1
|
Portillo AL, Rojas EA, Mehboob M, Moinuddin A, Balint E, Feng E, Silvestri C, Vahedi F, Ritchie TM, Mansour AJ, Bramson JL, Ashkar AA. CD56 does not contribute to the antitumor, tissue homing, and glycolytic capacity of human NK cells. J Leukoc Biol 2025; 117:qiae227. [PMID: 39449625 DOI: 10.1093/jleuko/qiae227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/23/2024] [Indexed: 10/26/2024] Open
Abstract
Natural killer (NK) cells are critical innate immune cells involved in the clearance of virally infected and malignant cells. Human NK cells are distinguished by their surface expression of CD56 and a lack of CD3. While CD56 expression and cell surface density has long been used as the prototypic marker to characterize primary human NK cell functional subsets, the exact functional role of CD56 in primary human NK cells is still not fully understood. Here, we eliminated the expression of CD56 in human ex vivo expanded NK cells (CD56bright) using CRISPR/Cas9 in order to assess the function of CD56 in this highly activated and cytotoxic NK cell population. We show that the expression of CD56 has no effect on NK cell proliferative capacity or expression of various activation and inhibitory markers. Further, CD56 does not contribute to NK cell-mediated cytotoxicity, inflammatory cytokine production, or the ability of NK cells to control tumor engraftment in vivo. We also found that while deletion of CD56 did not impact NK cell glycolytic metabolism, it did increase NK cell reliance on oxidative phosphorylation. Last, CD56 does not alter expanded NK cell in vivo tissue trafficking. Our results indicate that while CD56 expression could be used to indicate a hyperfunctional state of NK cells, it does not directly influence the antitumor functions of expanded NK cells.
Collapse
Affiliation(s)
- Ana L Portillo
- Department of Medicine, McMaster University, McMaster Children's Hospital, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
- McMaster Immunology Research Centre, McMaster University, MDCL 4010, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
- Centre for Discovery in Cancer Research, McMaster University, MDCL 5106, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada
| | - Eduardo A Rojas
- Department of Medicine, McMaster University, McMaster Children's Hospital, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
- McMaster Immunology Research Centre, McMaster University, MDCL 4010, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Misaal Mehboob
- Department of Medicine, McMaster University, McMaster Children's Hospital, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
- McMaster Immunology Research Centre, McMaster University, MDCL 4010, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
- Centre for Discovery in Cancer Research, McMaster University, MDCL 5106, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada
| | - Adnan Moinuddin
- Department of Medicine, McMaster University, McMaster Children's Hospital, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
- McMaster Immunology Research Centre, McMaster University, MDCL 4010, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
- Centre for Discovery in Cancer Research, McMaster University, MDCL 5106, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada
| | - Elizabeth Balint
- Department of Medicine, McMaster University, McMaster Children's Hospital, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
- McMaster Immunology Research Centre, McMaster University, MDCL 4010, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
- Centre for Discovery in Cancer Research, McMaster University, MDCL 5106, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada
| | - Emily Feng
- Department of Medicine, McMaster University, McMaster Children's Hospital, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
- McMaster Immunology Research Centre, McMaster University, MDCL 4010, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
- Centre for Discovery in Cancer Research, McMaster University, MDCL 5106, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada
| | - Christopher Silvestri
- Department of Medicine, McMaster University, McMaster Children's Hospital, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
- McMaster Immunology Research Centre, McMaster University, MDCL 4010, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
- Centre for Discovery in Cancer Research, McMaster University, MDCL 5106, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada
| | - Fatemeh Vahedi
- Department of Medicine, McMaster University, McMaster Children's Hospital, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
- McMaster Immunology Research Centre, McMaster University, MDCL 4010, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
- Centre for Discovery in Cancer Research, McMaster University, MDCL 5106, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada
| | - Tyrah M Ritchie
- Department of Medicine, McMaster University, McMaster Children's Hospital, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
- McMaster Immunology Research Centre, McMaster University, MDCL 4010, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Alexa J Mansour
- Department of Medicine, McMaster University, McMaster Children's Hospital, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
- McMaster Immunology Research Centre, McMaster University, MDCL 4010, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
- Centre for Discovery in Cancer Research, McMaster University, MDCL 5106, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada
| | - Jonathan L Bramson
- Department of Medicine, McMaster University, McMaster Children's Hospital, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
- McMaster Immunology Research Centre, McMaster University, MDCL 4010, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
- Centre for Discovery in Cancer Research, McMaster University, MDCL 5106, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada
| | - Ali A Ashkar
- Department of Medicine, McMaster University, McMaster Children's Hospital, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
- McMaster Immunology Research Centre, McMaster University, MDCL 4010, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
- Centre for Discovery in Cancer Research, McMaster University, MDCL 5106, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada
| |
Collapse
|
2
|
Rodrigues Barreto I, Monteiro A, Paiva A, Fonseca AM. Relapsing-remitting multiple sclerosis patients exhibit differential natural killer functional subpopulations. Acta Neurol Belg 2024; 124:603-610. [PMID: 38441808 DOI: 10.1007/s13760-024-02488-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/22/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) and has been known as T-cell mediated. However, the contribution of multiple cell types, notably natural killer (NK) cells, has also been reported. AIM To quantify circulating total NK cells and its subpopulations, CD56 dim and bright, and to characterize the functional phenotype and IFN-γ and TNF-α production in relapsing-remitting patients treated with IFN-β and in apparently healthy controls. RESULTS CD56bright NK cells were found to be the least represented subpopulation. In relapse patients, the frequencies of IFN-γ-producing NK cells and their subpopulations were significantly decreased. In remission patients, CD56dim NK cells expressed high levels of HLA-DR and CD54. CONCLUSION These results suggest that remission RRMS patients, although in an inactive stage of MS, present circulating NK cells with an activation phenotype, supporting the idea that NK cells may be relevant mediators in the MS pathophysiology.
Collapse
Affiliation(s)
- Inês Rodrigues Barreto
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Andreia Monteiro
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
- Clinical Pathology Service, Centro Hospitalar Universitário da Cova da Beira (CHUCB), Covilhã, Portugal
| | - Artur Paiva
- Cytometry Operational Management Unit, Clinical Pathology Service, CHUC, Coimbra, Portugal
- iCBR - Coimbra Institute for Clinical and Biomedical Research, University of Coimbra, Coimbra, Portugal
- ESTESC-Coimbra Health School, Coimbra, Portugal
| | - Ana Mafalda Fonseca
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| |
Collapse
|
3
|
Rodriguez-Mogeda C, van Ansenwoude CMJ, van der Molen L, Strijbis EMM, Mebius RE, de Vries HE. The role of CD56 bright NK cells in neurodegenerative disorders. J Neuroinflammation 2024; 21:48. [PMID: 38350967 PMCID: PMC10865604 DOI: 10.1186/s12974-024-03040-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/07/2024] [Indexed: 02/15/2024] Open
Abstract
Emerging evidence suggests a potential role for natural killer (NK) cells in neurodegenerative diseases, such as multiple sclerosis, Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. However, the precise function of NK cells in these diseases remains ambiguous. The existence of two NK cell subsets, CD56bright and CD56dim NK cells, complicates the understanding of the contribution of NK cells in neurodegeneration as their functions within the context of neurodegenerative diseases may differ significantly. CD56bright NK cells are potent cytokine secretors and are considered more immunoregulatory and less terminally differentiated than their mostly cytotoxic CD56dim counterparts. Hence, this review focusses on NK cells, specifically on CD56bright NK cells, and their role in neurodegenerative diseases. Moreover, it explores the mechanisms underlying their ability to enter the central nervous system. By consolidating current knowledge, we aim to provide a comprehensive overview on the role of CD56bright NK cells in neurodegenerative diseases. Elucidating their impact on neurodegeneration may have implications for future therapeutic interventions, potentially ameliorating disease pathogenesis.
Collapse
Affiliation(s)
- Carla Rodriguez-Mogeda
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Chaja M J van Ansenwoude
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Lennart van der Molen
- IQ Health Science Department, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eva M M Strijbis
- Amsterdam Neuroscience, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
- Department of Neurology, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Reina E Mebius
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam, The Netherlands.
- MS Center Amsterdam, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Kandjani OJ, Yaqoubi S, Vahdati SS, Borhannejad B, Dastmalchi S, Alizadeh AA. S1PR1 modulators in multiple sclerosis: Efficacy, safety, comparison, and chemical structure insights. Eur J Med Chem 2023; 250:115182. [PMID: 36758307 DOI: 10.1016/j.ejmech.2023.115182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is a neurological disease that leads to severe physical and cognitive disabilities. Drugs used in the treatment of MS vary from small synthetic molecules to large macromolecules such as antibodies. Sphingosine 1-phosphate receptor modulators are frequently used for the treatment of MS. These medicines prevent the egress of lymphocytes from secondary lymphoid organs leading to immune system suppression. Currently, four S1PR modulators are on the market and several potential drug candidates are in clinical trials for the treatment of MS. These compounds differ in chemical structure, adverse effects, and efficacy points of view. The current article reviews the latest studies on S1PR1 modulators and compares them with other MS drugs in terms of efficacy, tolerability, and safety. A special focus was dedicated to discussing the structure-activity relationships of these compounds and performing a three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis to gain better insight into the ligand-receptor interaction mode.
Collapse
Affiliation(s)
- Omid Jamshidi Kandjani
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Parmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shadi Yaqoubi
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samad Shams Vahdati
- Emergency and Trauma Care Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnam Borhannejad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Near East University, POBOX:99138, Nicosia, North Cyprus, Mersin 10, Turkey
| | - Ali Akbar Alizadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Attfield KE, Jensen LT, Kaufmann M, Friese MA, Fugger L. The immunology of multiple sclerosis. Nat Rev Immunol 2022; 22:734-750. [PMID: 35508809 DOI: 10.1038/s41577-022-00718-z] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2022] [Indexed: 12/11/2022]
Abstract
Our incomplete understanding of the causes and pathways involved in the onset and progression of multiple sclerosis (MS) limits our ability to effectively treat this complex neurological disease. Recent studies explore the role of immune cells at different stages of MS and how they interact with cells of the central nervous system (CNS). The findings presented here begin to question the exclusivity of an antigen-specific cause and highlight how seemingly distinct immune cell types can share common functions that drive disease. Innovative techniques further expose new disease-associated immune cell populations and reinforce how environmental context is critical to their phenotype and subsequent role in disease. Importantly, the differentiation of immune cells into a pathogenic state is potentially reversible through therapeutic manipulation. As such, understanding the mechanisms that provide plasticity to causal cell types is likely key to uncoupling these disease processes and may identify novel therapeutic targets that replace the need for cell ablation.
Collapse
Affiliation(s)
- Kathrine E Attfield
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, Oxford University Hospitals, University of Oxford, Oxford, UK
| | - Lise Torp Jensen
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Max Kaufmann
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Lars Fugger
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, Oxford University Hospitals, University of Oxford, Oxford, UK.
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
6
|
Sadeghi Hassanabadi N, Broux B, Marinović S, Gotthardt D. Innate Lymphoid Cells - Neglected Players in Multiple Sclerosis. Front Immunol 2022; 13:909275. [PMID: 35784374 PMCID: PMC9247827 DOI: 10.3389/fimmu.2022.909275] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/20/2022] [Indexed: 12/29/2022] Open
Abstract
Multiple sclerosis (MS) is a highly debilitating autoimmune disease affecting millions of individuals worldwide. Although classically viewed as T-cell mediated disease, the role of innate lymphoid cells (ILC) such as natural killer (NK) cells and ILC 1-3s has become a focal point as several findings implicate them in the disease pathology. The role of ILCs in MS is still not completely understood as controversial findings have been reported assigning them either a protective or disease-accelerating role. Recent findings in experimental autoimmune encephalomyelitis (EAE) suggest that ILCs infiltrate the central nervous system (CNS), mediate inflammation, and have a disease exacerbating role by influencing the recruitment of autoreactive T-cells. Elucidating the detailed role of ILCs and altered signaling pathways in MS is essential for a more complete picture of the disease pathology and novel therapeutic targets. We here review the current knowledge about ILCs in the development and progression of MS and preclinical models of MS and discuss their potential for therapeutic applications.
Collapse
Affiliation(s)
| | - Bieke Broux
- University MSCenter; Campus Diepenbeek, Diepenbeek, Belgium
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Diepenbeek, Belgium
| | - Sonja Marinović
- Division of Molecular Medicine, Laboratory of Personalized Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Dagmar Gotthardt
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
- *Correspondence: Dagmar Gotthardt,
| |
Collapse
|
7
|
Arbelaez CA, Palle P, Charaix J, Bettelli E. STAT1 signaling protects self-reactive T cells from control by innate cells during neuroinflammation. JCI Insight 2022; 7:148222. [PMID: 35587373 PMCID: PMC9309063 DOI: 10.1172/jci.insight.148222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
The transcription factor STAT1 plays a critical role in modulating the differentiation of CD4+ T cells producing IL-17 and GM-CSF, which promote the development of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). The protective role of STAT1 in MS and EAE has been largely attributed to its ability to limit pathogenic Th cells and promote Tregs. Using mice with selective deletion of STAT1 in T cells (STAT1CD4-Cre), we identified a potentially novel mechanism by which STAT1 regulates neuroinflammation independently of Foxp3+ Tregs. STAT1-deficient effector T cells became the target of NK cell–mediated killing, limiting their capacity to induce EAE. STAT1-deficient T cells promoted their own killing by producing more IL-2 that, in return, activated NK cells. Elimination of NK cells restored EAE susceptibility in STAT1CD4-Cre mice. Therefore, our study suggests that the STAT1 pathway can be manipulated to limit autoreactive T cells during autoimmunity directed against the CNS.
Collapse
Affiliation(s)
- Carlos A Arbelaez
- Center for Fundamental Immunology, Benaroya Research Institute at Virginia Mason, Seattle, United States of America
| | - Pushpalatha Palle
- Center for Fundamental Immunology, Benaroya Research Institute at Virginia Mason, Seattle, United States of America
| | - Jonathan Charaix
- Center for Fundamental Immunology, Benaroya Research Institute at Virginia Mason, Seattle, United States of America
| | - Estelle Bettelli
- Center for Fundamental Immunology, Benaroya Research Institute at Virginia Mason, Seattle, United States of America
| |
Collapse
|
8
|
Rodríguez-Lorenzo S, van Olst L, Rodriguez-Mogeda C, Kamermans A, van der Pol SMA, Rodríguez E, Kooij G, de Vries HE. Single-cell profiling reveals periventricular CD56 bright NK cell accumulation in multiple sclerosis. eLife 2022; 11:e73849. [PMID: 35536009 PMCID: PMC9135404 DOI: 10.7554/elife.73849] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 04/29/2022] [Indexed: 11/21/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disease characterised by immune cell infiltration resulting in lesions that preferentially affect periventricular areas of the brain. Despite research efforts to define the role of various immune cells in MS pathogenesis, the focus has been on a few immune cell populations while full-spectrum analysis, encompassing others such as natural killer (NK) cells, has not been performed. Here, we used single-cell mass cytometry (CyTOF) to profile the immune landscape of brain periventricular areas - septum and choroid plexus - and of the circulation from donors with MS, dementia and controls without neurological disease. Using a 37-marker panel, we revealed the infiltration of T cells and antibody-secreting cells in periventricular brain regions and identified a novel NK cell signature specific to MS. CD56bright NK cells were accumulated in the septum of MS donors and displayed an activated and migratory phenotype, similar to that of CD56bright NK cells in the circulation. We validated this signature by multiplex immunohistochemistry and found that the number of NK cells with high expression of granzyme K, typical of the CD56bright subset, was increased in both periventricular lesions and the choroid plexus of donors with MS. Together, our multi-tissue single-cell data shows that CD56bright NK cells accumulate in the periventricular brain regions of MS patients, bringing NK cells back to the spotlight of MS pathology.
Collapse
Affiliation(s)
- Sabela Rodríguez-Lorenzo
- MS Center Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMCAmsterdamNetherlands
| | - Lynn van Olst
- MS Center Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMCAmsterdamNetherlands
| | - Carla Rodriguez-Mogeda
- MS Center Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMCAmsterdamNetherlands
| | - Alwin Kamermans
- MS Center Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMCAmsterdamNetherlands
| | - Susanne MA van der Pol
- MS Center Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMCAmsterdamNetherlands
| | - Ernesto Rodríguez
- MS Center Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMCAmsterdamNetherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity InstituteAmsterdamNetherlands
| | - Gijs Kooij
- MS Center Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMCAmsterdamNetherlands
| | - Helga E de Vries
- MS Center Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMCAmsterdamNetherlands
| |
Collapse
|
9
|
Ruder J, Rex J, Obahor S, Docampo MJ, Müller AMS, Schanz U, Jelcic I, Martin R. NK Cells and Innate-Like T Cells After Autologous Hematopoietic Stem Cell Transplantation in Multiple Sclerosis. Front Immunol 2022; 12:794077. [PMID: 34975899 PMCID: PMC8716406 DOI: 10.3389/fimmu.2021.794077] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/29/2021] [Indexed: 01/18/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system, in which autoreactive T and B cells play important roles. Other lymphocytes such as NK cells and innate-like T cells appear to be involved as well. To name a few examples, CD56bright NK cells were described as an immunoregulatory NK cell subset in MS while innate-like T cells in MS were described in brain lesions and with proinflammatory signatures. Autologous hematopoietic stem cell transplantation (aHSCT) is a procedure used to treat MS. This procedure includes hematopoietic stem/progenitor cell (HSPC) mobilization, then high-dose chemotherapy combined with anti-thymocyte globulin (ATG) and subsequent infusion of the patients own HSPCs to reconstitute a functional immune system. aHSCT inhibits MS disease activity very effectively and for long time, presumably due to elimination of autoreactive T cells. Here, we performed multidimensional flow cytometry experiments in peripheral blood lymphocytes of 27 MS patients before and after aHSCT to address its potential influence on NK and innate-like T cells. After aHSCT, the relative frequency and absolute numbers of CD56bright NK cells rise above pre-aHSCT levels while all studied innate-like T cell populations decrease. Hence, our data support an enhanced immune regulation by CD56bright NK cells and the efficient reduction of proinflammatory innate-like T cells by aHSCT in MS. These observations contribute to our current understanding of the immunological effects of aHSCT in MS.
Collapse
Affiliation(s)
- Josefine Ruder
- Neuroimmunology and Multiple Sclerosis (MS) Research Section (NIMS), Department of Neurology, University and University Hospital Zurich, Zurich, Switzerland
| | - Jordan Rex
- Neuroimmunology and Multiple Sclerosis (MS) Research Section (NIMS), Department of Neurology, University and University Hospital Zurich, Zurich, Switzerland
| | - Simon Obahor
- Neuroimmunology and Multiple Sclerosis (MS) Research Section (NIMS), Department of Neurology, University and University Hospital Zurich, Zurich, Switzerland
| | - María José Docampo
- Neuroimmunology and Multiple Sclerosis (MS) Research Section (NIMS), Department of Neurology, University and University Hospital Zurich, Zurich, Switzerland
| | - Antonia M S Müller
- Department of Medical Oncology and Hematology, University and University Hospital Zurich, Zurich, Switzerland
| | - Urs Schanz
- Department of Medical Oncology and Hematology, University and University Hospital Zurich, Zurich, Switzerland
| | - Ilijas Jelcic
- Neuroimmunology and Multiple Sclerosis (MS) Research Section (NIMS), Department of Neurology, University and University Hospital Zurich, Zurich, Switzerland
| | - Roland Martin
- Neuroimmunology and Multiple Sclerosis (MS) Research Section (NIMS), Department of Neurology, University and University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Khani L, Jazayeri MH, Nedaeinia R, Bozorgmehr M, Nabavi SM, Ferns GA. The frequencies of peripheral blood CD5 +CD19 + B cells, CD3 -CD16 +CD56 + NK, and CD3 +CD56 + NKT cells and serum interleukin-10 in patients with multiple sclerosis and neuromyelitis optica spectrum disorder. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2022; 18:5. [PMID: 35031055 PMCID: PMC8760701 DOI: 10.1186/s13223-021-00596-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 09/02/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) and neuromyelitis optica syndrome disease (NMOSD) are inflammatory diseases of the central nervous system. The pathogenesis and treatments for these two conditions are very different. Natural killer (NK) and natural killer T (NKT) cells are immune cells with an important role in shaping the immune response. B cells are involved in antigen presentation as well as antibody and cytokine production. There is conflicting evidence of the roles of NK, NKT, and B cells in the two conditions. We aimed to compare the frequency of CD3-CD16+CD56+NK, CD3+ CD56+ NKT, and CD5+CD19+ B cells in the peripheral blood and serum Interleukin-10 (IL-10) in patients with MS and NMOSD. METHODS CD19+CD5+ B, CD3- CD16+CD56+ NK, and CD3+CD56+ NKT cells were quantitated by flow cytometry in 15 individuals with Interferon-Beta (IFN-β) treated relapsing-remitting MS (RRMS), 15 untreated RRMS, and 15 NMOSD patients as well as 30 healthy controls (HC). Serum IL-10 was measured using an enzyme-linked immunosorbent assay (ELISA). RESULTS The percentage of CD3-CD56+CD16+ NK cells in the peripheral blood of IFN-treated MS (1.81 ± 0.87) was significantly lower than for untreated RRMS (4.74 ± 1.80), NMOSD (4.64 ± 1.26) and HC (5.83 ± 2.19) (p < 0.0001). There were also differences for the percentage of CD3-CD16+ and CD3-CD56+ cells (p < 0.001 and p < 0.0007; respectively). IFN-treated RRMS (2.89 ± 1.51) had the lowest proportion of CD3+CD56+ among the study groups (p < 0.002). Untreated RRMS (5.56 ± 3.04) and NMOSD (5.47 ± 1.24) had higher levels of CD3+CD56+ than the HC (3.16 ± 1.98). The mean percentage of CD19+CD5+ B cells in the peripheral blood of untreated RRMS patients (1.32 ± 0.67) was higher compared to the patients with NMOSD (0.30 ± 0.20), HC (0.5 ± 0.22) and IFN-treated RRMS (0.81 ± 0.17) (p < 0.0001). Serum interleukin-10 was significantly higher in the IFN-treated RRMS (8.06 ± 5.39) and in HC (8.38 ± 2.84) compared to untreated RRMS (5.07 ± 1.44) and the patients with NMOSD (5.33 ± 2.56) (p < 0.003). CONCLUSIONS The lower proportion of CD3-CD56+ CD16+ NK and CD3+CD56+ cells in peripheral blood of IFN-treated RRMS compared to other groups suggests the importance of immunomodulation in patients with RRMS disorder. Based on the differences in CD19+CD5+ B cells and serum IL-10 between patients and HC, supplementary assessments could be of value in clarifying their roles in autoimmunity.
Collapse
Affiliation(s)
- Leila Khani
- Department of Immunology, School of Medicine, Iran University of Medical Science, Shahid Hemmat Highway, P.O Box 14665-354, 14496-14535, Tehran, Iran
| | - Mir Hadi Jazayeri
- Department of Immunology, School of Medicine, Iran University of Medical Science, Shahid Hemmat Highway, P.O Box 14665-354, 14496-14535, Tehran, Iran.
- Immunology Research Center, Iran University of Medical Science, Shahid Hemmat Highway, P.O Box 14665-354, 14496-14535, Tehran, Iran.
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmood Bozorgmehr
- Oncopathology Research Center, Iran University of Medical Science, Tehran, Iran
| | - Seyed Masood Nabavi
- Department of Regenerative Biomedicine, Cell Science Research Center, Neuroscience and Cognition Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Falmer, Brighton, BN1 9PH, Sussex, UK
| |
Collapse
|
11
|
Ahmadi A, Fallah Vastani Z, Abounoori M, Azizi M, Labani‐Motlagh A, Mami S, Mami S. The role of NK and NKT cells in the pathogenesis and improvement of multiple sclerosis following disease-modifying therapies. Health Sci Rep 2022; 5:e489. [PMID: 35229046 PMCID: PMC8865072 DOI: 10.1002/hsr2.489] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 11/09/2021] [Accepted: 12/07/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system (CNS) that T cells become autoreactive by recognizing CNS antigens. Both innate and adaptive immune systems are involved in the pathogenesis of MS. In recent years, the impact of innate immune cells on MS pathogenesis has received more attention. CD56bright NK cells, as an immunoregulatory subset of NK cells, can increase the production of cytokines that modulate adaptive immune responses, whereas CD56dim NK cells are more active in cytolysis functions. These two main subsets of NK cells may have different effects on the onset or progression of MS. Invariant NKT (iNKT) cells are other immune cells involved in the control of autoimmune diseases; however, variant NKT (vNKT) cells, despite limited information, could play a role in MS remission via an immunoregulatory pathway. AIM We aimed to evaluate the influence of MS therapeutic agents on NK and NKT cells and NK cell subtypes. MATERIALS AND METHODS The possible mechanism of each MS therapeutic agent has been presented here, focusing on the effects of different disease-modifying therapies on the number of NK and NKT subtypes. RESULTS Expansion of CD56bright NK cells, reduction in the CD56dim cells, and enhancement in NKT cells are the more important innate immune cells alterations following the disease-modifying therapies. CONCLUSION Expansion of CD56bright NK cells or reduction in the CD56dim cells has been associated with a successful response to different treatments in MS. iNKT and vNKT cells could have beneficial effects on MS improving. It seems that they are enhanced due to some of MS drugs, leading to disease improvement. However, a reduction in the number of NKT cells could be due to the adverse effects of some of MS drugs on the bone marrow.
Collapse
Affiliation(s)
- Alireza Ahmadi
- Student Research Committee, Department of Laboratory Sciences, Faculty of Allied Medical SciencesIlam University of Medical SciencesIlamIran
| | - Zahra Fallah Vastani
- Student Research Committee, Department of Laboratory Sciences, Faculty of Allied Medical SciencesIlam University of Medical SciencesIlamIran
| | - Mahdi Abounoori
- Student Research Committee, School of MedicineMazandaran University of Medical SciencesSariIran
| | - Mahdieh Azizi
- Department of Immunology, School of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Alireza Labani‐Motlagh
- Department of Pulmonary ImmunologyThe University of Texas Health Science Center at TylerTexasUSA
| | - Sajad Mami
- Department of laboratory and clinical science, faculty of veterinary medicineIlam UniversityIlamIran
| | - Sanaz Mami
- Department of Immunology, School of MedicineIlam University of Medical SciencesIlamIran
| |
Collapse
|
12
|
Schwichtenberg SC, Wisgalla A, Schroeder-Castagno M, Alvarez-González C, Schlickeiser S, Siebert N, Bellmann-Strobl J, Wernecke KD, Paul F, Dörr J, Infante-Duarte C. Fingolimod Therapy in Multiple Sclerosis Leads to the Enrichment of a Subpopulation of Aged NK Cells. Neurotherapeutics 2021; 18:1783-1797. [PMID: 34244929 PMCID: PMC8608997 DOI: 10.1007/s13311-021-01078-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 02/04/2023] Open
Abstract
Fingolimod is an approved oral treatment for relapsing-remitting multiple sclerosis (RRMS) that modulates agonistically the sphingosin-1-phosphate receptor (S1PR), inhibiting thereby the egress of lymphocytes from the lymph nodes. In this interventional prospective clinical phase IV trial, we longitudinally investigated the impact of fingolimod on frequencies of NK cell subpopulations by flow cytometry in 17 RRMS patients at baseline and 1, 3, 6, and 12 months after treatment initiation. Clinical outcome was assessed by the Expanded Disability Status Scale (EDSS) and annualized relapse rates (ARR). Over the study period, median EDSS remained stable from month 3 to month 12, and ARR decreased compared to ARR in the 24 months prior treatment. Treatment was paralleled by an increased frequency of circulating NK cells, due primarily to an increase in CD56dimCD94low mature NK cells, while the CD56bright fraction and CD127+ innate lymphoid cells (ILCs) decreased over time. An unsupervised clustering algorithm further revealed that a particular fraction of NK cells defined by the expression of CD56dimCD16++KIR+/-NKG2A-CD94-CCR7+/-CX3CR1+/-NKG2C-NKG2D+NKp46-DNAM1++CD127+ increased during treatment. This specific phenotype might reflect a status of aged, fully differentiated, and less functional NK cells. Our study confirms that fingolimod treatment affects both NK cells and ILC. In addition, our study suggests that treatment leads to the enrichment of a specific NK cell subset characterized by an aged phenotype. This might limit the anti-microbial and anti-tumour NK cell activity in fingolimod-treated patients.
Collapse
Affiliation(s)
- Svenja C Schwichtenberg
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Institute for Medical Immunology, Campus Virchow Klinikum, Augustenburger Platz 1 (Südstr. 2/Föhrer Str. 15), 13353, Berlin, Germany
| | - Anne Wisgalla
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Institute for Medical Immunology, Campus Virchow Klinikum, Augustenburger Platz 1 (Südstr. 2/Föhrer Str. 15), 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Institute for "Psychiatrie Und Medizinische Klinik M.S. Psychosomatik,", Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Maria Schroeder-Castagno
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Institute for Medical Immunology, Campus Virchow Klinikum, Augustenburger Platz 1 (Südstr. 2/Föhrer Str. 15), 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Campus Mitte, Sauerbruchweg 5, 10117, Berlin, Germany
| | - Cesar Alvarez-González
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Institute for Medical Immunology, Campus Virchow Klinikum, Augustenburger Platz 1 (Südstr. 2/Föhrer Str. 15), 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Campus Mitte, Sauerbruchweg 5, 10117, Berlin, Germany
| | - Stephan Schlickeiser
- BIH Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Föhrer Str. 15, 13353, Berlin, Germany
| | - Nadja Siebert
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Campus Mitte, Sauerbruchweg 5, 10117, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine & Charité - Universitätsmedizin Berlin, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Judith Bellmann-Strobl
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Campus Mitte, Sauerbruchweg 5, 10117, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine & Charité - Universitätsmedizin Berlin, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Klaus-Dieter Wernecke
- Charité - Universitätsmedizin Berlin and CRO SOSTANA GmbH, Wildensteiner Straße 27, 10318, Berlin, Germany
| | - Friedemann Paul
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Campus Mitte, Sauerbruchweg 5, 10117, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine & Charité - Universitätsmedizin Berlin, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Jan Dörr
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Campus Mitte, Sauerbruchweg 5, 10117, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine & Charité - Universitätsmedizin Berlin, Robert-Rössle-Straße 10, 13125, Berlin, Germany
- Current Affiliation: Multiple Sclerosis Center, Oberhavel Kliniken, Marwitzer Straße 91, 16761, Hennigsdorf, Germany
| | - Carmen Infante-Duarte
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Institute for Medical Immunology, Campus Virchow Klinikum, Augustenburger Platz 1 (Südstr. 2/Föhrer Str. 15), 13353, Berlin, Germany.
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine & Charité - Universitätsmedizin Berlin, Robert-Rössle-Straße 10, 13125, Berlin, Germany.
| |
Collapse
|
13
|
Kucuksezer UC, Aktas Cetin E, Esen F, Tahrali I, Akdeniz N, Gelmez MY, Deniz G. The Role of Natural Killer Cells in Autoimmune Diseases. Front Immunol 2021; 12:622306. [PMID: 33717125 PMCID: PMC7947192 DOI: 10.3389/fimmu.2021.622306] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
Natural killer (NK) cells, the large granular lymphocytes differentiated from the common lymphoid progenitors, were discovered in early 1970's. They are members of innate immunity and were initially defined by their strong cytotoxicity against virus-infected cells and by their important effector functions in anti-tumoral immune responses. Nowadays, NK cells are classified among the recently discovered innate lymphoid cell subsets and have capacity to influence both innate and adaptive immune responses. Therefore, they can be considered as innate immune cells that stands between the innate and adaptive arms of immunity. NK cells don't express T or B cell receptors and are recognized by absence of CD3. There are two major subgroups of NK cells according to their differential expression of CD16 and CD56. While CD16+CD56dim subset is best-known by their cytotoxic functions, CD16-CD56bright NK cell subset produces a bunch of cytokines comparable to CD4+ T helper cell subsets. Another subset of NK cells with production of interleukin (IL)-10 was named as NK regulatory cells, which has suppressive properties and could take part in immune-regulatory responses. Activation of NK cells is determined by a delicate balance of cell-surface receptors that have either activating or inhibitory properties. On the other hand, a variety of cytokines including IL-2, IL-12, IL-15, and IL-18 influence NK cell activity. NK-derived cytokines and their cytotoxic functions through induction of apoptosis take part in regulation of the immune responses and could contribute to the pathogenesis of many immune mediated diseases including ankylosing spondylitis, Behçet's disease, multiple sclerosis, rheumatoid arthritis, psoriasis, systemic lupus erythematosus and type-1 diabetes. Dysregulation of NK cells in autoimmune disorders may occur through multiple mechanisms. Thanks to the rapid developments in biotechnology, progressive research in immunology enables better characterization of cells and their delicate roles in the complex network of immunity. As NK cells stand in between innate and adaptive arms of immunity and "bridge" them, their contribution in inflammation and immune regulation deserves intense investigations. Better understanding of NK-cell biology and their contribution in both exacerbation and regulation of inflammatory disorders is a requisite for possible utilization of these multi-faceted cells in novel therapeutic interventions.
Collapse
Affiliation(s)
- Umut Can Kucuksezer
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Esin Aktas Cetin
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Fehim Esen
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Department of Ophthalmology, Medical Faculty, Istanbul Medeniyet University, Istanbul, Turkey
| | - Ilhan Tahrali
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Nilgun Akdeniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Metin Yusuf Gelmez
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Gunnur Deniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
14
|
Gianchecchi E, Delfino DV, Fierabracci A. Natural Killer Cells: Potential Biomarkers and Therapeutic Target in Autoimmune Diseases? Front Immunol 2021; 12:616853. [PMID: 33679757 PMCID: PMC7933577 DOI: 10.3389/fimmu.2021.616853] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/21/2021] [Indexed: 12/20/2022] Open
Abstract
Autoimmune diseases recognize a multifactorial pathogenesis, although the exact mechanism responsible for their onset remains to be fully elucidated. Over the past few years, the role of natural killer (NK) cells in shaping immune responses has been highlighted even though their involvement is profoundly linked to the subpopulation involved and to the site where such interaction takes place. The aberrant number and functionality of NK cells have been reported in several different autoimmune disorders. In the present review, we report the most recent findings regarding the involvement of NK cells in both systemic and organ-specific autoimmune diseases, including type 1 diabetes (T1D), primary biliary cholangitis (PBC), systemic sclerosis, systemic lupus erythematosus (SLE), primary Sjögren syndrome, rheumatoid arthritis, and multiple sclerosis. In T1D, innate inflammation induces NK cell activation, disrupting the Treg function. In addition, certain genetic variants identified as risk factors for T1D influenced the activation of NK cells promoting their cytotoxic activity. The role of NK cells has also been demonstrated in the pathogenesis of PBC mediating direct or indirect biliary epithelial cell destruction. NK cell frequency and number were enhanced in both the peripheral blood and the liver of patients and associated with increased NK cell cytotoxic activity and perforin expression levels. NK cells were also involved in the perpetuation of disease through autoreactive CD4 T cell activation in the presence of antigen-presenting cells. In systemic sclerosis (SSc), in addition to phenotypic abnormalities, patients presented a reduction in CD56hi NK-cells. Moreover, NK cells presented a deficient killing activity. The influence of the activating and inhibitory killer cell immunoglobulin-like receptors (KIRs) has been investigated in SSc and SLE susceptibility. Furthermore, autoantibodies to KIRs have been identified in different systemic autoimmune conditions. Because of its role in modulating the immune-mediated pathology, NK subpopulation could represent a potential marker for disease activity and target for therapeutic intervention.
Collapse
Affiliation(s)
- Elena Gianchecchi
- VisMederi srl, Siena, Italy
- Infectivology and Clinical Trials Research Area, Primary Immunodeficiencies Research Unit, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Domenico V. Delfino
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Alessandra Fierabracci
- Infectivology and Clinical Trials Research Area, Primary Immunodeficiencies Research Unit, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| |
Collapse
|
15
|
Yang Y, Day J, Souza-Fonseca Guimaraes F, Wicks IP, Louis C. Natural killer cells in inflammatory autoimmune diseases. Clin Transl Immunology 2021; 10:e1250. [PMID: 33552511 PMCID: PMC7850912 DOI: 10.1002/cti2.1250] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells are a specialised population of innate lymphoid cells (ILCs) that help control local immune responses. Through natural cytotoxicity, production of cytokines and chemokines, and migratory capacity, NK cells play a vital immunoregulatory role in the initiation and chronicity of inflammatory and autoimmune responses. Our understanding of their functional differences and contributions in disease settings is evolving owing to new genetic and functional murine proof-of-concept studies. Here, we summarise current understanding of NK cells in several classic autoimmune disorders, particularly in rheumatoid arthritis (RA), multiple sclerosis (MS), systemic lupus erythematosus (SLE) and type 1 diabetes mellitus (T1DM), but also less understood diseases such as idiopathic inflammatory myopathies (IIMs). A better understanding of how NK cells contribute to these autoimmune disorders may pave the way for NK cell-targeted therapeutics.
Collapse
Affiliation(s)
- Yuyan Yang
- Tsinghua University School of Medicine Beijing China.,Inflammation Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
| | - Jessica Day
- Inflammation Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia.,Medical Biology University of Melbourne Melbourne VIC Australia.,Rheumatology Unit The Royal Melbourne Hospital Parkville VIC Australia
| | | | - Ian P Wicks
- Inflammation Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia.,Medical Biology University of Melbourne Melbourne VIC Australia.,Rheumatology Unit The Royal Melbourne Hospital Parkville VIC Australia
| | - Cynthia Louis
- Inflammation Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia.,Medical Biology University of Melbourne Melbourne VIC Australia
| |
Collapse
|
16
|
Sparaco M, Bonavita S. The role of sex hormones in women with multiple sclerosis: From puberty to assisted reproductive techniques. Front Neuroendocrinol 2021; 60:100889. [PMID: 33189769 DOI: 10.1016/j.yfrne.2020.100889] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/02/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Multiple Sclerosis is a multifactorial chronic autoimmune disease, affecting predominantly females in the fertile age. Sex hormones changes during a woman's life, from puberty to menopause, including pregnancy and puerperium, may influence the onset and course of Multiple Sclerosis. The effect of estrogen levels on immune, clinical and radiological aspects of Multiple Sclerosis, also stimulated investigation on the effect of sexual hormones therapies, such as oral contraceptives and assisted reproductive technique, on the Multiple Sclerosis course. SEARCH STRATEGY AND SELECTION CRITERIA A literature search for original articles and reviews was conducted in the databases, including PubMed, Scopus, and ClinicalTrials.gov of the U.S. National Library of Medicine site from 1988 to 2020. RESULTS AND CONCLUSION This review reports the effects of the physiological and iatrogenic hormonal changes either on immune or clinical or paraclinical features in the different life stages of women affected by Multiple Sclerosis.
Collapse
Affiliation(s)
- Maddalena Sparaco
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Miraglia, 2, 80138 Naples, Italy
| | - Simona Bonavita
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Miraglia, 2, 80138 Naples, Italy.
| |
Collapse
|
17
|
Hannikainen PA, Kosa P, Barbour C, Bielekova B. Extensive Healthy Donor Age/Gender Adjustments and Propensity Score Matching Reveal Physiology of Multiple Sclerosis Through Immunophenotyping. Front Neurol 2020; 11:565957. [PMID: 33329307 PMCID: PMC7732581 DOI: 10.3389/fneur.2020.565957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/04/2020] [Indexed: 01/09/2023] Open
Abstract
Quantifying cell subpopulations in biological fluids aids in diagnosis and understanding of the mechanisms of injury. Although much has been learned from cerebrospinal fluid (CSF) flow cytometry in neuroimmunological disorders, such as multiple sclerosis (MS), previous studies did not contain enough healthy donors (HD) to derive age- and gender-related normative data and sufficient heterogeneity of other inflammatory neurological disease (OIND) controls to identify MS specific changes. The goals of this blinded training and validation study of MS patients and embedded controls, representing 1,240 prospectively acquired paired CSF/blood samples from 588 subjects was (1) to define physiological age-/gender-related changes in CSF cells, (2) to define/validate cellular abnormalities in blood and CSF of untreated MS through disease duration (DD) and determine which are MS-specific, and (3) to compare effect(s) of low-efficacy (i.e., interferon-beta [IFN-beta] and glatiramer acetate [GA]) and high-efficacy drugs (i.e., natalizumab, daclizumab, and ocrelizumab) on MS-related cellular abnormalities using propensity score matching. Physiological gender differences are less pronounced in the CSF compared to blood, and age-related changes suggest decreased immunosurveillance of CNS by activated HLA-DR+T cells associated with natural aging. Results from patient samples support the concept of MS being immunologically single disease evolving in time. Initially, peripherally activated innate and adaptive immune cells migrate into CSF to form MS lesions. With progression, T cells (CD8+ > CD4+), NK cells, and myeloid dendritic cells are depleted from blood as they continue to accumulate, together with B cells, in the CSF and migrate to CNS tissue, forming compartmentalized inflammation. All MS drugs inhibit non-physiological accumulation of immune cells in the CSF. Although low-efficacy drugs tend to normalize it, high-efficacy drugs overshoot some aspects of CSF physiology, suggesting impairment of CNS immunosurveillance. Comparable inhibition of MS-related CSF abnormalities advocates changes within CNS parenchyma responsible for differences in drug efficacy on MS disability progression. Video summarizing all results may become useful educational tool.
Collapse
Affiliation(s)
| | | | | | - Bibiana Bielekova
- Neuroimmunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
18
|
Acar NP, Tuncer A, Ozkazanc D, Ozbay FG, Karaosmanoglu B, Goksen S, Sayat G, Taskiran EZ, Esendagli G, Karabudak R. An immunological and transcriptomics approach on differential modulation of NK cells in multiple sclerosis patients under interferon-β1 and fingolimod therapy. J Neuroimmunol 2020; 347:577353. [PMID: 32745802 DOI: 10.1016/j.jneuroim.2020.577353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Abstract
This study aims to compare NK cells obtained from multiple sclerosis (MS) patients receiving interferon-β1 and fingolimod therapies. Fingolimod reduced the CD56bright NK cell subset. The remaining CD56dim NK cells displayed NKG2D, NKp46, CD107a, and IFN-γ levels similar to those from the patients under interferon-β1 therapy. Alternatively, comparative transcriptomics and pathway analyses revealed significant distinctions between two therapy modalities. Molecular signature of the CD56dim NK cells from fingolimod-treated MS patients was closely associated to those from healthy subjects. The basic assets of NK cells were modestly influenced by interferon-β1 and fingolimod, however transcriptomics showed profound alterations in NK responses.
Collapse
Affiliation(s)
- Nazire Pinar Acar
- Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Asli Tuncer
- Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Didem Ozkazanc
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Feyza Gul Ozbay
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Beren Karaosmanoglu
- Department of Medical Genetics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Sibel Goksen
- Department of Medical and Surgical Research, Institute of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Guliz Sayat
- Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ekim Z Taskiran
- Department of Medical Genetics, Faculty of Medicine, Hacettepe University, Ankara, Turkey; Department of Medical and Surgical Research, Institute of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Gunes Esendagli
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey; Department of Medical and Surgical Research, Institute of Health Sciences, Hacettepe University, Ankara, Turkey.
| | - Rana Karabudak
- Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
19
|
Al-Ani M, Elemam NM, Hundt JE, Maghazachi AA. Drugs for Multiple Sclerosis Activate Natural Killer Cells: Do They Protect Against COVID-19 Infection? Infect Drug Resist 2020; 13:3243-3254. [PMID: 33061471 PMCID: PMC7519863 DOI: 10.2147/idr.s269797] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
COVID-19 infection caused by the newly discovered coronavirus severe acute respiratory distress syndrome virus-19 (SARS-CoV-2) has become a pandemic issue across the globe. There are currently many investigations taking place to look for specific, safe and potent anti-viral agents. Upon transmission and entry into the human body, SARS-CoV-2 triggers multiple immune players to be involved in the fight against the viral infection. Amongst these immune cells are NK cells that possess robust antiviral activity, and which do not require prior sensitization. However, NK cell count and activity were found to be impaired in COVID-19 patients and hence, could become a potential therapeutic target for COVID-19. Several drugs, including glatiramer acetate (GA), vitamin D3, dimethyl fumarate (DMF), monomethyl fumarate (MMF), natalizumab, ocrelizumab, and IFN-β, among others have been previously described to increase the biological activities of NK cells especially their cytolytic potential as reported by upregulation of CD107a, and the release of perforin and granzymes. In this review, we propose that such drugs could potentially restore NK cell activity allowing individuals to be more protective against COVID-19 infection and its complications.
Collapse
Affiliation(s)
- Mena Al-Ani
- Department of Clinical Sciences, College of Medicine and the Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Noha Mousaad Elemam
- Department of Clinical Sciences, College of Medicine and the Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | | | - Azzam A Maghazachi
- Department of Clinical Sciences, College of Medicine and the Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
20
|
Bäcker-Koduah P, Infante-Duarte C, Ivaldi F, Uccelli A, Bellmann-Strobl J, Wernecke KD, Sy M, Demetriou M, Dörr J, Paul F, Ulrich Brandt A. Effect of vitamin D supplementation on N-glycan branching and cellular immunophenotypes in MS. Ann Clin Transl Neurol 2020; 7:1628-1641. [PMID: 32830462 PMCID: PMC7480923 DOI: 10.1002/acn3.51148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/17/2020] [Accepted: 07/06/2020] [Indexed: 12/31/2022] Open
Abstract
Objective To investigate the effect of cholecalciferol (vitamin D3) supplementation on peripheral immune cell frequency and N‐glycan branching in patients with relapsing‐remitting multiple sclerosis (RRMS). Methods Exploratory analysis of high‐dose (20 400 IU) and low‐dose (400 IU) vitamin D3 supplementation taken every other day of an 18‐month randomized controlled clinical trial including 38 RRMS patients on stable immunomodulatory therapy (NCT01440062). We investigated cholecalciferol treatment effects on N‐glycan branching using L‐PHA stain (phaseolus vulgaris leukoagglutinin) at 6 months and frequencies of T‐, B‐, and NK‐cell subpopulations at 12 months with flow cytometry. Results High‐dose supplementation did not change CD3+ T cell subsets, CD19+ B cells subsets, and NK cells frequencies, except for CD8+ T regulatory cells, which were reduced in the low‐dose arm compared to the high‐dose arm at 12 months. High‐dose supplementation decreased N‐glycan branching on T and NK cells, measured as L‐PHA mean fluorescence intensity (MFI). A reduction of N‐glycan branching in B cells was not significant. In contrast, low‐dose supplementation did not affect N‐glycan branching. Changes in N‐glycan branching did not correlate with cell frequencies. Interpretation Immunomodulatory effect of vitamin D may involve regulation of N‐glycan branching in vivo. Vitamin D3 supplementation did at large not affect the frequencies of peripheral immune cells.
Collapse
Affiliation(s)
- Priscilla Bäcker-Koduah
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Carmen Infante-Duarte
- Charité - Universitätsmedizin Berlin, Institute for Medical Immunology, Berlin, Germany
| | - Federico Ivaldi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, CEBR University of Genoa, Genoa, Italy
| | - Antonio Uccelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, CEBR University of Genoa, Genoa, Italy.,Ospedale Policlinico San Martino-IRCCS, Genoa, Italy
| | - Judith Bellmann-Strobl
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, NeuroCure Cluster of Excellence, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Klaus-Dieter Wernecke
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany.,Institute of Biometry and Clinical Epidemiology, Charité -Universitatsmedizin Berlin and CRO SOSTANA GmbH, Berlin, Germany
| | - Michael Sy
- Department of Neurology, University of California, Irvine, CA, USA
| | | | - Jan Dörr
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany.,Multiple Sclerosis Center Hennigsdorf, Oberhavel Clinics, Berlin, Germany
| | - Friedemann Paul
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, NeuroCure Cluster of Excellence, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander Ulrich Brandt
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurology, University of California, Irvine, CA, USA
| |
Collapse
|
21
|
McQuaid SL, Loughran ST, Power PA, Maguire P, Szczygiel A, Johnson PA. Low-dose IL-2 induces CD56 bright NK regulation of T cells via NKp44 and NKp46. Clin Exp Immunol 2020; 200:228-241. [PMID: 31989589 PMCID: PMC7232012 DOI: 10.1111/cei.13422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2020] [Indexed: 12/16/2022] Open
Abstract
Low-dose interleukin (IL)-2 has shown clinical benefits in patients with autoimmune and inflammatory diseases. Both regulatory T cells (Tregs ) and natural killer (NK) cells are increased in response to low-dose IL-2 immunotherapy. The role of regulatory T cells in autoimmune diseases has been extensively studied; however, NK cells have not been as thoroughly explored. It has not been well reported whether the increase in NK cells is purely an epiphenomenon or carries actual benefits for patients with autoimmune diseases. We demonstrate that low-dose IL-2 expands the primary human CD56bright NK cells resulting in a contact-dependent cell cycle arrest of effector T cells (Teffs ) via retention of the cycle inhibitor p21. We further show that NK cells respond via IL-2R-β, which has been shown to be significant for immunity by regulating T cell expansion. Moreover, we demonstrate that blocking NK receptors NKp44 and NKp46 but not NKp30 could abrogate the regulation of proliferation associated with low-dose IL-2. The increase in NK cells was also accompanied by an increase in Treg cells, which is dependent on the presence of CD56bright NK cells. These results not only heighten the importance of NK cells in low-dose IL-2 therapy but also identify key human NK targets, which may provide further insights into the therapeutic mechanisms of low-dose IL-2 in autoimmunity.
Collapse
Affiliation(s)
- S. L. McQuaid
- Viral Immunology LaboratorySchool of Nursing, Psychotherapy and Community HealthDublin City UniversityDublinIreland
- Mason Technology LtdDublinIreland
| | - S. T. Loughran
- Viral Immunology LaboratorySchool of Nursing, Psychotherapy and Community HealthDublin City UniversityDublinIreland
- Department of Applied ScienceDundalk Institute of TechnologyDundalkIreland
| | - P. A. Power
- Viral Immunology LaboratorySchool of Nursing, Psychotherapy and Community HealthDublin City UniversityDublinIreland
- Technological University DublinDublinIreland
| | - P. Maguire
- Viral Immunology LaboratorySchool of Nursing, Psychotherapy and Community HealthDublin City UniversityDublinIreland
- School of BiotechnologyDublin City UniversityDublinIreland
| | - A. Szczygiel
- Viral Immunology LaboratorySchool of Nursing, Psychotherapy and Community HealthDublin City UniversityDublinIreland
| | - P. A. Johnson
- Viral Immunology LaboratorySchool of Nursing, Psychotherapy and Community HealthDublin City UniversityDublinIreland
| |
Collapse
|
22
|
CD56bright Natural Killer Cells: A Possible Biomarker of Different Treatments in Multiple Sclerosis. J Clin Med 2020; 9:jcm9051450. [PMID: 32414131 PMCID: PMC7291063 DOI: 10.3390/jcm9051450] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/05/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system, which leads, in many cases, to irreversible disability. More than 15 disease-modifying treatments (DMTs) are available for the treatment of MS. Clinical activity or activity at magnetic resonance imaging (MRI) are now used to assess the efficacy of DMTs, but are negative prognostic factors per se. Therefore, a biomarker permitting us to identify patients who respond to treatment before they develop clinical/radiological signs of MS activity would be of high importance. The number of circulating CD56bright natural killer (NK) cells may be such a biomarker. CD56bright NK cells are a regulatory immune population belonging to the innate immune system. The number of CD56bright NK cells increases upon treatment with interferon-beta, alemtuzumab, dimethyl fumarate, after autologous hematopoietic stem cell transplantation, and is higher in those who respond to fingolimod. In some cases, an increased number of CD56bright NK cells is associated with an increase in their regulatory function. In the current review, we will evaluate the known effect on CD56bright NK cells of DMTs for MS, and will discuss their possible role as a biomarker for treatment response in MS.
Collapse
|
23
|
Elemam NM, Hachim MY, Hannawi S, Maghazachi AA. Differentially Expressed Genes of Natural Killer Cells Can Distinguish Rheumatoid Arthritis Patients from Healthy Controls. Genes (Basel) 2020; 11:genes11050492. [PMID: 32365786 PMCID: PMC7290970 DOI: 10.3390/genes11050492] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022] Open
Abstract
Rheumatoid arthritis (RA) is one of the most prevalent autoimmune diseases, while its molecular triggers are not fully understood. A few studies have shown that natural killer (NK) cells may play either a pathogenic or a protective role in RA. In this study, we sought to explore NK cell markers that could be plausibly used in evaluating the differences among healthy controls and RA patients. Publicly available transcriptome datasets from RA patients and healthy volunteers were analyzed, in order to identify differentially expressed genes (DEGs) between 1. different immune cells as compared to NK cells, and 2. NK cells of RA patients and healthy controls. The identified DEGs were validated using 16 healthy controls and 17 RA patients. Peripheral blood mononuclear cells (PBMCs) were separated by Ficoll density gradient method, while NK cells were isolated using RosetteSep technique. RNA was extracted and gene expression was assessed using RT-qPCR. All selected genes were differentially expressed in NK cells compared to PBMCs. CD56, CXCL16, PECAM-1, ITGB7, BTK, TLR10, and IL-1β were significantly upregulated, while CCL2, CCR4, RELA and IBTK were downregulated in the NK cells of RA patients when compared to healthy controls. Therefore, these NK specific genes might be used as promising biomarkers for RA diagnosis.
Collapse
Affiliation(s)
- Noha Mousaad Elemam
- College of Medicine and Sharjah, Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE; (M.Y.H.); (A.A.M.)
- Correspondence:
| | - Mahmood Yaseen Hachim
- College of Medicine and Sharjah, Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE; (M.Y.H.); (A.A.M.)
| | - Suad Hannawi
- Department of Rheumatology, Ministry of Health and Prevention, Dubai 1853, UAE;
| | - Azzam A. Maghazachi
- College of Medicine and Sharjah, Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE; (M.Y.H.); (A.A.M.)
| |
Collapse
|
24
|
Mimpen M, Smolders J, Hupperts R, Damoiseaux J. Natural killer cells in multiple sclerosis: A review. Immunol Lett 2020; 222:1-11. [PMID: 32113900 DOI: 10.1016/j.imlet.2020.02.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022]
Abstract
As the most common non-traumatic disabling disease among adolescents, multiple sclerosis (MS) is a devastating neurological inflammatory disease of the central nervous system. Research has not yet fully elucidated its pathogenesis, but it has shown MS to be a complex, multifactorial disease with many interplaying factors. One of these factors, natural killer (NK) cells, lymphocytes of the innate immune system, have recently gained attention due to the effects of daclizumab therapy, causing an expansion of the immunoregulatory subset of NK cells. Since then, NK cells and their relation to MS have been the focus of research, with many new findings being published in the last decade. In this review, NK cells are pictured as potent cytotoxic killers, as well as unique immune-regulators. Additionally, an overview of our current knowledge regarding NK cells in MS is given. The role of NK cells in MS is reviewed in the context of well-established environmental factors and current disease modifying therapies to gain further understanding of the pathogenesis and treatment options in MS.
Collapse
Affiliation(s)
- Max Mimpen
- School for Mental Health and Neuroscience, University of Maastricht, Maastricht The Netherlands
| | - Joost Smolders
- Department of Neurology, Erasmus University Medical Center, Rotterdam The Netherlands; Department of Neuroimmunology, Netherlands Institute for Neuroscience, Amsterdam The Netherlands
| | - Raymond Hupperts
- School for Mental Health and Neuroscience, University of Maastricht, Maastricht The Netherlands; Department of Neurology, Zuyderland Medical Center, Sittard The Netherlands
| | - Jan Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht The Netherlands.
| |
Collapse
|
25
|
Moreira A, Alari-Pahissa E, Munteis E, Vera A, Zabalza A, Llop M, Villarrubia N, Costa-García M, Álvarez-Lafuente R, Villar LM, López-Botet M, Martínez-Rodríguez JE. Adaptive Features of Natural Killer Cells in Multiple Sclerosis. Front Immunol 2019; 10:2403. [PMID: 31681293 PMCID: PMC6803486 DOI: 10.3389/fimmu.2019.02403] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/25/2019] [Indexed: 12/21/2022] Open
Abstract
Human cytomegalovirus (HCMV) has been recently related with a lower susceptibility to multiple sclerosis (MS). HCMV promotes an adaptive development of NK cells bearing the CD94/NKG2C receptor with a characteristic phenotypic and functional profile. NK cells are proposed to play an immunoregulatory role in MS, and expansion of the NKG2C(+) subset was recently associated with reduced disability progression. To further explore this issue, additional adaptive NK cell markers, i.e., downregulation of FcεRIγ chain (FcRγ) and PLZF transcription factor, as well as antibody-dependent NK cell activation were assessed in controls and MS patients considering HCMV serology and clinical features. In line with previous reports, increased proportions of NKG2C(+), FcRγ(-), and PLZF(-) CD56dim NK cells were found in HCMV(+) cases. However, PLZF(-) NK cells were detected uncoupled from other adaptive markers within the CD56bright subset from HCMV(+) cases and among CD56dim NK cells from HCMV(-) MS patients, suggesting an additional effect of HCMV-independent factors in PLZF downregulation. Interferon-β therapy was associated with lower proportions of FcRγ(-) CD56dim NK cells in HCMV(+) and increased PLZF(-) CD56bright NK cells in HCMV(-) patients, pointing out to an influence of the cytokine on the expression of adaptive NK cell-associated markers. In addition, proportions of NKG2C(+) and FcRγ(-) NK cells differed in progressive MS patients as compared to controls and other clinical forms. Remarkably, an adaptive NK cell phenotype did not directly correlate with enhanced antibody-triggered degranulation and TNFα production in MS in contrast to controls. Altogether, our results provide novel insights into the putative influence of HCMV and adaptive NK cells in MS.
Collapse
Affiliation(s)
- Antía Moreira
- Neurology Department, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Neurology Department, Althaia, Xarxa Assistencial i Universitària de Manresa, Manresa, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Elvira Munteis
- Neurology Department, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Andrea Vera
- Neurology Department, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Ana Zabalza
- Neurology Department, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Mireia Llop
- Neurology Department, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Noelia Villarrubia
- Immunology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | - Roberto Álvarez-Lafuente
- Neurology Service, Instituto de Investigación Sanitaria del Hospital Clínico de San Carlos, Madrid, Spain
| | - Luisa María Villar
- Immunology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Miguel López-Botet
- University Pompeu Fabra, Barcelona, Spain.,Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | | |
Collapse
|
26
|
NK Cell Induced T Cell Anergy Depends on GRAIL Expression. Cells 2019; 8:cells8080790. [PMID: 31362466 PMCID: PMC6721544 DOI: 10.3390/cells8080790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 12/24/2022] Open
Abstract
NK cells (natural killer cells) being a part of the innate immune system have been shown to be involved in immunoregulation of autoimmune diseases. Previously we have shown that HINT1/Hsp70 treatment induced regulatory NK cells ameliorating experimental autoimmune encephalomyelitis (EAE) course and CD4+ T cells proliferation. NK cells were isolated from mice treated with HINT1/Hsp70 and co-cultured with proteolipid protein (PLP)-stimulated CD4+ T cells isolated from EAE mice. Cell proliferation was assessed by thymidine uptake, cytotoxicity by lactate dehydrogenase (LDH) release assay and fluorescence activated cell sorting (FACS) analysis, protein expression by Western blot, mRNA by quantitative RT-PCR. Gene related to anergy in lymphocytes (GRAIL) expression was downregulated by specific siRNA and GRAIL overexpression was induced by pcDNA-GRAIL transfection. HINT1/Hsp70 pretreatment of EAE SJL/J mice ameliorated EAE course, suppressed PLP-induced T cell proliferation by enhancing T cell expression of GRAIL as GRAIL downregulation restored T cell proliferation. HINT1/Hsp70 treatment induced immunoregulatory NK cells which inhibited PLP-stimulated T cell proliferation not depending on T cell necrosis and apoptosis. This immunoregulatory NK cell function depended on NK cell expression of GRAIL as GRAIL downregulation diminished inhibition of NK cell suppression of T cell proliferation. Similarly GRAIL overexpression in NK cells induced their regulatory function. HINT1/Hsp70 treatment generated regulatory NK cells characterized by expression of GRAIL.
Collapse
|
27
|
Van Kaer L, Postoak JL, Wang C, Yang G, Wu L. Innate, innate-like and adaptive lymphocytes in the pathogenesis of MS and EAE. Cell Mol Immunol 2019; 16:531-539. [PMID: 30874627 PMCID: PMC6804597 DOI: 10.1038/s41423-019-0221-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/22/2019] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) in which the immune system damages the protective insulation surrounding the nerve fibers that project from neurons. A hallmark of MS and its animal model, experimental autoimmune encephalomyelitis (EAE), is autoimmunity against proteins of the myelin sheath. Most studies in this field have focused on the roles of CD4+ T lymphocytes, which form part of the adaptive immune system as both mediators and regulators in disease pathogenesis. Consequently, the treatments for MS often target the inflammatory CD4+ T-cell responses. However, many other lymphocyte subsets contribute to the pathophysiology of MS and EAE, and these subsets include CD8+ T cells and B cells of the adaptive immune system, lymphocytes of the innate immune system such as natural killer cells, and subsets of innate-like T and B lymphocytes such as γδ T cells, natural killer T cells, and mucosal-associated invariant T cells. Several of these lymphocyte subsets can act as mediators of CNS inflammation, whereas others exhibit immunoregulatory functions in disease. Importantly, the efficacy of some MS treatments might be mediated in part by effects on lymphocytes other than CD4+ T cells. Here we review the contributions of distinct subsets of lymphocytes on the pathogenesis of MS and EAE, with an emphasis on lymphocytes other than CD4+ T cells. A better understanding of the distinct lymphocyte subsets that contribute to the pathophysiology of MS and its experimental models will inform the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| | - Joshua L Postoak
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Chuan Wang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Guan Yang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Lan Wu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| |
Collapse
|
28
|
Li H, Chen L, Ma X, Cui P, Lang W, Hao J. Shared Gene Expression Between Multiple Sclerosis and Ischemic Stroke. Front Genet 2019; 9:598. [PMID: 30809253 PMCID: PMC6379658 DOI: 10.3389/fgene.2018.00598] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/15/2018] [Indexed: 01/22/2023] Open
Abstract
Patients with multiple sclerosis (MS) appear to have an increased risk of ischemic stroke (IS). Although MS and IS have very different phenotypes, gene-based and pathway-based analyses of large-scale genome-wide association studies (GWAS) have increasingly enhanced our understanding of these two diseases. Whether there are common molecular mechanisms connecting MS and IS is still unclear. Here, we describe the outcome of gene-based test and pathway-based analysis of GWAS datasets that explored potential gene expression links between MS and IS. After identifying significant gene sets individually of MS and IS, we performed pathway-based analysis in four biological pathway databases (KEGG, PANTHER, REACTOME, and WikiPathways) and GO categories. We discovered that there were 9 shared pathways between MS and IS in KEGG, 2 in PANTHER, 14 in REACTOME, 1 in WikiPathways, and 194 in GO annotations (p < 0.05). These results provide an improved understanding about possible shared mechanisms and treatments strategies for MS and IS. They also provide some basis for further studies of how these two diseases are linked at the molecular level.
Collapse
Affiliation(s)
- He Li
- Department of Neurology and Tianjin Neurological Institute, General Hospital, Tianjin Medical University, Tianjin, China.,Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Ministry of Education and Tianjin City, Tianjin, China
| | - Lin Chen
- Department of Neurology and Tianjin Neurological Institute, General Hospital, Tianjin Medical University, Tianjin, China.,Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Ministry of Education and Tianjin City, Tianjin, China
| | - Xiaofeng Ma
- Department of Neurology and Tianjin Neurological Institute, General Hospital, Tianjin Medical University, Tianjin, China.,Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Ministry of Education and Tianjin City, Tianjin, China
| | - Pan Cui
- Department of Neurology and Tianjin Neurological Institute, General Hospital, Tianjin Medical University, Tianjin, China.,Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Ministry of Education and Tianjin City, Tianjin, China
| | - Wenjing Lang
- Department of Neurology and Tianjin Neurological Institute, General Hospital, Tianjin Medical University, Tianjin, China.,Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Ministry of Education and Tianjin City, Tianjin, China
| | - Junwei Hao
- Department of Neurology and Tianjin Neurological Institute, General Hospital, Tianjin Medical University, Tianjin, China.,Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Ministry of Education and Tianjin City, Tianjin, China
| |
Collapse
|
29
|
Laroni A. Enhancing natural killer cells is beneficial in multiple sclerosis - Yes. Mult Scler 2018; 25:510-512. [PMID: 30421641 DOI: 10.1177/1352458518800776] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Alice Laroni
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Science and Center of Excellence for Biomedical Research, University of Genova, Genova, Italy/IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
30
|
Darlington PJ, Stopnicki B, Touil T, Doucet JS, Fawaz L, Roberts ME, Boivin MN, Arbour N, Freedman MS, Atkins HL, Bar-Or A. Natural Killer Cells Regulate Th17 Cells After Autologous Hematopoietic Stem Cell Transplantation for Relapsing Remitting Multiple Sclerosis. Front Immunol 2018; 9:834. [PMID: 29867923 PMCID: PMC5951114 DOI: 10.3389/fimmu.2018.00834] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/05/2018] [Indexed: 12/25/2022] Open
Abstract
In autoimmunity, the balance of different helper T (Th) cell subsets can influence the tissue damage caused by autoreactive T cells. Pro-inflammatory Th1 and Th17 T cells are implicated as mediators of several human autoimmune conditions such as multiple sclerosis (MS). Autologous hematopoietic stem cell transplantation (aHSCT) has been tested in phase 2 clinical trials for MS patients with aggressive disease. Abrogation of new clinical relapses and brain lesions can be seen after ablative aHSCT, accompanied by significant reductions in Th17, but not Th1, cell populations and activity. The cause of this selective decrease in Th17 cell responses following ablative aHSCT is not completely understood. We identified an increase in the kinetics of natural killer (NK) cell reconstitution, relative to CD4+ T cells, in MS patients post-aHSCT, resulting in an increased NK cell:CD4+ T cell ratio that correlated with the degree of decrease in Th17 responses. Ex vivo removal of NK cells from post-aHSCT peripheral blood mononuclear cells resulted in higher Th17 cell responses, indicating that NK cells can regulate Th17 activity. NK cells were also found to be cytotoxic to memory Th17 cells, and this toxicity is mediated through NKG2D-dependent necrosis. Surprisingly, NK cells induced memory T cells to secrete more IL-17A. This was preceded by an early rise in T cell expression of RORC and IL17A mRNA, and could be blocked with neutralizing antibodies against CD58, a costimulatory receptor expressed on NK cells. Thus, NK cells provide initial co-stimulation that supports the induction of a Th17 response, followed by NKG2D-dependent cytotoxicity that limits these cells. Together these data suggest that rapid reconstitution of NK cells following aHSCT contribute to the suppression of the re-emergence of Th17 cells. This highlights the importance of NK cells in shaping the reconstituting immune system following aHSCT in MS patients.
Collapse
Affiliation(s)
- Peter J Darlington
- Departments of Exercise Science and Biology, PERFORM Centre, Concordia University, Montreal, QC, Canada
| | - Brandon Stopnicki
- Departments of Exercise Science and Biology, PERFORM Centre, Concordia University, Montreal, QC, Canada
| | - Tarik Touil
- Neuroimmunology Unit, McGill University and Montreal Neurological Institute, Montreal, QC, Canada
| | - Jean-Sebastien Doucet
- Neuroimmunology Unit, McGill University and Montreal Neurological Institute, Montreal, QC, Canada
| | - Lama Fawaz
- Neuroimmunology Unit, McGill University and Montreal Neurological Institute, Montreal, QC, Canada
| | - Morgan E Roberts
- Neuroimmunology Unit, McGill University and Montreal Neurological Institute, Montreal, QC, Canada
| | - Marie-Noëlle Boivin
- Neuroimmunology Unit, McGill University and Montreal Neurological Institute, Montreal, QC, Canada.,Clinical Biological Imaging and Genetic Repository, McGill University, Montreal, QC, Canada
| | - Nathalie Arbour
- Department of Neurosciences, Université de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Mark S Freedman
- Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Harold L Atkins
- Blood and Marrow Transplant Program, Ottawa General Hospital, Ottawa, ON, Canada
| | - Amit Bar-Or
- Neuroimmunology Unit, McGill University and Montreal Neurological Institute, Montreal, QC, Canada.,Center for Neuroinflammation and Experimental Therapeutics and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
31
|
Hammer A, Waschbisch A, Kuhbandner K, Bayas A, Lee DH, Duscha A, Haghikia A, Gold R, Linker RA. The NRF2 pathway as potential biomarker for dimethyl fumarate treatment in multiple sclerosis. Ann Clin Transl Neurol 2018; 5:668-676. [PMID: 29928650 PMCID: PMC5989754 DOI: 10.1002/acn3.553] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/29/2018] [Accepted: 02/17/2018] [Indexed: 12/11/2022] Open
Abstract
Objective Immunological studies have demonstrated a plethora of beneficial effects of dimethyl fumarate (DMF) on various cell types. However, the cellular and molecular targets are incompletely understood and response markers are scarce. Here, we focus on the relation between nuclear factor (erythroid‐derived 2)‐like 2 (NRF2) pathway induction under DMF therapy and the composition of the blood immune cell compartment and clinical efficacy in relapsing‐remitting multiple sclerosis (MS) patients. Methods We explored effects of DMF on peripheral immune cell subsets by flow cytometric and transcriptional analysis of serial blood samples obtained from 43 MS patients during the first year of therapy. Results Gene expression analysis proved activation of NRF2 signaling under DMF therapy that was paralleled by a temporal expansion of FoxP3+ regulatory T cells, CD56bright natural killer cells, plasmacytoid dendritic cells, and a decrease in CD8+ T cells, B cells, and type 1 myeloid dendritic cells. In a subgroup of 28 patients with completely available clinical data, individuals with higher levels of the NRF2 target gene NAD(P)H quinone dehydrogenase 1 (NQO1) 4–6 weeks after DMF therapy initiation were more likely to achieve no evidence of disease activity status 1 year later. The degree of NQO1 induction further correlated with patient age. Interpretation We demonstrate that positive effects of DMF on the clinical outcome are paralleled by induction of the antioxidant NRF2 transcriptional pathway and a shift toward regulatory immune cell subsets in the periphery. Our data identify a role of the NRF2 pathway as potential biomarker for DMF treatment in MS.
Collapse
Affiliation(s)
- Anna Hammer
- Department of Neurology University Hospital Erlangen Friedrich-Alexander-University Erlangen-Nürnberg Erlangen 91054 Germany
| | - Anne Waschbisch
- Department of Neurology University Hospital Erlangen Friedrich-Alexander-University Erlangen-Nürnberg Erlangen 91054 Germany.,Present address: Department of Neurology University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen Aachen 52074 Germany
| | - Kristina Kuhbandner
- Department of Neurology University Hospital Erlangen Friedrich-Alexander-University Erlangen-Nürnberg Erlangen 91054 Germany
| | - Antonios Bayas
- Department of Neurology Hospital Augsburg Augsburg 86156 Germany
| | - De-Hyung Lee
- Department of Neurology University Hospital Erlangen Friedrich-Alexander-University Erlangen-Nürnberg Erlangen 91054 Germany
| | - Alexander Duscha
- Department of Neurology Ruhr-University Bochum Bochum 44791 Germany
| | - Aiden Haghikia
- Department of Neurology Ruhr-University Bochum Bochum 44791 Germany
| | - Ralf Gold
- Department of Neurology Ruhr-University Bochum Bochum 44791 Germany
| | - Ralf A Linker
- Department of Neurology University Hospital Erlangen Friedrich-Alexander-University Erlangen-Nürnberg Erlangen 91054 Germany
| |
Collapse
|
32
|
Gianchecchi E, Delfino DV, Fierabracci A. NK cells in autoimmune diseases: Linking innate and adaptive immune responses. Autoimmun Rev 2018; 17:142-154. [PMID: 29180124 DOI: 10.1016/j.autrev.2017.11.018] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The pathogenesis of autoimmunity remains to be fully elucidated, although the contribution of genetic and environmental factors is generally recognized. Despite autoimmune conditions are principally due to T and B lymphocytes, NK cells also appear to play a role in the promotion and/or maintenance of altered adaptive immune responses or in peripheral tolerance mechanisms. Although NK cells are components of the innate immune system, they shows characteristics of the adaptive immune system, such as the expansion of pathogen-specific cells, the generation of long-lasting "memory" cells able to persist upon cognate antigen encounter, and the possibility to induce an increased secondary recall response to re-challenge. Human NK cells are generally identified as CD56+CD3-, conversely CD56+CD3+ cells represent a mixed population of NK-like T (NK T) cells and antigen-experienced T cells showing the up-regulation of several NK cell markers. CD56dim constitute about 90% of NK cells in the peripheral blood, they are mature and involved in cytotoxicity responses; CD56bright instead are more immature, mostly involved in cytokine production, having only a limited role in cytolytic responses, keen to leave the blood vessels as the principal population observed in lymph nodes. NK cells have been identified also in non-lymphoid tissues since, in pathologic conditions, they can quickly reach the target organs. A cross-talk between NK with dendritic cells and T cells is established throughout different receptor-ligand bindings. Several studies support the correlation between NK cell number and/or functional alterations, such as a defective cytotoxic activity and several autoimmune conditions. Among the different autoimmune pathologies and even within the same disease, NK cell function is significantly different either promoting or even protecting against the onset of the autoimmune condition. In this Review, we discuss recent literature supporting the role played by NK cells, as a bridge between innate and adaptive immunity, in the onset of autoimmune diseases.
Collapse
Affiliation(s)
- Elena Gianchecchi
- Type 1 Diabetes Centre, Infectivology and Clinical Trials Research Department, Children's Hospital Bambino Gesù, Rome, Italy
| | | | - Alessandra Fierabracci
- Type 1 Diabetes Centre, Infectivology and Clinical Trials Research Department, Children's Hospital Bambino Gesù, Rome, Italy.
| |
Collapse
|
33
|
Smith MD, Calabresi PA, Bhargava P. Dimethyl fumarate treatment alters NK cell function in multiple sclerosis. Eur J Immunol 2018; 48:380-383. [PMID: 29108094 PMCID: PMC7577262 DOI: 10.1002/eji.201747277] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/10/2017] [Accepted: 11/02/2017] [Indexed: 01/08/2023]
Abstract
Dimethyl fumarate (DMF) treatment in multiple sclerosis (MS) increased the proportion of immunoregulatory CD56bright NK cells and this change was proportional to reductions in CD8+ memory T cells. DMF and monomethyl fumarate (MMF) treatment in vitro had directs effects on NK cells and promoted degranulation and cytotoxicity.
Collapse
Affiliation(s)
- Matthew D Smith
- Division of Neuroimmunology and Neurological Infections, Johns Hopkins University, Baltimore, MD, USA
| | - Peter A Calabresi
- Division of Neuroimmunology and Neurological Infections, Johns Hopkins University, Baltimore, MD, USA
| | - Pavan Bhargava
- Division of Neuroimmunology and Neurological Infections, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
34
|
Baecher-Allan C, Kaskow BJ, Weiner HL. Multiple Sclerosis: Mechanisms and Immunotherapy. Neuron 2018; 97:742-768. [DOI: 10.1016/j.neuron.2018.01.021] [Citation(s) in RCA: 432] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/25/2017] [Accepted: 01/09/2018] [Indexed: 12/17/2022]
|
35
|
Pavelek Z, Vyšata O, Klímová B, Andrýs C, Vokurková D, Vališ M. Lymphocytes in the treatment with interferon beta-1 b. Mult Scler Relat Disord 2017; 18:29-32. [PMID: 29141817 DOI: 10.1016/j.msard.2017.08.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/18/2017] [Accepted: 08/31/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease affecting the central nervous system. One of the basic medications for the treatment of a clinically isolated syndrome (CIS) or relapsing-remitting MS is interferon beta (INFβ). Although the exact mechanism of its effects is unknown, the medication has an anti-inflammatory and immunomodulatory effect. The goal of this study was to determine the characters which are affected in patients treated with INFβ. METHODS A total of 97 patients (25 males and 72 females) were included into the study. Patients were treated by INFβ 1-b (subcutaneous injection, 250µg, each other day). Clinical evaluations were performed by an attending neurologist. Peripheral blood samples were obtained just prior to treatment and 5 years after INFβ 1-b. Statistical analysis and processing of the obtained data were performed by using a comprehensive statistical software package MATLAB®. RESULTS A significant decrease of the observed parameters after 5 years' of treatment (significant at the 1% significance level) was found in the absolute and relative CD69 count, absolute cytotoxic/suppressor T lymphocyte count, absolute total leukocyte count, absolute natural killer cells count. A significant decrease of the observed parameters after 5 years' of treatment (significant at the 5% significance level) was found in the absolute lymphocyte count, relative cytotoxic/suppressor T lymphocyte count, relative CD3+CD69+ count and absolute CD8+CD38+ count. CONCLUSION The treatment with interferon beta reduces clinical exacerbations in multiple sclerosis (MS) through several known immunomodulatory mechanisms. However, the exact mechanism of effect of this medication is not known. This study presents some parameters that were affected by the long-term INFβ treatment.
Collapse
Affiliation(s)
- Zbyšek Pavelek
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Hradec Králové, Sokolská 581, 500 05, Czech Republic.
| | - Oldřich Vyšata
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Hradec Králové, Sokolská 581, 500 05, Czech Republic
| | - Blanka Klímová
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Hradec Králové, Sokolská 581, 500 05, Czech Republic
| | - Ctirad Andrýs
- Department of Clinical Immunology and Allergology, University Hospital Hradec Králové, Hradec Králové, Sokolská 581, 500 05, Czech Republic
| | - Doris Vokurková
- Department of Clinical Immunology and Allergology, University Hospital Hradec Králové, Hradec Králové, Sokolská 581, 500 05, Czech Republic
| | - Martin Vališ
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Hradec Králové, Sokolská 581, 500 05, Czech Republic
| |
Collapse
|
36
|
NK cells of HIV-1-infected patients with poor CD4 + T-cell reconstitution despite suppressive HAART show reduced IFN-γ production and high frequency of autoreactive CD56 bright cells. Immunol Lett 2017; 190:185-193. [PMID: 28826739 DOI: 10.1016/j.imlet.2017.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/07/2017] [Accepted: 08/11/2017] [Indexed: 11/21/2022]
Abstract
HIV-1-infected patients failing to recover CD4+ T-cell count despite HAART (immunological non-responders, NRs), are at increased risk of disease progression and death. To better understand the NR status, we performed a comprehensive assessment of NK cells in NR patients as compared to immunologic responders. NRs exhibited an accumulation of CD56bright NK cells inversely correlated with CD4+ counts. Both CD56bright and CD56dim NK cells of NRs displayed unimpaired degranulation ability, but poorly responded to cytokine stimulation in terms of NKp44 up-regulation and IFN-γ production that may explain the susceptibility of NRs to infections and tumors. Notably, CD56bright NK cells from NRs showed higher cytotoxicity against autologous activated CD4+ T cells. Moreover, NRs had reduced Treg cell counts that showed an inverse correlation with autoreactive CD56bright cells. These data suggest that accumulation of CD56bright NK cells, possibly linked to decreased homeostatic control by Tregs, contributes to poor immune reconstitution in NRs.
Collapse
|
37
|
Posová H, Horáková D, Čapek V, Uher T, Hrušková Z, Havrdová E. Peripheral blood lymphocytes immunophenotyping predicts disease activity in clinically isolated syndrome patients. BMC Neurol 2017; 17:145. [PMID: 28754092 PMCID: PMC5534044 DOI: 10.1186/s12883-017-0915-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/10/2017] [Indexed: 12/20/2022] Open
Abstract
Background Clinically isolated syndrome (CIS) represents first neurological symptoms suggestive of demyelinating lesion in the central nervous system (CNS). Currently, there are no sufficient immunological or genetic markers predicting relapse and disability progression, nor there is evidence of the efficacy of registered disease modifying treatments (DMTs), such as intramuscular interferon beta1a. The aim of the study is to evaluate immunological predictors of a relapse or disability progression. Methods One hundred and eighty one patients with CIS were treated with interferon beta1a and followed over the period of 4 years. Lymphocyte subsets were analyzed by flow cytometry. A Kaplan-Meier estimator of survival probability was used to analyze prognosis. For statistical assessment only individual differences between baseline values and values at the time of relapse or confirmed disability progression were analysed. Results Higher levels of B lymphocytes predicted relapse-free status. On the other hand, a decrease of the naïve subset of cells (CD45RA+ in CD4+) after 12, 24, and 36 months of follow-up were associated with an increased risk of confirmed disability progression. Conclusion: Our data suggest that the quantification of lymphocyte subsets in patients after the first demyelinating event suggestive of MS may be an important biomarker.
Collapse
Affiliation(s)
- Helena Posová
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| | - Dana Horáková
- Department of Neurology and Centre of Clinical Neuroscience First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Václav Čapek
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Tomáš Uher
- Department of Neurology and Centre of Clinical Neuroscience First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Zdenka Hrušková
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Eva Havrdová
- Department of Neurology and Centre of Clinical Neuroscience First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
38
|
Medina S, Villarrubia N, Sainz de la Maza S, Lifante J, Costa-Frossard L, Roldán E, Picón C, Álvarez-Cermeño JC, Villar LM. Optimal response to dimethyl fumarate associates in MS with a shift from an inflammatory to a tolerogenic blood cell profile. Mult Scler 2017; 24:1317-1327. [PMID: 28653862 DOI: 10.1177/1352458517717088] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND The precise mechanism of action of dimethyl fumarate (DMF) treatment in MS remains unknown. OBJECTIVE To identify the changes in the blood lymphocyte profile of MS patients predicting no evidence of disease activity (NEDA) status after DMF treatment. METHODS We studied blood lymphocyte subsets of 64 MS patients treated with DMF at baseline and after 6 months of treatment by flow cytometry. NEDA (41 patients) or ongoing disease activity (ODA, 23 patients) were monitored after a year of follow-up. RESULTS During treatment, all patients experienced an increase in the naive T cells and a decrease in effector memory ones. However, only NEDA patients showed a significant reduction in central memory CD4+ and CD8+ T cells, memory B cells, CD4+ T cells producing interferon (IFN)-gamma, CD8+ T cells producing tumor necrosis factor-alpha (TNF-alpha), and IFN-gamma and B cells producing TNF-alpha. Additionally, they had an increase in regulatory CD56bright cells not observed in ODA group. After treatment, there was a negative correlation between CD56bright cells and CD8+ T cells producing IFN-gamma and TNF-alpha. CONCLUSION A pro-tolerogenic shift in the blood leukocyte profile associates with an optimal response to DMF in MS.
Collapse
Affiliation(s)
- Silvia Medina
- Servicio de Inmunología, Hospital Universitario Ramón y Cajal, Madrid, Spain; IRYCIS, Madrid, Spain; REEM, Barcelona, Spain
| | - Noelia Villarrubia
- Servicio de Inmunología, Hospital Universitario Ramón y Cajal, Madrid, Spain; IRYCIS, Madrid, Spain; REEM, Barcelona, Spain
| | - Susana Sainz de la Maza
- Servicio de Neurología, Hospital Universitario Ramón y Cajal, Madrid, Spain; IRYCIS, Madrid, Spain; REEM, Barcelona, Spain
| | - José Lifante
- Servicio de Inmunología, Hospital Universitario Ramón y Cajal, Madrid, Spain; IRYCIS, Madrid, Spain; REEM, Barcelona, Spain
| | - Lucienne Costa-Frossard
- Servicio de Neurología, Hospital Universitario Ramón y Cajal, Madrid, Spain; IRYCIS, Madrid, Spain; REEM, Barcelona, Spain
| | - Ernesto Roldán
- Servicio de Inmunología, Hospital Universitario Ramón y Cajal, Madrid, Spain; IRYCIS, Madrid, Spain; REEM, Barcelona, Spain
| | - Carmen Picón
- Servicio de Inmunología, Hospital Universitario Ramón y Cajal, Madrid, Spain; IRYCIS, Madrid, Spain; REEM, Barcelona, Spain
| | - José C Álvarez-Cermeño
- Servicio de Neurologia, Hospital Universitario Ramon y Cajal, Madrid, Spain; IRYCIS, Madrid, Spain; REEM, Barcelona, Spain; Department of Medicine, University of Alcala, Madrid, Spain
| | - Luisa M Villar
- Servicio de Inmunología, Hospital Universitario Ramón y Cajal, Madrid, Spain; IRYCIS, Madrid, Spain; REEM, Barcelona, Spain
| |
Collapse
|
39
|
Furber KL, Van Agten M, Evans C, Haddadi A, Doucette JR, Nazarali AJ. Advances in the treatment of relapsing-remitting multiple sclerosis: the role of pegylated interferon β-1a. Degener Neurol Neuromuscul Dis 2017; 7:47-60. [PMID: 30050377 PMCID: PMC6053102 DOI: 10.2147/dnnd.s71986] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is a progressive, neurodegenerative disease with unpredictable phases of relapse and remission. The cause of MS is unknown, but the pathology is characterized by infiltration of auto-reactive immune cells into the central nervous system (CNS) resulting in widespread neuroinflammation and neurodegeneration. Immunomodulatory-based therapies emerged in the 1990s and have been a cornerstone of disease management ever since. Interferon β (IFNβ) was the first biologic approved after demonstrating decreased relapse rates, disease activity and progression of disability in clinical trials. However, frequent dosing schedules have limited patient acceptance for long-term therapy. Pegylation, the process by which molecules of polyethylene glycol are covalently linked to a compound, has been utilized to increase the half-life of IFNβ and decrease the frequency of administration required. To date, there has been one clinical trial evaluating the efficacy of pegylated IFN. The purpose of this article is to provide an overview of the role of IFN in the treatment of MS and evaluate the available evidence for pegylated IFN therapy in MS.
Collapse
Affiliation(s)
- Kendra L Furber
- Laboratory of Molecular Cell Biology, .,College of Pharmacy and Nutrition, .,Neuroscience Research Cluster, University of Saskatchewan,
| | - Marina Van Agten
- Laboratory of Molecular Cell Biology, .,College of Pharmacy and Nutrition, .,Neuroscience Research Cluster, University of Saskatchewan,
| | - Charity Evans
- College of Pharmacy and Nutrition, .,Cameco Multiple Sclerosis Neuroscience Research Center, City Hospital,
| | | | - J Ronald Doucette
- Neuroscience Research Cluster, University of Saskatchewan, .,Cameco Multiple Sclerosis Neuroscience Research Center, City Hospital, .,Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Adil J Nazarali
- Laboratory of Molecular Cell Biology, .,College of Pharmacy and Nutrition, .,Neuroscience Research Cluster, University of Saskatchewan, .,Cameco Multiple Sclerosis Neuroscience Research Center, City Hospital,
| |
Collapse
|
40
|
Abstract
Multiple sclerosis (MS) is a chronic disease of the central nervous system (CNS) characterized by loss of motor and sensory function that results from immune-mediated inflammation, demyelination, and subsequent axonal damage. Clinically, most MS patients experience recurrent episodes (relapses) of neurological impairment, but in most cases (60–80%) the course of the disease eventually becomes chronic and progressive, leading to cumulative motor, sensory, and visual disability, and cognitive deficits. The course of the disease is largely unpredictable and its clinical presentation is variable, but its predilection for certain parts of the CNS, which includes the optic nerves, the brain stem, cerebellum, and cervical spinal cord, provides a characteristic constellation of signs and symptoms. Several variants of MS have been nowadays defined with variable immunopathogenesis, course and prognosis. Many new treatments targeting the immune system have shown efficacy in preventing the relapses of MS and have been introduced to its management during the last decade.
Collapse
|
41
|
Caruana P, Lemmert K, Ribbons K, Lea R, Lechner-Scott J. Natural killer cell subpopulations are associated with MRI activity in a relapsing-remitting multiple sclerosis patient cohort from Australia. Mult Scler 2016; 23:1479-1487. [DOI: 10.1177/1352458516679267] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: The importance of the innate immune system in multiple sclerosis (MS) is increasingly recognized and the role of natural killer (NK) cells in controlling autoimmunity may be an important modulator of disease activity. Objective: To examine NK subsets in MS patients on different treatments and to evaluate the role of NK subsets as indicators for disease activity. Methods: We measured NK subset levels in blood obtained from 110 relapsing-remitting MS patients. Patients were either off treatment or on treatment with natalizumab, fingolimod, glatiramer acetate or beta-interferon. Disease activity was defined according to ‘No Evidence of Disease Activity’ (NEDA) criteria within an observation period of up to 2.4 years. The mean NK subset levels were compared among treatment groups using multivariate analysis of variance (ANOVA) and association analysis with disease activity performed using multi-factor logistic regression. Results: Our analysis revealed differences in NK cells and subsets on treatment compared to off treatment ( p < 0.0005). A high proportion of bright NK cells were significantly associated with stable magnetic resonance imaging (MRI) imaging after adjusting for treatment effects ( p < 0.05). Conclusion: The independent association of NK subsets with MRI stability needs to be confirmed in prospective studies to test their usefulness in predicting disease activity in MS patients.
Collapse
Affiliation(s)
- P Caruana
- Department of Neurology, John Hunter Hospital, New Lambton, NSW, Australia; Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - K Lemmert
- Pathology North, New Lambton, NSW, Australia
| | - K Ribbons
- Department of Neurology, John Hunter Hospital, New Lambton, NSW, Australia
| | - R Lea
- Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - J Lechner-Scott
- Department of Neurology, John Hunter Hospital, New Lambton, NSW, Australia; Hunter Medical Research Institute, New Lambton, NSW, Australia
| |
Collapse
|
42
|
Laroni A, Armentani E, Kerlero de Rosbo N, Ivaldi F, Marcenaro E, Sivori S, Gandhi R, Weiner HL, Moretta A, Mancardi GL, Uccelli A. Dysregulation of regulatory CD56 bright NK cells/T cells interactions in multiple sclerosis. J Autoimmun 2016; 72:8-18. [DOI: 10.1016/j.jaut.2016.04.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/15/2016] [Accepted: 04/19/2016] [Indexed: 01/22/2023]
|
43
|
Hertwig L, Hamann I, Romero-Suarez S, Millward JM, Pietrek R, Chanvillard C, Stuis H, Pollok K, Ransohoff RM, Cardona AE, Infante-Duarte C. CX3CR1-dependent recruitment of mature NK cells into the central nervous system contributes to control autoimmune neuroinflammation. Eur J Immunol 2016; 46:1984-96. [PMID: 27325505 DOI: 10.1002/eji.201546194] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 04/28/2016] [Accepted: 06/13/2016] [Indexed: 12/12/2022]
Abstract
Fractalkine receptor (CX3CR1)-deficient mice develop very severe experimental autoimmune encephalomyelitis (EAE), associated with impaired NK cell recruitment into the CNS. Yet, the precise implications of NK cells in autoimmune neuroinflammation remain elusive. Here, we investigated the pattern of NK cell mobilization and the contribution of CX3CR1 to NK cell dynamics in the EAE. We show that in both wild-type and CX3CR1-deficient EAE mice, NK cells are mobilized from the periphery and accumulate in the inflamed CNS. However, in CX3CR1-deficient mice, the infiltrated NK cells displayed an immature phenotype contrasting with the mature infiltrates in WT mice. This shift in the immature/mature CNS ratio contributes to EAE exacerbation in CX3CR1-deficient mice, since transfer of mature WT NK cells prior to immunization exerted a protective effect and normalized the CNS NK cell ratio. Moreover, mature CD11b(+) NK cells show higher degranulation in the presence of autoreactive 2D2 transgenic CD4(+) T cells and kill these autoreactive cells more efficiently than the immature CD11b(-) fraction. Together, these data suggest a protective role of mature NK cells in EAE, possibly through direct modulation of T cells inside the CNS, and demonstrate that mature and immature NK cells are recruited into the CNS by distinct chemotactic signals.
Collapse
Affiliation(s)
- Laura Hertwig
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Isabell Hamann
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Silvina Romero-Suarez
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Jason M Millward
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Rebekka Pietrek
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Coralie Chanvillard
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Hanna Stuis
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Karolin Pollok
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany.,German Rheumatism Research Center, Germany and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Astrid E Cardona
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Carmen Infante-Duarte
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
44
|
Gao M, Yang Y, Li D, Ming B, Chen H, Sun Y, Xiao Y, Lai L, Zou H, Xu Y, Xiong P, Tan Z, Gong F, Zheng F. CD27 natural killer cell subsets play different roles during the pre-onset stage of experimental autoimmune encephalomyelitis. Innate Immun 2016; 22:395-404. [DOI: 10.1177/1753425916658111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/14/2016] [Indexed: 12/28/2022] Open
Abstract
NK cells participate in the development of human multiple sclerosis (MS) and mouse experimental autoimmune encephalomyelitis (EAE), but the roles of different NK cell subsets in disease onset remain poorly understood. In this study, murine NK cells were divided into CD27high and CD27low/− subsets. The CD27high subset was decreased and the CD27low/− subset was increased in lymphoid organs during the pre-onset stage of EAE. Compared with the counterpart in naïve mice, the CD27high subset showed lower expression of Ly49D, Ly49H and NKG2D, and less production of IFN-γ, whereas the CD27low/− subset showed similar expression of the above mentioned surface receptors but higher cytotoxic activity in EAE mice. Compared with the CD27high subset, the CD27low/− subset exhibited increased promotion of DC maturation and no significant inhibition of T cells proliferation and Th17 cells differentiation in vitro. Additionally, adoptive transfer of the CD27low/− subset, but not the CD27high subset, exacerbated the severity of EAE. Collectively, our data suggest the CD27 NK cell subsets play different roles in controlling EAE onset, which provide a new understanding for the regulation of NK cell subsets in early autoimmune disease.
Collapse
Affiliation(s)
- Ming Gao
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Yang
- Division of Viral Pathology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Daling Li
- Department of Anesthesiology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingxia Ming
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huoying Chen
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Sun
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifan Xiao
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Lai
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huijuan Zou
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Xu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Xiong
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Tan
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feili Gong
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Zheng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
45
|
Bruder Costa J, Dufeu-Duchesne T, Leroy V, Bertucci I, Bouvier-Alias M, Pouget N, Brevot-Lutton O, Bourliere M, Zoulim F, Plumas J, Aspord C, ANRS HB06 PEGAN study group. Pegylated Interferon α-2a Triggers NK-Cell Functionality and Specific T-Cell Responses in Patients with Chronic HBV Infection without HBsAg Seroconversion. PLoS One 2016; 11:e0158297. [PMID: 27348813 PMCID: PMC4922676 DOI: 10.1371/journal.pone.0158297] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/13/2016] [Indexed: 02/06/2023] Open
Abstract
Pegylated interferon α-2a (Peg-IFN-α) represents a therapeutic alternative to the prolonged use of nucleos(t)ide analog (NA) in chronic hepatitis B (CHB) infection. The mechanisms leading to a positive clinical outcome remain unclear. As immune responses are critical for virus control, we investigated the effects of Peg-IFN-α on both innate and adaptive immunity, and related it to the clinical evolution. The phenotypic and functional features of the dendritic cells (DCs), natural killer (NK) cells and HBV-specific CD4/CD8 T cells were analyzed in HBeAg-negative CHB patients treated for 48-weeks with NA alone or together with Peg-IFN-α, before, during and up to 2-years after therapy. Peg-IFN-α induced an early activation of DCs, a potent expansion of the CD56bright NK subset, and enhanced the activation and functionality of the CD56dim NK subset. Peg-IFN-α triggered an increase in the frequencies of Th1- and Th17-oriented HBV-specific CD4/CD8 T cells. Peg-IFN-α reversed the unresponsiveness of patients to a specific stimulation. Most of the parameters returned to baseline after the stop of Peg-IFN-α therapy. Peg-IFN-α impacts both innate and adaptive immunity, overcoming dysfunctional immune responses in CHB patients. These modulations were not associated with seroconversion, which questioned the benefit of the add-on Peg-IFN-α treatment.
Collapse
Affiliation(s)
- Juliana Bruder Costa
- University Grenoble Alpes, Grenoble, F-38041 France; INSERM, U1209, Immunobiology and Immunotherapy of Chronic Deseases, La Tronche, F-38706 France
- CHU Grenoble, Michallon Hospital, Hepato-gastroenterology unit, Grenoble, F-38043 France
| | - Tania Dufeu-Duchesne
- CHU Grenoble, Michallon Hospital, Hepato-gastroenterology unit, Grenoble, F-38043 France
- University Grenoble Alpes, Grenoble, F-38041 France; INSERM, U1209, Analytic Immunology of chronic pathologies, La Tronche, F-38706 France
| | - Vincent Leroy
- CHU Grenoble, Michallon Hospital, Hepato-gastroenterology unit, Grenoble, F-38043 France
- University Grenoble Alpes, Grenoble, F-38041 France; INSERM, U1209, Analytic Immunology of chronic pathologies, La Tronche, F-38706 France
| | - Inga Bertucci
- ANRS (France REcherche Nord & sud Sida-hiv Hépatites: FRENSH), Paris, France
| | - Magali Bouvier-Alias
- Department of Virology, Henri Mondor Hospital, University Paris-Est and Inserm U955, Creteil, France
| | - Noelle Pouget
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Institut Pierre Louis d’épidémiologie et de Santé Publique (IPLESP UMRS 1136), 75012, Paris, France
| | - Ophelie Brevot-Lutton
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Institut Pierre Louis d’épidémiologie et de Santé Publique (IPLESP UMRS 1136), 75012, Paris, France
| | - Marc Bourliere
- Hepato-gastroenterology department Hospital Saint Joseph, Marseille, 13008 France
| | - Fabien Zoulim
- INSERM U1052—CNRS 5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- Hepatology Department, Hospices Civils de Lyon, Lyon, France
- Université de Lyon, Lyon, France
| | - Joel Plumas
- University Grenoble Alpes, Grenoble, F-38041 France; INSERM, U1209, Immunobiology and Immunotherapy of Chronic Deseases, La Tronche, F-38706 France
- EFS Rhone-Alpes, R&D Laboratory, La Tronche, F-38701 France
- * E-mail: (CA); (JP)
| | - Caroline Aspord
- University Grenoble Alpes, Grenoble, F-38041 France; INSERM, U1209, Immunobiology and Immunotherapy of Chronic Deseases, La Tronche, F-38706 France
- EFS Rhone-Alpes, R&D Laboratory, La Tronche, F-38701 France
- * E-mail: (CA); (JP)
| | | |
Collapse
|
46
|
Impaired NK-mediated regulation of T-cell activity in multiple sclerosis is reconstituted by IL-2 receptor modulation. Proc Natl Acad Sci U S A 2016; 113:E2973-82. [PMID: 27162345 DOI: 10.1073/pnas.1524924113] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease of the central nervous system (CNS) resulting from a breakdown in peripheral immune tolerance. Although a beneficial role of natural killer (NK)-cell immune-regulatory function has been proposed, it still needs to be elucidated whether NK cells are functionally impaired as part of the disease. We observed NK cells in active MS lesions in close proximity to T cells. In accordance with a higher migratory capacity across the blood-brain barrier, CD56(bright) NK cells represent the major intrathecal NK-cell subset in both MS patients and healthy individuals. Investigating the peripheral blood and cerebrospinal fluid of MS patients treated with natalizumab revealed that transmigration of this subset depends on the α4β1 integrin very late antigen (VLA)-4. Although no MS-related changes in the migratory capacity of NK cells were observed, NK cells derived from patients with MS exhibit a reduced cytolytic activity in response to antigen-activated CD4(+) T cells. Defective NK-mediated immune regulation in MS is mainly attributable to a CD4(+) T-cell evasion caused by an impaired DNAX accessory molecule (DNAM)-1/CD155 interaction. Both the expression of the activating NK-cell receptor DNAM-1, a genetic alteration consistently found in MS-association studies, and up-regulation of the receptor's ligand CD155 on CD4(+) T cells are reduced in MS. Therapeutic immune modulation of IL-2 receptor restores impaired immune regulation in MS by increasing the proportion of CD155-expressing CD4(+) T cells and the cytolytic activity of NK cells.
Collapse
|
47
|
Chalan P, Bijzet J, Kroesen BJ, Boots AMH, Brouwer E. Altered Natural Killer Cell Subsets in Seropositive Arthralgia and Early Rheumatoid Arthritis Are Associated with Autoantibody Status. J Rheumatol 2016; 43:1008-16. [PMID: 27036380 DOI: 10.3899/jrheum.150644] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2016] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The role of natural killer (NK) cells in the immunopathogenesis of rheumatoid arthritis (RA) is unclear. Therefore, numerical and functional alterations of CD56(dim) and CD56(bright) NK cells in the early stages of RA development were studied. METHODS Whole blood samples from newly diagnosed, treatment-naive, seropositive (SP) and seronegative (SN) patients with RA (SP RA, n = 45 and SN RA, n = 12), patients with SP arthralgia (n = 30), and healthy controls (HC, n = 41) were assessed for numbers and frequencies of T cells, B cells, and NK cells. SP status was defined as positive for anticyclic citrullinated peptide antibodies (anti-CCP) and/or rheumatoid factor (RF). Peripheral blood mononuclear cells were used for further analysis of NK cell phenotype and function. RESULTS Total NK cell numbers were decreased in SP RA and SP arthralgia but not in SN RA. Also, NK cells from SP RA showed a decreased potency for interferon-γ (IFN-γ) production. A selective decrease of CD56(dim), but not CD56(bright), NK cells in SP RA and SP arthralgia was observed. This prompted investigation of CD16 (FcγRIIIa) triggering in NK cell apoptosis and cytokine expression. In vitro, CD16 triggering induced apoptosis of CD56(dim) but not CD56(bright) NK cells from HC. This apoptosis was augmented by adding interleukin 2 (IL-2). Also, CD16 triggering in the presence of IL-2 stimulated IFN-γ and tumor necrosis factor-α expression by CD56(dim) NK cells. CONCLUSION The decline of CD56(dim) NK cells in SP arthralgia and SP RA and the in vitro apoptosis of CD56(dim) NK cells upon CD16 triggering suggest a functional role of immunoglobulin G-containing autoantibody (anti-CCP and/or RF)-immune complexes in this process. Moreover, CD16-triggered cytokine production by CD56(dim) NK cells may contribute to systemic inflammation as seen in SP arthralgia and SP RA.
Collapse
Affiliation(s)
- Paulina Chalan
- From the Department of Rheumatology and Clinical Immunology, and the Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.P. Chalan, PhD, Department of Rheumatology and Clinical Immunology, University of Groningen; J. Bijzet, BS, Department of Rheumatology and Clinical Immunology, University of Groningen; E. Brouwer, MD, PhD, Department of Rheumatology and Clinical Immunology, University of Groningen; A.M. Boots, Prof., Department of Rheumatology and Clinical Immunology, University of Groningen; B.J. Kroesen, PhD, Department of Laboratory Medicine, University of Groningen
| | - Johan Bijzet
- From the Department of Rheumatology and Clinical Immunology, and the Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.P. Chalan, PhD, Department of Rheumatology and Clinical Immunology, University of Groningen; J. Bijzet, BS, Department of Rheumatology and Clinical Immunology, University of Groningen; E. Brouwer, MD, PhD, Department of Rheumatology and Clinical Immunology, University of Groningen; A.M. Boots, Prof., Department of Rheumatology and Clinical Immunology, University of Groningen; B.J. Kroesen, PhD, Department of Laboratory Medicine, University of Groningen
| | - Bart-Jan Kroesen
- From the Department of Rheumatology and Clinical Immunology, and the Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.P. Chalan, PhD, Department of Rheumatology and Clinical Immunology, University of Groningen; J. Bijzet, BS, Department of Rheumatology and Clinical Immunology, University of Groningen; E. Brouwer, MD, PhD, Department of Rheumatology and Clinical Immunology, University of Groningen; A.M. Boots, Prof., Department of Rheumatology and Clinical Immunology, University of Groningen; B.J. Kroesen, PhD, Department of Laboratory Medicine, University of Groningen
| | - Annemieke M H Boots
- From the Department of Rheumatology and Clinical Immunology, and the Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.P. Chalan, PhD, Department of Rheumatology and Clinical Immunology, University of Groningen; J. Bijzet, BS, Department of Rheumatology and Clinical Immunology, University of Groningen; E. Brouwer, MD, PhD, Department of Rheumatology and Clinical Immunology, University of Groningen; A.M. Boots, Prof., Department of Rheumatology and Clinical Immunology, University of Groningen; B.J. Kroesen, PhD, Department of Laboratory Medicine, University of Groningen.
| | - Elisabeth Brouwer
- From the Department of Rheumatology and Clinical Immunology, and the Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.P. Chalan, PhD, Department of Rheumatology and Clinical Immunology, University of Groningen; J. Bijzet, BS, Department of Rheumatology and Clinical Immunology, University of Groningen; E. Brouwer, MD, PhD, Department of Rheumatology and Clinical Immunology, University of Groningen; A.M. Boots, Prof., Department of Rheumatology and Clinical Immunology, University of Groningen; B.J. Kroesen, PhD, Department of Laboratory Medicine, University of Groningen
| |
Collapse
|
48
|
The low EOMES/TBX21 molecular phenotype in multiple sclerosis reflects CD56+ cell dysregulation and is affected by immunomodulatory therapies. Clin Immunol 2016; 163:96-107. [PMID: 26762769 DOI: 10.1016/j.clim.2015.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 12/18/2015] [Accepted: 12/30/2015] [Indexed: 01/08/2023]
Abstract
Multiple Sclerosis (MS) is an autoimmune disease treated by therapies targeting peripheral blood cells. We previously identified that expression of two MS-risk genes, the transcription factors EOMES and TBX21 (ET), was low in blood from MS and stable over time. Here we replicated the low ET expression in a new MS cohort (p<0.0007 for EOMES, p<0.028 for TBX21) and demonstrate longitudinal stability (p<10(-4)) and high heritability (h(2)=0.48 for EOMES) for this molecular phenotype. Genes whose expression correlated with ET, especially those controlling cell migration, further defined the phenotype. CD56+ cells and other subsets expressed lower levels of Eomes or T-bet protein and/or were under-represented in MS. EOMES and TBX21 risk SNP genotypes, and serum EBNA-1 titres were not correlated with ET expression, but HLA-DRB1*1501 genotype was. ET expression was normalised to healthy control levels with natalizumab, and was highly variable for glatiramer acetate, fingolimod, interferon-beta, dimethyl fumarate.
Collapse
|
49
|
Edwards SC, McGinley AM, McGuinness NC, Mills KHG. γδ T Cells and NK Cells - Distinct Pathogenic Roles as Innate-Like Immune Cells in CNS Autoimmunity. Front Immunol 2015; 6:455. [PMID: 26441960 PMCID: PMC4561808 DOI: 10.3389/fimmu.2015.00455] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/24/2015] [Indexed: 12/31/2022] Open
Affiliation(s)
- Sarah C Edwards
- Immune Regulation Research Group, Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin , Dublin , Ireland
| | - Aoife M McGinley
- Immune Regulation Research Group, Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin , Dublin , Ireland
| | - Niamh C McGuinness
- Immune Regulation Research Group, Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin , Dublin , Ireland ; Trinity College Institute of Neuroscience, Trinity College Dublin , Dublin , Ireland
| | - Kingston H G Mills
- Immune Regulation Research Group, Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin , Dublin , Ireland
| |
Collapse
|
50
|
Rodríguez-Martín E, Picón C, Costa-Frossard L, Alenda R, Sainz de la Maza S, Roldán E, Espiño M, Villar LM, Álvarez-Cermeño JC. Natural killer cell subsets in cerebrospinal fluid of patients with multiple sclerosis. Clin Exp Immunol 2015; 180:243-9. [PMID: 25565222 DOI: 10.1111/cei.12580] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/25/2014] [Indexed: 01/12/2023] Open
Abstract
Changes in blood natural killer (NK) cells, important players of the immune innate system, have been described in multiple sclerosis (MS). We studied percentages and total cell counts of different effector and regulatory NK cells in cerebrospinal fluid (CSF) of MS patients and other neurological diseases to gain clearer knowledge of the role of these cells in neuroinflammation. NK cell subsets were assessed by flow cytometry in CSF of 85 consecutive MS patients (33 with active disease and 52 with stable MS), 16 with other inflammatory diseases of the central nervous system (IND) and 17 with non-inflammatory neurological diseases (NIND). MS patients showed a decrease in percentages of different CSF NK subpopulations compared to the NIND group. However, absolute cell counts showed a significant increase of all NK subsets in MS and IND patients, revealing that the decrease in percentages does not reflect a real reduction of these immune cells. Remarkably, MS patients showed a significant increase of regulatory/effector (CD56(bright) /CD56(dim) ) NK ratio compared to IND and NIND groups. In addition, MS activity associated with an expansion of NK T cells. These data show that NK cell subsets do not increase uniformly in all inflammatory neurological disease and suggest strongly that regulatory CD56(bright) and NK T cells may arise in CSF of MS patients as an attempt to counteract the CNS immune activation characteristic of the disease.
Collapse
Affiliation(s)
- E Rodríguez-Martín
- Department of Immunology, Multiple Sclerosis Unit, Hospital Ramón y Cajal, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS, Madrid, Spain; Red Española de Esclerosis Múltiple, REEM, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|