes in areas that avoid costly landscape attributes will enhance their overall energy balance. In this study we determined the benefits of route navigation in an energy minimiser arboreal primate, the black howler monkey (Alouatta pigra). METHODS We monitored five neighbouring groups of black howler monkeys at Palenque National Park, Mexico from September 2016 through August 2017. We recorded the location of the focal group every 20 m and mapped all travel paths to establish a route network (N = 1528 travel bouts). We constructed linear mixed models to assess the influence of food resource distribution (N = 931 trees) and landscape attributes (slope, elevation and presence of canopy gaps) on the location of routes within a route network. RESULTS The number of food trees that fell within the visual detection distance from the route network was higher (mean: 156.1 ± SD 44.9) than randomly simulated locations (mean: 121.9 ± SD 46.4). Similarly, the number of food trees found within the monkey's visual range per meter travelled increased, on overage, 0.35 ± SE 0.04 trees/m with increasing use of the route. In addition, route segments used at least twice were more likely to occur with increasing density of food resources and decreasing presence of canopy gaps. Route segments used at least four times were more likely to occur in elevated areas within the home ranges but only under conditions of reduced visual access to food resources. CONCLUSIONS Route navigation emerged as an efficient movement strategy in a group-living arboreal primate. Highly used route segments potentially increased visual access to food resources while avoiding energetically costly landscape features securing foraging success in a tropical rainforest.
Collapse
Affiliation(s)
- Miguel de Guinea
- Department of Social Sciences, Oxford Brookes University, Gibbs Building, Gipsy Lane, Oxford, OX3 0BP UK
| | - Alejandro Estrada
- Institute of Biology, National Autonomous University of Mexico, Mexico City, Mexico
| | - K. Anne-Isola Nekaris
- Department of Social Sciences, Oxford Brookes University, Gibbs Building, Gipsy Lane, Oxford, OX3 0BP UK
| | - Sarie Van Belle
- Department of Anthropology, University of Texas at Austin, Austin, TX USA
| |
Collapse
|
22
|
Jang H, Boesch C, Mundry R, Ban SD, Janmaat KRL. Travel linearity and speed of human foragers and chimpanzees during their daily search for food in tropical rainforests. Sci Rep 2019; 9:11066. [PMID: 31363113 PMCID: PMC6667462 DOI: 10.1038/s41598-019-47247-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/03/2019] [Indexed: 11/09/2022] Open
Abstract
To understand the evolutionary roots of human spatial cognition, researchers have compared spatial abilities of humans and one of our closest living relatives, the chimpanzee (Pan troglodytes). However, how humans and chimpanzees compare in solving spatial tasks during real-world foraging is unclear to date, as measuring such spatial abilities in natural habitats is challenging. Here we compared spatial movement patterns of the Mbendjele BaYaka people and the Taï chimpanzees during their daily search for food in rainforests. We measured linearity and speed during off-trail travels toward out-of-sight locations as proxies for spatial knowledge. We found similarly high levels of linearity in individuals of Mbendjele foragers and Taï chimpanzees. However, human foragers and chimpanzees clearly differed in their reactions to group size and familiarity with the foraging areas. Mbendjele foragers increased travel linearity with increasing familiarity and group size, without obvious changes in speed. This pattern was reversed in Taï chimpanzees. We suggest that these differences between Mbendjele foragers and Taï chimpanzees reflect their different ranging styles, such as life-time range size and trail use. This result highlights the impact of socio-ecological settings on comparing spatial movement patterns. Our study provides a first step toward comparing long-range spatial movement patterns of two closely-related species in their natural environments.
Collapse
Affiliation(s)
- Haneul Jang
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Christophe Boesch
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Wild Chimpanzee Foundation, Abidjan, Côte d'Ivoire
| | - Roger Mundry
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Simone D Ban
- Wild Chimpanzee Foundation, Abidjan, Côte d'Ivoire
| | - Karline R L Janmaat
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Institute for Biodiversity and Ecosystem Dynamics, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|