1
|
Romme CJA, Stanley EAM, Mouches P, Wilms M, Pike GB, Metz LM, Forkert ND. Analysis and visualization of the effect of multiple sclerosis on biological brain age. Front Neurol 2024; 15:1423485. [PMID: 39450049 PMCID: PMC11499186 DOI: 10.3389/fneur.2024.1423485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction The rate of neurodegeneration in multiple sclerosis (MS) is an important biomarker for disease progression but can be challenging to quantify. The brain age gap, which quantifies the difference between a patient's chronological and their estimated biological brain age, might be a valuable biomarker of neurodegeneration in patients with MS. Thus, the aim of this study was to investigate the value of an image-based prediction of the brain age gap using a deep learning model and compare brain age gap values between healthy individuals and patients with MS. Methods A multi-center dataset consisting of 5,294 T1-weighted magnetic resonance images of the brain from healthy individuals aged between 19 and 89 years was used to train a convolutional neural network (CNN) for biological brain age prediction. The trained model was then used to calculate the brain age gap in 195 patients with relapsing remitting MS (20-60 years). Additionally, saliency maps were generated for healthy subjects and patients with MS to identify brain regions that were deemed important for the brain age prediction task by the CNN. Results Overall, the application of the CNN revealed accelerated brain aging with a larger brain age gap for patients with MS with a mean of 6.98 ± 7.18 years in comparison to healthy test set subjects (0.23 ± 4.64 years). The brain age gap for MS patients was weakly to moderately correlated with age at disease onset (ρ = -0.299, p < 0.0001), EDSS score (ρ = 0.206, p = 0.004), disease duration (ρ = 0.162, p = 0.024), lesion volume (ρ = 0.630, p < 0.0001), and brain parenchymal fraction (ρ = -0.718, p < 0.0001). The saliency maps indicated significant differences in the lateral ventricle (p < 0.0001), insula (p < 0.0001), third ventricle (p < 0.0001), and fourth ventricle (p = 0.0001) in the right hemisphere. In the left hemisphere, the inferior lateral ventricle (p < 0.0001) and the third ventricle (p < 0.0001) showed significant differences. Furthermore, the Dice similarity coefficient showed the highest overlap of salient regions between the MS patients and the oldest healthy subjects, indicating that neurodegeneration is accelerated in this patient cohort. Discussion In conclusion, the results of this study show that the brain age gap is a valuable surrogate biomarker to measure disease progression in patients with multiple sclerosis.
Collapse
Affiliation(s)
- Catharina J. A. Romme
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Emma A. M. Stanley
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Pauline Mouches
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Matthias Wilms
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - G. Bruce Pike
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Luanne M. Metz
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nils D. Forkert
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
2
|
Wenger AL, Barakovic M, Bosticardo S, Schaedelin S, Daducci A, Schiavi S, Weigel M, Rahmanzadeh R, Lu PJ, Cagol A, Kappos L, Kuhle J, Calabrese P, Granziera C. An investigation of the association between focal damage and global network properties in cognitively impaired and cognitively preserved patients with multiple sclerosis. Front Neurosci 2023; 17:1007580. [PMID: 36824214 PMCID: PMC9941549 DOI: 10.3389/fnins.2023.1007580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 01/19/2023] [Indexed: 02/09/2023] Open
Abstract
Introduction The presence of focal cortical and white matter damage in patients with multiple sclerosis (pwMS) might lead to specific alterations in brain networks that are associated with cognitive impairment. We applied microstructure-weighted connectomes to investigate (i) the relationship between global network metrics and information processing speed in pwMS, and (ii) whether the disruption provoked by focal lesions on global network metrics is associated to patients' information processing speed. Materials and methods Sixty-eight pwMS and 92 healthy controls (HC) underwent neuropsychological examination and 3T brain MRI including multishell diffusion (dMRI), 3D FLAIR, and MP2RAGE. Whole-brain deterministic tractography and connectometry were performed on dMRI. Connectomes were obtained using the Spherical Mean Technique and were weighted for the intracellular fraction. We identified white matter lesions and cortical lesions on 3D FLAIR and MP2RAGE images, respectively. PwMS were subdivided into cognitively preserved (CPMS) and cognitively impaired (CIMS) using the Symbol Digit Modalities Test (SDMT) z-score at cut-off value of -1.5 standard deviations. Statistical analyses were performed using robust linear models with age, gender, and years of education as covariates, followed by correction for multiple testing. Results Out of 68 pwMS, 18 were CIMS and 50 were CPMS. We found significant changes in all global network metrics in pwMS vs HC (p < 0.05), except for modularity. All global network metrics were positively correlated with SDMT, except for modularity which showed an inverse correlation. Cortical, leukocortical, and periventricular lesion volumes significantly influenced the relationship between (i) network density and information processing speed and (ii) modularity and information processing speed in pwMS. Interestingly, this was not the case, when an exploratory analysis was performed in the subgroup of CIMS patients. Discussion Our study showed that cortical (especially leukocortical) and periventricular lesions affect the relationship between global network metrics and information processing speed in pwMS. Our data also suggest that in CIMS patients increased focal cortical and periventricular damage does not linearly affect the relationship between network properties and SDMT, suggesting that other mechanisms (e.g. disruption of local networks, loss of compensatory processes) might be responsible for the development of processing speed deficits.
Collapse
Affiliation(s)
- A. L. Wenger
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel, University of Basel, Basel, Switzerland,Interdisciplinary Platform, Psychiatry, and Psychology, Division of Molecular and Cognitive Neuroscience, Neuropsychology, and Behavioral Neurology Unit, University of Basel, Basel, Switzerland,Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Muhamed Barakovic
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel, University of Basel, Basel, Switzerland,Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sara Bosticardo
- Department of Computer Science, University of Verona, Verona, Italy
| | - Sabine Schaedelin
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel, University of Basel, Basel, Switzerland,Clinical Trial Unit, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Simona Schiavi
- Department of Computer Science, University of Verona, Verona, Italy
| | - Matthias Weigel
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel, University of Basel, Basel, Switzerland,Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland,Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Reza Rahmanzadeh
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel, University of Basel, Basel, Switzerland,Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Po-Jui Lu
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel, University of Basel, Basel, Switzerland,Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Alessandro Cagol
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel, University of Basel, Basel, Switzerland,Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel, University of Basel, Basel, Switzerland,Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Pasquale Calabrese
- Interdisciplinary Platform, Psychiatry, and Psychology, Division of Molecular and Cognitive Neuroscience, Neuropsychology, and Behavioral Neurology Unit, University of Basel, Basel, Switzerland
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel, University of Basel, Basel, Switzerland,Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland,*Correspondence: Cristina Granziera, ;
| |
Collapse
|
3
|
Amiri M, Gerami R, Shekarchi B, Azimi A, Asadi B, Bagheri H. Changes in diffusion tensor imaging indices in basal ganglia and thalamus of patients with Relapsing-Remitting Multiple Sclerosis and relation with clinical conditions: A case-control study. Eur J Radiol Open 2022; 10:100465. [PMID: 36578906 PMCID: PMC9791126 DOI: 10.1016/j.ejro.2022.100465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Background Multiple sclerosis (MS) is recognized as the most prevalent autoimmune abnormality of the CNS. T1WI, T2WI, and FLAIR are limited in the quantification of tissue damage and detection of tissue alterations in white and grey matter in MS. This study aimed to the evaluation of changes in DTI indices in these patients at the thalamus and basal ganglia. Methods 30 relapsing-remitting MS (RRMS) cases and 30 normal individuals were included. Conventional MRI (T2, FLAIR) was acquired to confirm NAGM in MS patients. A T1 MPRAGE protocol was used to normalize DTI images. FSL, SPM, and Explore DTI software were employed to reach Mean Diffusivities (MD), Axial Diffusivities (AD), Fractional anisotropy (FA), and Radial Diffusivity (RD) at the thalamus and the basal ganglia. Results The FA and RD of the thalamus were decreased in healthy controls compared to MS cases (0.319 vs. 0.296 and 0.0009 vs. 0.0006, respectively) (P < 0.05). The AD value in the thalamus and the FA value in the caudate nucleus were significantly lower in MS cases than in controls (0.0009 vs. 0.0011 and 0.16 vs. 0.18, respectively) (P < 0.05). MD values in the thalamus or basal ganglia were not significantly different between groups. Conclusions DTI measures including FA, RD, and AD have a good diagnostic performance in detecting microstructural changes in the normal-appearing thalamus in cases with RRMS while they had no significant relationship with clinical signs in terms of EDSS. Availability of data and material Not applicable.
Collapse
Affiliation(s)
- Mohammad Amiri
- Faculty of Medicine, Aja University of Medical Science, Tehran, Iran
| | - Reza Gerami
- Department of Radiology, Faculty of Medicine, Aja University of Medical Science, Tehran, Iran,Corresponding author.
| | - Babak Shekarchi
- Department of Radiology, Faculty of Medicine, Aja University of Medical Science, Tehran, Iran
| | - Amirreza Azimi
- MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahador Asadi
- Department of Radiology, Faculty of Medicine, Aja University of Medical Science, Tehran, Iran
| | - Hamed Bagheri
- Radiation Sciences Research Center, Aja University of Medical Science, Tehran, Iran
| |
Collapse
|
4
|
Chitnis T, Vandercappellen J, King M, Brichetto G. Symptom Interconnectivity in Multiple Sclerosis: A Narrative Review of Potential Underlying Biological Disease Processes. Neurol Ther 2022; 11:1043-1070. [PMID: 35680693 PMCID: PMC9338216 DOI: 10.1007/s40120-022-00368-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction Fatigue, cognitive impairment, depression, and pain are highly prevalent symptoms in multiple sclerosis (MS). These often co-occur and may be explained by a common etiology. By reviewing existing literature, we aimed to identify potential underlying biological processes implicated in the interconnectivity between these symptoms. Methods A literature search was conducted to identify articles reporting research into the biological mechanisms responsible for the manifestation of fatigue, cognitive impairment, depression, and pain in MS. PubMed was used to search for articles published from July 2011 to July 2021. We reviewed and assessed findings from the literature to identify biological processes common to the symptoms of interest. Results Of 693 articles identified from the search, 252 were selected following screening of titles and abstracts and assessing reference lists of review articles. Four biological processes linked with two or more of the symptoms of interest were frequently identified from the literature: (1) direct neuroanatomical changes to brain regions linked with symptoms of interest (e.g., thalamic injury associated with cognitive impairment, fatigue, and depression), (2) pro-inflammatory cytokines associated with so-called ‘sickness behavior,’ including manifestation of fatigue, transient cognitive impairment, depression, and pain, (3) dysregulation of monoaminergic pathways leading to depressive symptoms and fatigue, and (4) hyperactivity of the hypothalamic–pituitary-adrenal (HPA) axis as a result of pro-inflammatory cytokines promoting the release of brain noradrenaline, serotonin, and tryptophan, which is associated with symptoms of depression and cognitive impairment. Conclusion The co-occurrence of fatigue, cognitive impairment, depression, and pain in MS appears to be associated with a common set of etiological factors, namely neuroanatomical changes, pro-inflammatory cytokines, dysregulation of monoaminergic pathways, and a hyperactive HPA axis. This association of symptoms and biological processes has important implications for disease management strategies and, eventually, could help find a common therapeutic pathway that will impact both inflammation and neuroprotection. Supplementary Information The online version contains supplementary material available at 10.1007/s40120-022-00368-2.
Collapse
Affiliation(s)
- Tanuja Chitnis
- Department of Neurology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.
| | | | - Miriam King
- Novartis Pharma AG, Fabrikstrasse 12-2, 4056, Basel, Switzerland
| | - Giampaolo Brichetto
- Associazione Italiana Sclerosi Multipla Rehabilitation Center, Via Operai, 30, 16149, Genoa, GE, Italy
| |
Collapse
|
5
|
Kantorová E, Hnilicová P, Bogner W, Grendár M, Grossmann J, Kováčová S, Hečková E, Strasser B, Čierny D, Zeleňák K, Kurča E. Neurocognitive performance in relapsing-remitting multiple sclerosis patients is associated with metabolic abnormalities of the thalamus but not the hippocampus- GABA-edited 1H MRS study. Neurol Res 2021; 44:57-64. [PMID: 34313578 DOI: 10.1080/01616412.2021.1956282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Multiple sclerosis (MS) is an inflammatory demyelinating disease that may cause physical disabling as well as cognitive dysfunction. The presented study investigated how the neuropsychological status depends on the thalamus and hippocampus's metabolic processes, using γ-aminobutyric acid-edited magnetic resonance spectroscopy (GABA-edited 1H MRS) in patients with early MS, and how the results differ from healthy volunteers. METHODS We recruited 36 relapsing-remitting (RRMS) MS patients and 22 controls (CON). In addition to common 1H MRS metabolites, such as N-acetyl-aspartate (tNAA), myoinositol (mIns), total choline and creatine (tCr, tCho), we also evaluated GABA and glutamate/glutamine (Glx). Metabolite ratios were correlated with the results of Single-Digit Modality Test (SDMT) and Expanded Disability Status Score (EDSS). RESULTS In the thalamus, GABA ratios (GABA/tCr, GABA/tNAA) were significantly lower in RRMS patients than in CON. Both tCho- and mIns-ratios correlated with lower scores of SDMT but not with EDSS. Metabolic ratios in the hippocampus did not differ between RRMS and CON and did not correlate with any of performed tests. DISCUSSION This study is the first to provide GABA-edited 1H MRS evidence for MS-related metabolic changes of the thalamus and hippocampus. The findings underline the importance of evaluating subcortical grey matter in MS patients to improve understanding of the clinical manifestations of MS and as a potential future target for treatment.
Collapse
Affiliation(s)
- Ema Kantorová
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Petra Hnilicová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Wolfgang Bogner
- Department of Biomedical Imaging and Image-Guided Therapy, High-field MR Center, Medical University of Vienna, Austria
| | - Marián Grendár
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Ján Grossmann
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Slavomíra Kováčová
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Eva Hečková
- Department of Biomedical Imaging and Image-Guided Therapy, High-field MR Center, Medical University of Vienna, Austria
| | - Bernhard Strasser
- Department of Biomedical Imaging and Image-Guided Therapy, High-field MR Center, Medical University of Vienna, Austria
| | - Daniel Čierny
- Department of Clinical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Kamil Zeleňák
- Clinic of Radiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Egon Kurča
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
6
|
Early Detection of Radiation-Induced Injury and Prediction of Cognitive Deficit by MRS Metabolites in Radiotherapy of Low-Grade Glioma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6616992. [PMID: 34258272 PMCID: PMC8260313 DOI: 10.1155/2021/6616992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/04/2021] [Accepted: 02/21/2021] [Indexed: 12/18/2022]
Abstract
Purpose To compare the sensitivity of MRS metabolites and MoCA and ACE-R cognitive tests in the detection of radiation-induced injury in low grade glioma (LGG) patients in early and early delayed postradiation stages. Methods MRS metabolite ratios of NAA/Cr and Cho/Cr, ACE-R and MoCA cognitive tests, and dosimetric parameters in corpus callosum were analyzed during RT and up to 6-month post-RT for ten LGG patients. Results Compared to pre RT baseline, a significant decline in both NAA/Cr and Cho/Cr in the corpus callosum was seen at the 4th week of RT, 1, 3, and 6-month post-RT. These declines were detected at least 3 months before the detection of declines in cognitive functions by ACE-R and MoCA tools. Moreover, NAA/Cr alterations at 4th week of RT and 1-month post-RT were significantly negatively correlated with the mean dose received by the corpus callosum, as well as the corpus callosum 40 Gy dose volume, i.e., the volume of the corpus callosum receiving a dose greater than 40 Gy. Conclusion MRS-based biomarkers may be more sensitive than the state-of-the-art cognitive tests in the prediction of postradiation cognitive impairments. They would be utilized in treatment planning and dose sparing protocols, with a specific focus on the corpus callosum in the radiation therapy of LGG patients.
Collapse
|
7
|
Sharma AA, Nenert R, Mueller C, Maudsley AA, Younger JW, Szaflarski JP. Repeatability and Reproducibility of in-vivo Brain Temperature Measurements. Front Hum Neurosci 2020; 14:598435. [PMID: 33424566 PMCID: PMC7785722 DOI: 10.3389/fnhum.2020.598435] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Magnetic resonance spectroscopic imaging (MRSI) is a neuroimaging technique that may be useful for non-invasive mapping of brain temperature (i.e., thermometry) over a large brain volume. To date, intra-subject reproducibility of MRSI-based brain temperature (MRSI-t) has not been investigated. The objective of this repeated measures MRSI-t study was to establish intra-subject reproducibility and repeatability of brain temperature, as well as typical brain temperature range. Methods: Healthy participants aged 23-46 years (N = 18; 7 females) were scanned at two time points ~12-weeks apart. Volumetric MRSI data were processed by reconstructing metabolite and water images using parametric spectral analysis. Brain temperature was derived using the frequency difference between water and creatine (TCRE) for 47 regions of interest (ROIs) delineated by the modified Automated Anatomical Labeling (AAL) atlas. Reproducibility was measured using the coefficient of variation for repeated measures (COVrep), and repeatability was determined using the standard error of measurement (SEM). For each region, the upper and lower bounds of Minimal Detectable Change (MDC) were established to characterize the typical range of TCRE values. Results: The mean global brain temperature over all subjects was 37.2°C with spatial variations across ROIs. There was a significant main effect for time [F (1, 1,591) = 37.0, p < 0.0001] and for brain region [F (46, 1,591) = 2.66, p < 0.0001]. The time*brain region interaction was not significant [F (46, 1,591) = 0.80, p = 0.83]. Participants' TCRE was stable for each ROI across both time points, with ROIs' COVrep ranging from 0.81 to 3.08% (mean COVrep = 1.92%); majority of ROIs had a COVrep <2.0%. Conclusions: Brain temperature measurements were highly consistent between both time points, indicating high reproducibility and repeatability of MRSI-t. MRSI-t may be a promising diagnostic, prognostic, and therapeutic tool for non-invasively monitoring brain temperature changes in health and disease. However, further studies of healthy participants with larger sample size(s) and numerous repeated acquisitions are imperative for establishing a reference range of typical brain TCRE, as well as the threshold above which TCRE is likely pathological.
Collapse
Affiliation(s)
- Ayushe A. Sharma
- Department of Psychology, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
- Department of Neurobiology, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
- University of Alabama at Birmingham Epilepsy Center (UABEC), Birmingham, AL, United States
| | - Rodolphe Nenert
- University of Alabama at Birmingham Epilepsy Center (UABEC), Birmingham, AL, United States
- Department of Neurology, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
| | - Christina Mueller
- Department of Psychology, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
| | - Andrew A. Maudsley
- Department of Radiology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Jarred W. Younger
- Department of Psychology, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
| | - Jerzy P. Szaflarski
- Department of Neurobiology, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
- University of Alabama at Birmingham Epilepsy Center (UABEC), Birmingham, AL, United States
- Department of Neurology, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
- Department of Neurosurgery, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
| |
Collapse
|
8
|
Berger T, Adamczyk-Sowa M, Csépány T, Fazekas F, Fabjan TH, Horáková D, Ledinek AH, Illes Z, Kobelt G, Jazbec SŠ, Klímová E, Leutmezer F, Rejdak K, Rozsa C, Sellner J, Selmaj K, Štouracˇ P, Szilasiová J, Turcˇáni P, Vachová M, Vanecková M, Vécsei L, Havrdová EK. Factors influencing daily treatment choices in multiple sclerosis: practice guidelines, biomarkers and burden of disease. Ther Adv Neurol Disord 2020; 13:1756286420975223. [PMID: 33335562 PMCID: PMC7724259 DOI: 10.1177/1756286420975223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/23/2020] [Indexed: 12/23/2022] Open
Abstract
At two meetings of a Central European board of multiple sclerosis (MS) experts in
2018 and 2019 factors influencing daily treatment choices in MS, especially
practice guidelines, biomarkers and burden of disease, were discussed. The
heterogeneity of MS and the complexity of the available treatment options call
for informed treatment choices. However, evidence from clinical trials is
generally lacking, particularly regarding sequencing, switches and escalation of
drugs. Also, there is a need to identify patients who require highly efficacious
treatment from the onset of their disease to prevent deterioration. The recently
published European Committee for the Treatment and Research in Multiple
Sclerosis/European Academy of Neurology clinical practice guidelines on
pharmacological management of MS cover aspects such as treatment efficacy,
response criteria, strategies to address suboptimal response and safety concerns
and are based on expert consensus statements. However, the recommendations
constitute an excellent framework that should be adapted to local regulations,
MS center capacities and infrastructure. Further, available and emerging
biomarkers for treatment guidance were discussed. Magnetic resonance imaging
parameters are deemed most reliable at present, even though complex assessment
including clinical evaluation and laboratory parameters besides imaging is
necessary in clinical routine. Neurofilament-light chain levels appear to
represent the current most promising non-imaging biomarker. Other immunological
data, including issues of immunosenescence, will play an increasingly important
role for future treatment algorithms. Cognitive impairment has been recognized
as a major contribution to MS disease burden. Regular evaluation of cognitive
function is recommended in MS patients, although no specific disease-modifying
treatment has been defined to date. Finally, systematic documentation of
real-life data is recognized as a great opportunity to tackle unresolved daily
routine challenges, such as use of sequential therapies, but requires joint
efforts across clinics, governments and pharmaceutical companies.
Collapse
Affiliation(s)
- Thomas Berger
- Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| | - Monika Adamczyk-Sowa
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Poland
| | - Tünde Csépány
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Franz Fazekas
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Tanja Hojs Fabjan
- Department of Neurology, University Medical Centre Maribor, Maribor, Slovenia
| | - Dana Horáková
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | | | - Zsolt Illes
- Department of Neurology, University of Southern Denmark, Odense, Denmark
| | | | - Saša Šega Jazbec
- Department of Neurology, University Clinical Centre Ljubljana, Ljubljana, Slovenia
| | - Eleonóra Klímová
- Department of Neurology, University of Prešov and Teaching Hospital of J. A. Reiman, Prešov, Slovakia
| | - Fritz Leutmezer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Konrad Rejdak
- Department of Neurology, Medical University of Lublin, Lublin, Poland
| | - Csilla Rozsa
- Department of Neurology, Jahn Ferenc Dél-pesti Hospital, Budapest, Hungary
| | - Johann Sellner
- Department of Neurology, Landesklinikum Mistelbach-Gänserndorf, Mistelbach, Austria, and Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria
| | - Krzysztof Selmaj
- Department of Neurology, University of Warmia-Mazury, Olsztyn, Poland
| | - Pavel Štouracˇ
- Department of Neurology, Masaryk University, Brno, Czech Republic
| | - Jarmila Szilasiová
- Department of Neurology, P. J. Šafárik University Košice and University Hospital of L. Pasteur Košice, Slovakia
| | - Peter Turcˇáni
- Department of Neurology, Comenius University, Bratislava, Slovakia
| | | | - Manuela Vanecková
- Department of Radiology, MRI Unit, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - László Vécsei
- Department of Neurology and MTA-SZTE Neuroscience Research Group, University of Szeged, Szeged, Hungary
| | - Eva Kubala Havrdová
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|
9
|
Al-Iedani O, Ribbons K, Gholizadeh N, Lechner-Scott J, Quadrelli S, Lea R, Andronesi O, Ramadan S. Spiral MRSI and tissue segmentation of normal-appearing white matter and white matter lesions in relapsing remitting multiple sclerosis patients ☆. Magn Reson Imaging 2020; 74:21-30. [PMID: 32898652 DOI: 10.1016/j.mri.2020.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE To evaluate the performance of novel spiral MRSI and tissue segmentation pipeline of the brain, to investigate neurometabolic changes in normal-appearing white matter (NAWM) and white matter lesions (WML) of stable relapsing remitting multiple sclerosis (RRMS) compared to healthy controls (HCs). METHODS Spiral 3D MRSI using LASER-GOIA-W [16,4] was undertaken on 16 RRMS patients and 9 HCs, to acquire MRSI data from a large volume of interest (VOI) 320 cm3 and analyzed using LCModel. MRSI data and voxel tissue segmentation were compared between the two cohorts using t-tests. Support vector machine (SVM) was used to classify tissue types and assessed by accuracy, sensitivity and specificity. RESULTS Compared to HCs, RRMS demonstrated a statistically significant reduction in all mean brain tissues and increase in CSF volume. Within VOI, WM decreased (-10%) and CSF increased (41%) in RRMS compared to HCs (p < 0.001). MRSI revealed that total creatine (tCr) ratios of N-acetylaspartate and glutamate+glutamine in WML were significantly lower than NAWM-MS (-9%, -8%) and HCs (-14%, -10%), respectively. Myo-inositol/tCr in WML was significantly higher than NAWM-MS (14%) and HCs (10%). SVM of MRSI yielded accuracy, sensitivity and specificity of 86%, 95%, and 70%, respectively for HCs vs WML, which were higher than HC vs NAWM and WML vs NAWM models. CONCLUSION This study demonstrates the benefit of MRSI in evaluating MS neurometabolic changes in NAWM. SVM of MRSI data in the MS brain may be suited for clinical monitoring and progression of MS patients. Longitudinal MRSI studies are warranted.
Collapse
Affiliation(s)
- Oun Al-Iedani
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, Newcastle, Australia
| | - Karen Ribbons
- Hunter Medical Research Institute, Newcastle, Australia
| | - Neda Gholizadeh
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Jeannette Lechner-Scott
- Hunter Medical Research Institute, Newcastle, Australia; Department of Neurology, John Hunter Hospital, New Lambton Heights, NSW 2305, Australia; School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2305, Australia
| | - Scott Quadrelli
- Princess Alexandra Hospital, Radiology Department, Woolloongabba. QLD 4102, Australia; Faculty of Medicine, University of Queensland, Herston, QLD 4006, Australia
| | - Rodney Lea
- Hunter Medical Research Institute, Newcastle, Australia
| | - Ovidiu Andronesi
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Saadallah Ramadan
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, Newcastle, Australia.
| |
Collapse
|
10
|
Akaishi T, Takahashi T, Fujihara K, Misu T, Mugikura S, Abe M, Ishii T, Aoki M, Nakashima I. Number of MRI T1-hypointensity corrected by T2/FLAIR lesion volume indicates clinical severity in patients with multiple sclerosis. PLoS One 2020; 15:e0231225. [PMID: 32243459 PMCID: PMC7122737 DOI: 10.1371/journal.pone.0231225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/18/2020] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Progressive brain atrophy, development of T1-hypointense areas, and T2-fluid-attenuated inversion recovery (FLAIR)-hyperintense lesion formation in multiple sclerosis (MS) are popular volumetric data that are often utilized as clinical outcomes. However, the exact clinical interpretation of these volumetric data has not yet been fully established. METHODS We enrolled 42 consecutive patients with MS who fulfilled the revised McDonald criteria of 2010. They were followed-up for more than 3 years from onset, and cross-sectional brain volumetry was performed. Patients with no brain lesions were excluded in advance from this study. For the brain volumetric data, we evaluated several parameters including age-adjusted gray-matter volume atrophy, age-adjusted white-matter volume atrophy, and T2-FLAIR lesion volume. The numbers of T1-hypointense and T2-FLAIR-hyperintense areas were also measured along the same timeline. The clinical data pertaining to disease duration, expanded disability status scale (EDSS), and MS severity score (MSSS) at the timing of volumetry were collected. RESULTS Among the 42 patients with MS and brain lesions, the number of T1-hypointensity (rho = 0.51, p<0.001), gray-matter atrophy (rho = 0.40, p<0.01) and white-matter atrophy (rho = 0.49, p<0.001) correlated with the EDSS. T1-hypointensity count divided by FLAIR lesion volume correlated with the MSSS (rho = 0.60, p<0.001). Meanwhile, counts or volumes of FLAIR-hyperintense lesions were associated only with the times of past relapses, and did not correlate with present neurological disability level or ongoing disease activity. These findings were consistent regardless of the presence of spinal cord lesions. CONCLUSION Numbers of T1-hypointensities and brain atrophy equally indicated the current neurological disability in MS. The number of T1-hypointensities divided by FLAIR lesion volume represented the clinical severity. The size or number of FLAIR lesions reflected earlier relapses but was not a good indicator of neurological disability or clinical severity.
Collapse
Affiliation(s)
- Tetsuya Akaishi
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai, Japan
| | - Toshiyuki Takahashi
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurology, National Hospital Organization Yonezawa National Hospital, Yonezawa, Japan
| | - Kazuo Fujihara
- Department of Multiple Sclerosis Therapeutics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tatsuro Misu
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shunji Mugikura
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Michiaki Abe
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai, Japan
| | - Tadashi Ishii
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ichiro Nakashima
- Department of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
11
|
Moon HC, Oh BH, Cheong C, Kim WS, Min KS, Kim YG, Park YS. Precentral and cerebellar atrophic changes in moyamoya disease using 7-T magnetic resonance imaging. Acta Radiol 2020; 61:487-495. [PMID: 31378078 DOI: 10.1177/0284185119866808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background Chronic repeated transient ischemic changes are one of the common symptoms of moyamoya disease that could affect cortical and subcortical atrophy. Purpose We aimed to assess the cortical gray matter volume and thickness, white matter subcortical volume, and clinical characteristics using 7-T magnetic resonance imaging (MRI) and MR angiography (MRA). Material and Methods In this case-control study, whole-brain parcellation of gray matter and subcortical volumes were manually assessed in nine patients with moyamoya disease (18 hemispheres; median age = 34 years; age range = 10–60 years) and nine healthy controls (18 hemispheres; median age = 29 years; age range = 20–62 years) matched for age and sex, who underwent both 7-T MRI and MRA. The volumes were measured using high-resolution image (<1 mm) processing based on the Desikan-Killiany-Tourville (DKT) atlas, via an automated segmentation method (FreeSurfer version 6.0). Results The gray matter volume of the left precentral cortex and the white matter volume of the subcortical cerebellum were lower in both hemispheres in the patients with moyamoya disease compared to the healthy controls. Conclusion Gray matter atrophy in the precentral cortex and cerebellar white matter were detected in this 7-T MRI volumetric analysis study of patients with moyamoya disease who experienced repeated transient ischemic changes. Cortical atrophy in precentral cortex and cerebellum could explain the transient motor weakness in patients with moyamoya disease, as one of the early findings was that patients with moyamoya disease do not have detectable infarction changes on conventional MRI images.
Collapse
Affiliation(s)
- Hyeong Cheol Moon
- Department of Neurosurgery, GKS Center, Chungbuk National University Hospital, Cheongju, Republic of Korea
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Byeong Ho Oh
- Department of Neurosurgery, GKS Center, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Chaejoon Cheong
- Bioimaging Research Team, Korea Basic Science Institute, Ochang, Cheongju, Republic of Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Won Seop Kim
- Department of Pediatrics, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Kyung Soo Min
- Department of Neurosurgery, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Young Gyu Kim
- Department of Neurosurgery, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Young Seok Park
- Department of Neurosurgery, GKS Center, Chungbuk National University Hospital, Cheongju, Republic of Korea
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Department of Neurosurgery, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
12
|
Sun P, George A, Perantie DC, Trinkaus K, Ye Z, Naismith RT, Song SK, Cross AH. Diffusion basis spectrum imaging provides insights into MS pathology. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2019; 7:7/2/e655. [PMID: 31871296 PMCID: PMC7011117 DOI: 10.1212/nxi.0000000000000655] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/04/2019] [Indexed: 11/15/2022]
Abstract
Objective To use diffusion basis spectrum imaging (DBSI) to assess how damage to normal-appearing white matter (NAWM) in the corpus callosum (CC) influences neurologic impairment in people with MS (pwMS). Methods Using standard MRI, the primary pathologies in MS of axonal injury/loss, demyelination, and inflammation are not differentiated well. DBSI has been shown in animal models, phantoms, and in biopsied and autopsied human CNS tissues to distinguish these pathologies. Fifty-five pwMS (22 relapsing-remitting, 17 primary progressive, and 16 secondary progressive) and 13 healthy subjects underwent DBSI analyses of NAWM of the CC, the main WM tract connecting the cerebral hemispheres. Tract-based spatial statistics were used to minimize misalignment. Results were correlated with scores from a battery of clinical tests focused on deficits typical of MS. Results Normal-appearing CC in pwMS showed reduced fiber fraction and increased nonrestricted isotropic fraction, with the most extensive abnormalities in secondary progressive MS (SPMS). Reduced DBSI-derived fiber fraction and increased DBSI-derived nonrestricted isotropic fraction of the CC correlated with worse cognitive scores in pwMS. Increased nonrestricted isotropic fraction in the body of the CC correlated with impaired hand function in the SPMS cohort. Conclusions DBSI fiber fraction and nonrestricted isotropic fraction were the most useful markers of injury in the NAWM CC. These 2 DBSI measures reflect axon loss in animal models. Because of its ability to reveal axonal loss, as well as demyelination, DBSI may be a useful outcome measure for trials of CNS reparative treatments.
Collapse
Affiliation(s)
- Peng Sun
- From the Radiology (P.S., A.G., Z.Y., S.-K.S.), Washington University in Saint Louis, MO; Neurology (D.C.P., R.T.N., A.H.C.), Washington University in Saint Louis, MO; and Biostatistics Shared Resource (K.T.), Washington University in Saint Louis, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO
| | - Ajit George
- From the Radiology (P.S., A.G., Z.Y., S.-K.S.), Washington University in Saint Louis, MO; Neurology (D.C.P., R.T.N., A.H.C.), Washington University in Saint Louis, MO; and Biostatistics Shared Resource (K.T.), Washington University in Saint Louis, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO
| | - Dana C Perantie
- From the Radiology (P.S., A.G., Z.Y., S.-K.S.), Washington University in Saint Louis, MO; Neurology (D.C.P., R.T.N., A.H.C.), Washington University in Saint Louis, MO; and Biostatistics Shared Resource (K.T.), Washington University in Saint Louis, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO
| | - Kathryn Trinkaus
- From the Radiology (P.S., A.G., Z.Y., S.-K.S.), Washington University in Saint Louis, MO; Neurology (D.C.P., R.T.N., A.H.C.), Washington University in Saint Louis, MO; and Biostatistics Shared Resource (K.T.), Washington University in Saint Louis, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO
| | - Zezhong Ye
- From the Radiology (P.S., A.G., Z.Y., S.-K.S.), Washington University in Saint Louis, MO; Neurology (D.C.P., R.T.N., A.H.C.), Washington University in Saint Louis, MO; and Biostatistics Shared Resource (K.T.), Washington University in Saint Louis, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO
| | - Robert T Naismith
- From the Radiology (P.S., A.G., Z.Y., S.-K.S.), Washington University in Saint Louis, MO; Neurology (D.C.P., R.T.N., A.H.C.), Washington University in Saint Louis, MO; and Biostatistics Shared Resource (K.T.), Washington University in Saint Louis, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO
| | - Sheng-Kwei Song
- From the Radiology (P.S., A.G., Z.Y., S.-K.S.), Washington University in Saint Louis, MO; Neurology (D.C.P., R.T.N., A.H.C.), Washington University in Saint Louis, MO; and Biostatistics Shared Resource (K.T.), Washington University in Saint Louis, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO
| | - Anne H Cross
- From the Radiology (P.S., A.G., Z.Y., S.-K.S.), Washington University in Saint Louis, MO; Neurology (D.C.P., R.T.N., A.H.C.), Washington University in Saint Louis, MO; and Biostatistics Shared Resource (K.T.), Washington University in Saint Louis, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO.
| |
Collapse
|
13
|
Heled E, Aloni R, Achiron A. Cognitive functions and disability progression in relapsing-remitting multiple sclerosis: A longitudinal study. APPLIED NEUROPSYCHOLOGY-ADULT 2019; 28:210-219. [PMID: 31204507 DOI: 10.1080/23279095.2019.1624260] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Longitudinal studies have shown inconsistent findings regarding the association between cognition, demographic characteristics, and clinical decline in relapsing-remitting multiple sclerosis (RRMS). Our objective was to further explore these relations, over time, while also considering age and sex. A total of 183 patients with RRMS were assessed at two time points, using a neuropsychological battery and the Expanded Disability Status Scale (EDSS). For the first assessment, participants were divided by age (<29, 30-39, 40-49, 50-60) and sex. Next, they were divided according to their participation in one of three interval assessment points: 2-3, 4-5, and 6-8 years. Cognitive function was not correlated with disease duration but was negatively correlated with EDSS score. Men under 29 and women under 39 showed negative correlations between cognitive and clinical impairment. Executive functions, attention, and information processing speed (IPS) showed cognitive decline between the first and second assessments. Furthermore, at the 4-5 year interval IPS predicted EDSS scores, while at the 6-8 year interval it was IPS and visuo-spatial ability. Therefore, relation between clinical status and cognition is not consistent across different age and sex groups. Additionally, cognitive deterioration is only partially evident longitudinally; however, IPS appears to be the most sensitive in predicting one's future clinical condition.
Collapse
Affiliation(s)
- Eyal Heled
- Department of Psychology, Ariel University, Ariel, Israel.,Neurological Rehabilitation Department, Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| | - Roy Aloni
- Department of Psychology, Ariel University, Ariel, Israel.,Multiple Sclerosis Center, Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| | - Anat Achiron
- Multiple Sclerosis Center, Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
14
|
Lommers E, Simon J, Reuter G, Delrue G, Dive D, Degueldre C, Balteau E, Phillips C, Maquet P. Multiparameter MRI quantification of microstructural tissue alterations in multiple sclerosis. NEUROIMAGE-CLINICAL 2019; 23:101879. [PMID: 31176293 PMCID: PMC6555891 DOI: 10.1016/j.nicl.2019.101879] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/23/2019] [Accepted: 05/25/2019] [Indexed: 01/25/2023]
Abstract
Objectives Conventional MRI is not sensitive to many pathological processes underpinning multiple sclerosis (MS) ongoing in normal appearing brain tissue (NABT). Quantitative MRI (qMRI) and a multiparameter mapping (MPM) protocol are used to simultaneously quantify magnetization transfer (MT) saturation, transverse relaxation rate R2* (1/T2*) and longitudinal relaxation rate R1 (1/T1), and assess differences in NABT microstructure between MS patients and healthy controls (HC). Methods This prospective cross-sectional study involves 36 MS patients (21 females, 15 males; age range 22–63 years; 15 relapsing-remitting MS - RRMS; 21 primary or secondary progressive MS - PMS) and 36 age-matched HC (20 females, 16 males); age range 21–61 years). The qMRI maps are computed and segmented in lesions and 3 normal appearing cerebral tissue classes: normal appearing cortical grey matter (NACGM), normal appearing deep grey matter (NADGM), normal appearing white matter (NAWM). Individual median values are extracted for each tissue class and MR parameter. MANOVAs and stepwise regressions assess differences between patients and HC. Results MS patients are characterized by a decrease in MT, R2* and R1 within NACGM (p < .0001) and NAWM (p < .0001). In NADGM, MT decreases (p < .0001) but R2* and R1 remain normal. These observations tend to be more pronounced in PMS. Quantitative MRI parameters are independent predictors of clinical status: EDSS is significantly related to R1 in NACGM and R2* in NADGM; the latter also predicts motor score. Cognitive score is best predicted by MT parameter within lesions. Conclusions Multiparametric data of brain microstructure concord with the literature, predict clinical performance and suggest a diffuse reduction in myelin and/or iron content within NABT of MS patients. We revisit microstructural alterations of NABT in MS patients by simultaneously quantifying three MRI parameters. Data suggest reduction of MT/R2*/R1 in NABT of MS patients, suggesting a reduction in myelin and/or iron content. Quantitative MRI parameters in NABT are independent predictors of clinical status.
Collapse
Affiliation(s)
- Emilie Lommers
- GIGA - CRC in vivo Imaging, University of Liège, Liège, Belgium; Clinical Neuroimmunology Unit, Neurology Department, CHU Liège, Belgium.
| | - Jessica Simon
- Psychology and Neurosciences of Cognition Research Unit, University of Liège, Belgium
| | - Gilles Reuter
- GIGA - CRC in vivo Imaging, University of Liège, Liège, Belgium; Neurosurgery Department, CHU Liège, Belgium
| | - Gaël Delrue
- Clinical Neuroimmunology Unit, Neurology Department, CHU Liège, Belgium
| | - Dominique Dive
- Clinical Neuroimmunology Unit, Neurology Department, CHU Liège, Belgium
| | | | - Evelyne Balteau
- GIGA - CRC in vivo Imaging, University of Liège, Liège, Belgium
| | - Christophe Phillips
- GIGA - CRC in vivo Imaging, University of Liège, Liège, Belgium; GIGA - in silico Medicine, University of Liège, Liège, Belgium
| | - Pierre Maquet
- GIGA - CRC in vivo Imaging, University of Liège, Liège, Belgium; Clinical Neuroimmunology Unit, Neurology Department, CHU Liège, Belgium
| |
Collapse
|
15
|
Magliozzi R, Reynolds R, Calabrese M. MRI of cortical lesions and its use in studying their role in MS pathogenesis and disease course. Brain Pathol 2018; 28:735-742. [PMID: 30020563 PMCID: PMC8028295 DOI: 10.1111/bpa.12642] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/21/2018] [Indexed: 02/01/2023] Open
Abstract
Cortical grey matter (GM) demyelination is present from the earliest stages of multiple sclerosis (MS) and is associated with physical deficits and cognitive impairment. In particular, the rate of disability progression in MS, both in the relapsing and progressive phases, appears to be strictly associated with degenerative GM demyelination and diffuse cortical atrophy. In the last decade, several histopathological studies and advanced radiological methodologies have contributed to better identify the exact involvement/load of cortical pathology in MS, even if the specific inflammatory features and the precise cell and molecular mechanisms of GM demyelination and neurodegeneration in MS remain still not fully understood. It has been proposed that a combined neuropathology, imaging and molecular approach may help to define a more detailed characterization and precise assessment of the heterogeneous features of GM injury and inflammation in MS. This, in turn, will possibly identify specific imaging and biohumoral (cerebrospinal fluid/serum) correlates of cortical pathology that may have an important role in predicting and monitor the disease evolution.
Collapse
Affiliation(s)
- R. Magliozzi
- Neurology BDepartment of Neurological and Movement SciencesUniversity of VeronaVeronaItaly
- Division of Brain SciencesDepartment of MedicineImperial College LondonLondonUnited Kingdom
| | - R. Reynolds
- Division of Brain SciencesDepartment of MedicineImperial College LondonLondonUnited Kingdom
| | - M. Calabrese
- Neurology BDepartment of Neurological and Movement SciencesUniversity of VeronaVeronaItaly
| |
Collapse
|
16
|
Abstract
Several neuropathologic and imaging studies have consistently confirmed that multiple sclerosis affects both white (WM) and gray matter (GM) and that GM damage plays a key role in disability progression. However, differently from WM damage, the less inflammatory cell infiltration, the absence of significant blood-brain barrier damage, the low myelin density in upper cortical layers, as well as technical constraints, make the GM damage almost undetectable by means of conventional MR imaging.
Collapse
Affiliation(s)
- Massimiliano Calabrese
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Policlinico GB Rossi, Piazzale LA Scuro 10, Verona 37134, Italy.
| | - Marco Castellaro
- Department of Information Engineering, University of Padova, Via G. Gradenigo 6/a, Padova 35135, Italy
| |
Collapse
|
17
|
Yousuf F, Kim G, Tauhid S, Glanz BI, Chu R, Tummala S, Healy BC, Bakshi R. The Contribution of Cortical Lesions to a Composite MRI Scale of Disease Severity in Multiple Sclerosis. Front Neurol 2016; 7:99. [PMID: 27445966 PMCID: PMC4925661 DOI: 10.3389/fneur.2016.00099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/13/2016] [Indexed: 12/28/2022] Open
Abstract
Objective To test a new version of the Magnetic Resonance Disease Severity Scale (v.3 = MRDSS3) for multiple sclerosis (MS), incorporating cortical gray matter lesions (CLs) from 3T magnetic resonance imaging (MRI). Background MRDSS1 was a cerebral MRI-defined composite scale of MS disease severity combining T2 lesion volume (T2LV), the ratio of T1 to T2LV (T1/T2), and whole brain atrophy [brain parenchymal fraction (BPF)]. MRDSS2 expanded the scale to include cerebral gray matter fraction (GMF) and upper cervical spinal cord area (UCCA). We tested the contribution of CLs to the scale (MRDSS3) in modeling the MRI relationship to clinical status. Methods We studied 51 patients [3 clinically isolated syndrome, 43 relapsing-remitting, 5 progressive forms, age (mean ± SD) 40.7 ± 9.1 years, Expanded Disability Status Scale (EDSS) score 1.6 ± 1.7] and 20 normal controls by high-resolution cerebrospinal MRI. CLs required visibility on both fluid-attenuated inversion-recovery (FLAIR) and modified driven equilibrium Fourier transform sequences. The MACFIMS battery defined cognitively impaired (n = 18) vs. preserved (n = 33) MS subgroups. Results EDSS significantly correlated with only BPF, UCCA, MRDSS2, and MRDSS3 (all p < 0.05). After adjusting for depressive symptoms, the cognitively impaired group had higher severity of MRI metrics than the cognitively preserved group in regard to only BPF, GMF, T1/T2, MRDSS1, and MRDSS2 (all p < 0.05). CL number was not significantly related to EDSS score or cognition status. Conclusion CLs from 3T MRI did not appear to improve the validity of the MRDSS. Further studies employing advanced sequences or higher field strengths may show more utility for the incorporation of CLs into composite scales.
Collapse
Affiliation(s)
- Fawad Yousuf
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Laboratory for Neuroimaging Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gloria Kim
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Laboratory for Neuroimaging Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shahamat Tauhid
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Laboratory for Neuroimaging Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bonnie I Glanz
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Renxin Chu
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Laboratory for Neuroimaging Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Subhash Tummala
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Laboratory for Neuroimaging Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian C Healy
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rohit Bakshi
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Laboratory for Neuroimaging Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Lysandropoulos AP, Absil J, Metens T, Mavroudakis N, Guisset F, Van Vlierberghe E, Smeets D, David P, Maertens A, Van Hecke W. Quantifying brain volumes for Multiple Sclerosis patients follow-up in clinical practice - comparison of 1.5 and 3 Tesla magnetic resonance imaging. Brain Behav 2016; 6:e00422. [PMID: 27110445 PMCID: PMC4834931 DOI: 10.1002/brb3.422] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 11/19/2015] [Accepted: 11/23/2015] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION There is emerging evidence that brain atrophy is a part of the pathophysiology of Multiple Sclerosis (MS) and correlates with several clinical outcomes of the disease, both physical and cognitive. Consequently, brain atrophy is becoming an important parameter in patients' follow-up. Since in clinical practice both 1.5Tesla (T) and 3T magnetic resonance imaging (MRI) systems are used for MS patients follow-up, questions arise regarding compatibility and a possible need for standardization. METHODS Therefore, in this study 18 MS patients were scanned on the same day on a 1.5T and a 3T scanner. For each scanner, a 3D T1 and a 3D FLAIR were acquired. As no atrophy is expected within 1 day, these datasets can be used to evaluate the median percentage error of the brain volume measurement for gray matter (GM) volume and parenchymal volume (PV) between 1.5T and 3T scanners. The results are obtained with MSmetrix, which is developed especially for use in the MS clinical care path, and compared to Siena (FSL), a widely used software for research purposes. RESULTS The MSmetrix median percentage error of the brain volume measurement between a 1.5T and a 3T scanner is 0.52% for GM and 0.35% for PV. For Siena this error equals 2.99%. When data of the same scanner are compared, the error is in the order of 0.06-0.08% for both MSmetrix and Siena. CONCLUSIONS MSmetrix appears robust on both the 1.5T and 3T systems and the measurement error becomes an order of magnitude higher between scanners with different field strength.
Collapse
Affiliation(s)
| | - Julie Absil
- Department of Radiology Hôpital Erasme Université Libre de Bruxelles Anderlecht Belgium
| | - Thierry Metens
- Department of Radiology Hôpital Erasme Université Libre de Bruxelles Anderlecht Belgium
| | - Nicolas Mavroudakis
- Department of Neurology Hôpital Erasme Université Libre de Bruxelles Anderlecht Belgium
| | - François Guisset
- Department of Neurology Hôpital Erasme Université Libre de Bruxelles Anderlecht Belgium
| | | | | | - Philippe David
- Department of Radiology Hôpital Erasme Université Libre de Bruxelles Anderlecht Belgium
| | | | | |
Collapse
|
19
|
Tsivgoulis G, Katsanos AH, Grigoriadis N, Hadjigeorgiou GM, Heliopoulos I, Papathanasopoulos P, Dardiotis E, Kilidireas C, Voumvourakis K. The effect of disease-modifying therapies on brain atrophy in patients with clinically isolated syndrome: a systematic review and meta-analysis. Ther Adv Neurol Disord 2015; 8:193-202. [PMID: 26557896 DOI: 10.1177/1756285615600381] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Brain atrophy is associated with cognitive deficits in patients with clinically isolated syndrome (CIS) and can predict conversion to clinical definite multiple sclerosis. The aim of the present meta-analysis was to evaluate the effect of disease-modifying drugs (DMDs) on brain atrophy in patients with CIS. METHODS Eligible placebo-control randomized clinical trials of patients with CIS that had reported changes in brain volume during the study period were identified by searching the MEDLINE, SCOPUS, and Cochrane Central Register of Controlled Trials (CENTRAL) databases. This meta-analysis adopted the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for systematic reviews and meta-analyses. RESULTS Three eligible studies were identified, comprising 1362 patients. The mean percentage change in brain volume was found to be significantly lower in DMD-treated patients versus placebo-treated subgroups (standardized mean difference [SMD]: = -0.13, 95% confidence interval [CI]: -0.25, 0.01; p = 0.04). In the subgroup analysis of the two studies that provided data on brain-volume changes for the first (0-12 months) and second (13-24 months) year of treatment, DMD attenuated brain-volume loss in comparison with placebo during the second year (SMD = -0.25; 95% CI: -0.43, -0.07; p < 0.001), but not during the first year of treatment (SMD = -0.01; 95% CI: -0.27, 0.24; p = 0.93). No evidence of heterogeneity was found between estimates, while funnel-plot inspection revealed no evidence of publication bias. CONCLUSIONS DMDs appear to attenuate brain atrophy over time in patients with CIS. The effect of DMDs on brain-volume loss is evident after the first year of treatment.
Collapse
Affiliation(s)
- Georgios Tsivgoulis
- Second Department of Neurology, School of Medicine, University of Athens, Iras 39, Gerakas Attikis, Athens, 15344, Greece
| | - Aristeidis H Katsanos
- Second Department of Neurology, 'Attikon' Hospital, School of Medicine, University of Athens, Athens, Greece
| | - Nikolaos Grigoriadis
- Second Department of Neurology, 'AHEPA' University Hospital, Aristotelion University of Thessaloniki, Thessaloniki, Greece
| | - Georgios M Hadjigeorgiou
- Department of Neurology, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - Ioannis Heliopoulos
- Department of Neurology, Alexandroupolis University Hospital, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - Constantinos Kilidireas
- First Department of Neurology, 'Eginition' Hospital, School of Medicine, University of Athens, Athens, Greece
| | - Konstantinos Voumvourakis
- Second Department of Neurology, 'Attikon' Hospital, School of Medicine, University of Athens, Athens, Greece
| | | |
Collapse
|
20
|
Galego O, Gouveia A, Batista S, Moura C, Machado E. Brain atrophy and physical disability in primary progressive multiple sclerosis: A volumetric study. Neuroradiol J 2015; 28:354-8. [PMID: 26246109 DOI: 10.1177/1971400915594984] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED Grey matter atrophy has been shown in primary progressive multiple sclerosis (PPMS), but its association with physical incapacity is unclear. We submitted 19 patients with PPMS to a neurological evaluation and brain magnetic resonance imaging (MRI) with volumetric analysis using FreeSurfer. We found no relation between the Expanded Disability Status Scale or disease duration and the grey matter or white matter structures analysed. Lesion load was negatively correlated with cortical and subcortical grey matter volumes, but not with total white matter volume. We concluded that physical disability in PPMS is not directly related to brain atrophy and that focal inflammatory white matter lesions may contribute to progressive neuronal degeneration. INTRODUCTION Primary progressive multiple sclerosis (PPMS) is characterized by chronic progression since onset, with predominant involvement of the spinal cord and prominent neurodegeneration. Grey matter atrophy has been shown in patients with PPMS, but its association with clinical incapacity is uncertain. We investigated the relationship between regional brain atrophy and physical disability in patients with PPMS. METHODS Patients with an established diagnosis of PPMS underwent a neurological evaluation followed by brain MRI at 1.5 T. Volumetric analysis was performed with FreeSurfer software, and evaluated the neocortex, total white matter, total subcortical grey matter, putamen, caudate, globus pallidus, thalamus, hippocampus, brainstem, corpus callosum and pre-central gyrus volumes. Clinical data obtained included physical disability as measured by the Expanded Disability Status Scale (EDSS). RESULTS Nineteen patients were included, 14 female (73.7%), mean age of 55.7 (SD 7.6) and mean disease duration of 13.0 years (SD 8.8). Median EDSS score was 6.0 (3.5-8.0). The average T1 lesion load (4.9 cm³, SD 3.4) and T2 load (10.5 cm³, SD 9.9) did not relate to disease duration. There was no significant correlation between EDSS score or disease duration and the cortical grey matter, deep grey matter or white matter structures analysed. Lesion load was negatively correlated with cortical and subcortical grey matter volumes (p < 0.05), but not with total white matter volume. CONCLUSIONS Physical disability in PPMS is not directly related to brain volume loss. Grey matter atrophy correlates with lesion load in patients with PPMS, indicating that focal inflammatory white matter lesions may contribute to progressive neuronal degeneration.
Collapse
Affiliation(s)
- Orlando Galego
- Coimbra Hospital and University Centre, Department of Neuroradiology, Coimbra, Portugal
| | - Ana Gouveia
- Coimbra Hospital and University Centre, Department of Neurology, Coimbra, Portugal
| | - Sónia Batista
- Coimbra Hospital and University Centre, Department of Neurology, Coimbra, Portugal
| | - Cristina Moura
- Coimbra Hospital and University Centre, Department of Neuroradiology, Coimbra, Portugal
| | - Egídio Machado
- Coimbra Hospital and University Centre, Department of Neuroradiology, Coimbra, Portugal
| |
Collapse
|
21
|
Cognitive impairment and memory disorders in relapsing-remitting multiple sclerosis: the role of white matter, gray matter and hippocampus. J Neurol 2015; 262:1691-7. [PMID: 25957638 DOI: 10.1007/s00415-015-7763-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 01/21/2023]
Abstract
Cognitive disorders occur in up to 65 % of multiple sclerosis (MS) patients; they have been correlated with different MRI measures of brain tissue damage, whole and regional brain atrophy. The hippocampal involvement has been poorly investigated in cognitively impaired (CI) MS patients. The objective of this study is to analyze and compare brain tissue abnormalities, including hippocampal atrophy, in relapsing-remitting MS (RRMS) patients with and without cognitive deficits, and to investigate their role in determining cognitive impairment in MS. Forty-six RRMS patients [20 CI and 26 cognitively preserved (CP)] and 25 age, sex and education-matched healthy controls (HCs) underwent neuropsychological evaluation and 3-Tesla anatomical MRI. T2 lesion load (T2-LL) was computed with a semiautomatic method, gray matter volume and white matter volume were estimated using SIENAX. Hippocampal volume (HV) was obtained by manual segmentation. Brain tissues volumes were compared among groups and correlated with cognitive performances. Compared to HCs, RRMS patients had significant atrophy of WM, GM, left and right Hippocampus (p < 0.001). Compared to CP, CI RRMS patients showed higher T2-LL (p = 0.02) and WM atrophy (p = 0.01). In the whole RRMS group, several cognitive tests correlated with brain tissue abnormalities (T2-LL, WM and GM atrophy); only verbal memory performances correlated with left hippocampal atrophy. Our results emphasize the role of T2-LL and WM atrophy in determining clinically evident cognitive impairment in MS patients and provide evidence that GM and hippocampal atrophy occur in MS patients regardless of cognitive status.
Collapse
|
22
|
Tsivgoulis G, Katsanos AH, Grigoriadis N, Hadjigeorgiou GM, Heliopoulos I, Kilidireas C, Voumvourakis K. The effect of disease modifying therapies on brain atrophy in patients with relapsing-remitting multiple sclerosis: a systematic review and meta-analysis. PLoS One 2015; 10:e0116511. [PMID: 25756363 PMCID: PMC4355592 DOI: 10.1371/journal.pone.0116511] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/10/2014] [Indexed: 11/18/2022] Open
Abstract
Background The aim of the present meta-analysis was to evaluate the effect of disease-modifying drugs (DMD) on brain atrophy in patients with relapsing-remitting multiple sclerosis (RRMS) using available randomized-controlled trial (RCT) data. Methods We conducted a systematic review and meta-analysis according to PRISMA guidelines of all available RCTs of patients with RRMS that reported data on brain volume measurements during the study period. Results We identified 4 eligible studies, including a total of 1819 RRMS patients (71% women, mean age 36.5 years, mean baseline EDSS-score: 2.4). The mean percentage change in brain volume was found to be significantly lower in DMD versus placebo subgroup (standardized mean difference: -0.19; 95%CI: -0.27–-0.11; p<0.001). We detected no evidence of heterogeneity between estimates (I2 = 30%, p = 0.19) nor publication bias in the Funnel plots. Sensitivity analyses stratifying studies according to brain atrophy neuroimaging protocol disclosed no evidence of heterogeneity (p = 0.16). In meta-regression analyses, the percentage change in brain volume was found to be inversely related with duration of observation period in both DMD (meta-regression slope = -0.03; 95% CI: -0.04–-0.02; p<0.001) and placebo subgroups (meta-regression slope = -0.05; 95% CI: -0.06–-0.04; p<0.001). However, the rate of percentage brain volume loss over time was greater in placebo than in DMD subgroup (p = 0.017, ANCOVA). Conclusions DMD appear to be effective in attenuating brain atrophy in comparison to placebo and their benefit in delaying the rate of brain volume loss increases linearly with longer treatment duration.
Collapse
Affiliation(s)
- Georgios Tsivgoulis
- Second Department of Neurology, “Attikon” Hospital, School of Medicine, University of Athens, Athens, Greece
- Department of Neurology, The University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- International Clinical Research Center, Department of Neurology, St. Anne’s University Hospital in Brno, Brno, Czech Republic
- * E-mail:
| | - Aristeidis H. Katsanos
- Second Department of Neurology, “Attikon” Hospital, School of Medicine, University of Athens, Athens, Greece
- Department of Neurology, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Nikolaos Grigoriadis
- Second Department of Neurology, “AHEPA” University Hospital, Aristotelion University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | | | - Ioannis Heliopoulos
- Department of Neurology, Alexandroupolis University Hospital, Democritus University of Thrace, Alexandroupolis, Greece
| | - Constantinos Kilidireas
- First Department of Neurology, “Eginition” Hospital, School of Medicine, University of Athens, Athens, Greece
| | - Konstantinos Voumvourakis
- Second Department of Neurology, “Attikon” Hospital, School of Medicine, University of Athens, Athens, Greece
| |
Collapse
|
23
|
Oligodendrocyte gap junction loss and disconnection from reactive astrocytes in multiple sclerosis gray matter. J Neuropathol Exp Neurol 2014; 73:865-79. [PMID: 25101702 DOI: 10.1097/nen.0000000000000106] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Gap junctions are essential for glial cell function and have been increasingly implicated in multiple sclerosis (MS). Because increasing cortical abnormalities correlate with disease progression and cognitive dysfunction, we examined the expression of oligodendrocytic connexin32 (Cx32) and Cx47 and their astrocytic partners Cx30 and Cx43 in cortical lesions and normal-appearing gray matter (NAGM) in MS patients. Postmortem brain tissue samples from 9 MS cases were compared with 10 controls using real-time polymerase chain reaction, immunoblot, and immunohistochemical analyses. Connexin32 and Cx47 gap junction formation in oligodendrocytes was reduced within lesions, whereas Cx32 loss also extended to NAGM. In contrast, astrocytic Cx30 expression was increased within cortical lesions, whereas Cx43 was elevated in both lesions and NAGM. Diffuse microglial activation and marked astrogliotic changes accompanied these connexin abnormalities. Increased expression of Cx43 correlated with inflammatory load (r = 0.828, p = 0.042), whereas Cx32 expression correlated with longer disease duration and, therefore, milder course (r = 0.825, p = 0.043). Thus, there is a loss of intramyelin and intercellular oligodendrocyte gap junctions in MS gray matter lesions and NAGM, whereas interastrocytic gap junctions are increased, reflecting astrogliosis. These changes correlate with inflammation and disease duration and suggest that disconnection of oligodendrocytes from reactive astrocytes may play a role in failed remyelination and disease progression.
Collapse
|
24
|
Liu S, Shen G, Deng S, Wang X, Wu Q, Guo A. Hyperbaric oxygen therapy improves cognitive functioning after brain injury. Neural Regen Res 2014; 8:3334-43. [PMID: 25206655 PMCID: PMC4145948 DOI: 10.3969/j.issn.1673-5374.2013.35.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/02/2013] [Indexed: 01/09/2023] Open
Abstract
Hyperbaric oxygen therapy has been widely applied and recognized in the treatment of brain injury; however, the correlation between the protective effect of hyperbaric oxygen therapy and changes of metabolites in the brain remains unclear. To investigate the effect and potential mechanism of hyperbaric oxygen therapy on cognitive functioning in rats, we established traumatic brain injury models using Feeney's free falling method. We treated rat models with hyperbaric oxygen therapy at 0.2 MPa for 60 minutes per day. The Morris water maze test for spatial navigation showed that the average escape latency was significantly prolonged and cognitive function decreased in rats with brain injury. After treatment with hyperbaric oxygen therapy for 1 and 2 weeks, the rats’ spatial learning and memory abilities were improved. Hydrogen proton magnetic resonance spectroscopy analysis showed that the N-acetylaspartate/creatine ratio in the hippocampal CA3 region was significantly increased at 1 week, and the N-acetylaspartate/choline ratio was significantly increased at 2 weeks after hyperbaric oxygen therapy. Nissl staining and immunohistochemical staining showed that the number of nerve cells and Nissl bodies in the hippocampal CA3 region was significantly increased, and glial fibrillary acidic protein positive cells were decreased after a 2-week hyperbaric oxygen therapy treatment. Our findings indicate that hyperbaric oxygen therapy significantly improves cognitive functioning in rats with traumatic brain injury, and the potential mechanism is mediated by metabolic changes and nerve cell restoration in the hippocampal CA3 region.
Collapse
Affiliation(s)
- Su Liu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Guangyu Shen
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Shukun Deng
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Xiubin Wang
- Department of Imaging, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Qinfeng Wu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Aisong Guo
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
25
|
Lee JY, Taghian K, Petratos S. Axonal degeneration in multiple sclerosis: can we predict and prevent permanent disability? Acta Neuropathol Commun 2014; 2:97. [PMID: 25159125 PMCID: PMC4243718 DOI: 10.1186/s40478-014-0097-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 08/06/2014] [Indexed: 12/24/2022] Open
Abstract
Axonal degeneration is a major determinant of permanent neurological impairment during multiple sclerosis (MS). Due to the variable course of clinical disease and the heterogeneity of MS lesions, the mechanisms governing axonal degeneration may differ between disease stages. While the etiology of MS remains elusive, there now exist potential prognostic biomarkers that can predict the conversion to clinically definite MS. Specialized imaging techniques identifying axonal injury and drop-out are becoming established in clinical practice as a predictive measure of MS progression, such as optical coherence tomography (OCT) or diffusion tensor imaging (DTI). However, these imaging techniques are still being debated as predictive biomarkers since controversy surrounds their lesion-specific association with expanded disability status scale (EDSS). A more promising diagnostic measure of axonal degeneration has been argued for the detection of reduced N-acetyl aspartate (NAA) and Creatine ratios via magnetic resonance spectroscopic (MRS) imaging, but again fail with its specificity for predicting actual axonal degeneration. Greater accuracy of predictive biomarkers is therefore warranted and may include CSF neurofilament light chain (NF-L) and neurofilament heavy chain (NF-H) levels, for progressive MS. Furthermore, defining the molecular mechanisms that occur during the neurodegenerative changes in the various subgroups of MS may in fact prove vital for the future development of efficacious neuroprotective therapies. The clinical translation of a combined Na+ and Ca2+ channel blocker may lead to the establishment of a bona fide neuroprotective agent for the treatment of progressive MS. However, more specific therapeutic targets to limit axonal damage in MS need investigation and may include such integral axonal proteins such as the collapsin response mediator protein-2 (CRMP-2), a molecule which upon post-translational modification may propagate axonal degeneration in MS. In this review, we discuss the current clinical determinants of axonal damage in MS and consider the cellular and molecular mechanisms that may initiate these neurodegenerative changes. In particular we highlight the therapeutic candidates that may formulate novel therapeutic strategies to limit axonal degeneration and EDSS during progressive MS.
Collapse
|
26
|
Niino M, Mifune N, Kohriyama T, Mori M, Ohashi T, Kawachi I, Shimizu Y, Fukaura H, Nakashima I, Kusunoki S, Miyamoto K, Yoshida K, Kanda T, Nomura K, Yamamura T, Yoshii F, Kira JI, Nakane S, Yokoyama K, Matsui M, Miyazaki Y, Kikuchi S. Association of cognitive impairment with magnetic resonance imaging findings and social activities in patients with multiple sclerosis. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/cen3.12133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Masaaki Niino
- Department of Clinical Research; Hokkaido Medical Center; Sapporo Japan
| | - Nobuhiro Mifune
- School of Management; Kochi University of Technology; Kochi Japan
| | - Tatsuo Kohriyama
- Department of Neurology; Hiroshima City Hospital; Hiroshima Japan
| | - Masahiro Mori
- Department of Neurology; Graduate School of Medicine; Chiba University; Chiba Japan
| | - Takashi Ohashi
- Department of Neurology; Tokyo Women's Medical University Yachiyo Medical Center; Chiba Japan
| | - Izumi Kawachi
- Department of Neurology; Brain Research Institute; Niigata University; Niigata Japan
| | - Yuko Shimizu
- Department of Neurology; Tokyo Women's Medical University School of Medicine; Tokyo Japan
| | - Hikoaki Fukaura
- Department of Neurology; Iwate Medical School; Morioka Japan
- Department of Neurology; Saitama Medical Center; Saitama Medical University; Saitama Japan
| | - Ichiro Nakashima
- Department of Neurology; Tohoku University School of Medicine; Sendai Japan
| | - Susumu Kusunoki
- Department of Neurology; Kinki University School of Medicine; Osaka Japan
| | - Katsuichi Miyamoto
- Department of Neurology; Kinki University School of Medicine; Osaka Japan
| | - Kazuto Yoshida
- Department of Neurology; Asahikawa Red Cross Hospital; Asahikawa Japan
| | - Takashi Kanda
- Department of Neurology and Clinical Neuroscience; Yamaguchi University Graduate School of Medicine; Yamaguchi Japan
| | - Kyoichi Nomura
- Department of Neurology; Saitama Medical Center; Saitama Medical University; Saitama Japan
| | - Takashi Yamamura
- Department of Immunology; National Institute of Neuroscience; National Center of Neurology and Psychiatry; Tokyo Japan
| | - Fumihito Yoshii
- Department of Neurology; Tokai University School of Medicine; Kanagawa Japan
| | - Jun-ichi Kira
- Department of Neurology; Neurological Institute; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| | - Shunya Nakane
- Department of Clinical Research; Nagasaki Kawatana Medical Center; Nagasaki Japan
| | - Kazumasa Yokoyama
- Department of Neurology; Juntendo University School of Medicine; Tokyo Japan
| | - Makoto Matsui
- Department of Neurology; Kanazawa Medical University; Ishikawa Japan
| | - Yusei Miyazaki
- Department of Neurology; Hokkaido Medical Center; Sapporo Japan
| | - Seiji Kikuchi
- Department of Neurology; Hokkaido Medical Center; Sapporo Japan
| |
Collapse
|
27
|
Pokryszko-Dragan A, Bladowska J, Zimny A, Slotwinski K, Zagrajek M, Gruszka E, Bilinska M, Sasiadek M, Podemski R. Magnetic resonance spectroscopy findings as related to fatigue and cognitive performance in multiple sclerosis patients with mild disability. J Neurol Sci 2014; 339:35-40. [DOI: 10.1016/j.jns.2014.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 01/04/2014] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
|
28
|
Gray V, Arnett P. Aging with multiple sclerosis: cognitive, emotional and neuropathological considerations. Neurodegener Dis Manag 2014; 4:187-94. [DOI: 10.2217/nmt.14.12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY Although individuals aging with multiple sclerosis (MS) can experience a compounding of their symptoms, in some circumstances they become more adept at coping with aging-related changes. Fortunately, individuals aging with MS often adjust well to aging, particularly if they have sufficient social support. They also do not appear to show accelerated rates of cognitive decline, and rates of some neuropathological changes have been shown to normalize compared with those seen in normal aging. Results are mixed as to whether older MS patients have higher rates of depression.
Collapse
|
29
|
Bonnan M. Intrathecal immune reset in multiple sclerosis: exploring a new concept. Med Hypotheses 2013; 82:300-9. [PMID: 24417802 DOI: 10.1016/j.mehy.2013.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/10/2013] [Accepted: 12/19/2013] [Indexed: 01/06/2023]
Abstract
Multiple sclerosis impairment is mainly driven by the progressive phase, whose pathology remains elusive. No drug has yet been able to halt this phase so therapeutic management remains challenging. It was recently demonstrated that late disability correlates with the spreading of cortical subpial lesions, and tertiary lymphoid organs (TLO) were identified in close apposition with these lesions. TLO are of crucial importance since they are able to mount a complete local immune response, as observed in the intrathecal compartment from the moment MS is diagnosed (i.e. oligoclonal bands). This article examines the consequences of this intrathecal response: giving a worst clinical prognostic value and bearing arguments for possible direct brain toxicity, intrathecal secretion should be targeted by drugs abating both B-lymphocytes and plasma cells. Another consequence is that intrathecal secretion has value as a surrogate marker of the persistence of an ongoing intrathecal immune reaction after treatment. Although it is still unsure which mechanism or byproduct secreted by TLO triggers cortical lesions, we propose to target TLO components as a new therapeutic avenue in progressive MS. Whereas it was long considered that the inability of therapies to penetrate the blood-brain-barrier was a crucial obstacle, our proposed strategy will take advantage of the properties of the BBB to safely reset the intrathecal immune system in order to halt the slow axonal burning underlying secondary MS. We review the literature in support of the rationale for treating MS with intrathecal drugs dedicated to clearing the local immune response. Since many targets are involved, achieving this goal may require a combination of monoclonal antibodies targeting each cell sub-type. Hope might be rekindled with a one-shot intrathecal multi-drug treatment in progressive MS.
Collapse
Affiliation(s)
- Mickael Bonnan
- Service de Neurologie, Hôpital F. Mitterrand, 4 bd Hauterive, 64046 Pau, France.
| |
Collapse
|
30
|
Trojan DA, Narayanan S, Francis SJ, Caramanos Z, Robinson A, Cardoso M, Arnold DL. Brain Volume and Fatigue in Patients With Postpoliomyelitis Syndrome. PM R 2013; 6:215-20. [DOI: 10.1016/j.pmrj.2013.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 09/12/2013] [Accepted: 09/15/2013] [Indexed: 02/04/2023]
|
31
|
Petsas N, Tinelli E, Lenzi D, Tomassini V, Sbardella E, Tona F, Raz E, Nucciarelli V, Pozzilli C, Pantano P. Evidence of impaired brain activity balance after passive sensorimotor stimulation in multiple sclerosis. PLoS One 2013; 8:e65315. [PMID: 23799005 PMCID: PMC3682993 DOI: 10.1371/journal.pone.0065315] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 04/29/2013] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Examination of sensorimotor activation alone in multiple sclerosis (MS) patients may not yield a comprehensive view of cerebral response to task stimulation. Additional information may be obtained by examining the negative BOLD response (deactivation). Aim of this work was to characterize activation and deactivation patterns during passive hand movements in MS patients. METHODS 13 relapsing remitting-MS patients (RRMS), 18 secondary progressive-MS patients (SPMS) and 15 healthy controls (HC) underwent an fMRI study during passive right-hand movements. Activation and deactivation contrasts in the three groups were entered into ANOVA, age and gender corrected. Post-hoc analysis was performed with one-sample and two-sample t-tests. For each patient we obtained lesion volume (LV) from both T1- and T2-weighted images. RESULTS Activations showed a progressive extension to the ipsilateral brain hemisphere according to the group and the clinical form (HC<RRMS<SPMS). Significant deactivation of the ipsilateral cortical sensorimotor areas was reduced in both patient groups with respect to HC. Deactivation of posterior cortical areas belonging to the default mode network (DMN), was increased in RRMS, but not in SPMS, with respect to HC. The amount of activation in the contralateral sensorimotor cortex was significantly correlated with that of deactivation in the DMN in HC and RRMS, but not in SPMS. Both increased activation and decreased deactivation patterns correlated with LV. CONCLUSION In RRMS patients, increased cortical activation was associated with increased deactivation of the posterior cortex suggesting a greater resting-state activity in the DMN, probably aimed at facilitating sensorimotor circuit engagement during task performance. In SPMS the coupling between increased sensorimotor activation/increased DMN deactivation was not observed suggesting disorganization between anticorrelated functional networks as a consequence of a higher level of disconnection.
Collapse
Affiliation(s)
- Nikolaos Petsas
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bester M, Lazar M, Petracca M, Babb JS, Herbert J, Grossman RI, Inglese M. Tract-specific white matter correlates of fatigue and cognitive impairment in benign multiple sclerosis. J Neurol Sci 2013; 330:61-6. [PMID: 23643443 DOI: 10.1016/j.jns.2013.04.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/28/2013] [Accepted: 04/02/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND Although benign multiple sclerosis (BMS) is traditionally defined by the presence of mild motor involvement decades after disease onset, symptoms of fatigue and cognitive impairment are very common. OBJECTIVE To investigate the association between micro-structural damage in the anterior thalamic (AT) tracts and in the corpus callosum (CC), as measured by diffusion tensor imaging (DTI) tractography, and fatigue and cognitive deficits. METHODS DTI data were acquired from 26 BMS patients and 24 sex- and age-matched healthy controls. RESULTS General and mental fatigue scores were significantly impaired in patients compared with controls (p≤0.05 for both) and 38% of patients resulted cognitively impaired. Mean diffusivity (MD) of the AT and CC tracts was significantly higher and fractional anisotropy (FA) was lower in patients compared with controls (p<0.001 for all). Fatigue was associated with increased MD (p=0.01) of the AT tracts whereas deficit of executive functions and verbal learning were associated with decreased FA in the body (p=0.004) and genu (p=0.008) of the CC. Deficits in processing speed and attention were associated with the T2 lesion volume of the AT tracts (p<0.01 for all). DISCUSSION These findings suggest that fatigue and cognitive impairment are quite frequent in BMS patients and are, at least in part, related to micro-structural damage and T2LV of WM tracts connecting the brain cortical and sub-cortical regions of the two hemispheres.
Collapse
Affiliation(s)
- Maxim Bester
- Department of Radiology, New York University, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
DTI Measurements in Multiple Sclerosis: Evaluation of Brain Damage and Clinical Implications. Mult Scler Int 2013; 2013:671730. [PMID: 23606965 PMCID: PMC3628664 DOI: 10.1155/2013/671730] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 02/20/2013] [Accepted: 03/05/2013] [Indexed: 11/18/2022] Open
Abstract
Diffusion tensor imaging (DTI) is an effective means of quantifying parameters of demyelination and axonal loss. The application of DTI in Multiple Sclerosis (MS) has yielded noteworthy results. DTI abnormalities, which are already detectable in patients with clinically isolated syndrome (CIS), become more pronounced as disease duration and neurological impairment increase. The assessment of the microstructural alterations of white and grey matter in MS may shed light on mechanisms responsible for irreversible disability accumulation. In this paper, we examine the DTI analysis methods, the results obtained in the various tissues of the central nervous system, and correlations with clinical features and other MRI parameters. The adoption of DTI metrics to assess the outcome of prognostic measures may represent an extremely important step forward in the MS research field.
Collapse
|
34
|
Relevance of brain lesion location to cognition in relapsing multiple sclerosis. PLoS One 2012; 7:e44826. [PMID: 23144775 PMCID: PMC3489883 DOI: 10.1371/journal.pone.0044826] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 08/07/2012] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE To assess the relationship between cognition and brain white matter (WM) lesion distribution and frequency in patients with relapsing-remitting multiple sclerosis (RR MS). METHODS MRI-based T2 lesion probability map (LPM) was used to assess the relevance of brain lesion location for cognitive impairment in a group of 142 consecutive patients with RRMS. Significance of voxelwise analyses was p<0.05, cluster-corrected for multiple comparisons. The Rao Brief Repeatable Battery was administered at the time of brain MRI to categorize the MS population into cognitively preserved (CP) and cognitively impaired (CI). RESULTS Out of 142 RRMS, 106 were classified as CP and 36 as CI. Although the CI group had greater WM lesion volume than the CP group (p = 0.001), T2 lesions tended to be less widespread across the WM. The peak of lesion frequency was almost twice higher in CI (61% in the forceps major) than in CP patients (37% in the posterior corona radiata). The voxelwise analysis confirmed that lesion frequency was higher in CI than in CP patients with significant bilateral clusters in the forceps major and in the splenium of the corpus callosum (p<0.05, corrected). Low scores of the Symbol Digit Modalities Test correlated with higher lesion frequency in these WM regions. CONCLUSIONS Overall these results suggest that in MS patients, areas relevant for cognition lie mostly in the commissural fiber tracts. This supports the notion of a functional (multiple) disconnection between grey matter structures, secondary to damage located in specific WM areas, as one of the most important mechanisms leading to cognitive impairment in MS.
Collapse
|
35
|
Brooks JBB, Borela MCM, Fragoso YD. Assessment of cognition using the Rao's Brief Repeatable Battery of Neuropsychological Tests on a group of Brazilian patients with multiple sclerosis. ARQUIVOS DE NEURO-PSIQUIATRIA 2012; 69:887-91. [PMID: 22297873 DOI: 10.1590/s0004-282x2011000700007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 06/20/2011] [Indexed: 11/22/2022]
Abstract
UNLABELLED To assess the cognition of patients with multiple sclerosis (MS) using the Rao's Brief Repeatable Battery of Neuropsychological Tests (BRB-N). METHOD BRB-N was translated and adapted for control subjects. Subsequently, it was applied to a group of patients with relapsing-remitting (RR) MS. RESULTS The assessment on the healthy controls (n=47) showed that the correlation between tests on the same cognitive domain was high and that there was a five-factor solution that explained 90% of the total variance. Except for the Word List Generation subset of tests, the performance of patients with RRMS (n=39) was worse than that of the healthy controls. CONCLUSION BRB-N is a relatively simple method to assess cognition of patients with MS in the daily clinic. It does not take long to apply and does not require special skills or equipment.
Collapse
|
36
|
Tur C, Ciccarelli O. An overview of the association between gray matter damage and cognitive impairment in multiple sclerosis. Neurodegener Dis Manag 2012. [DOI: 10.2217/nmt.12.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY In multiple sclerosis (MS), cognitive impairment can be present in up to 70% of patients. Although pathological processes underlying cognitive impairment are complex, there is growing evidence that gray matter (GM) damage plays a crucial role in determining cognitive dysfunction. All forms of GM damage, namely GM volume loss, damage in the normal-appearing GM and cortical lesions have been found to be related to cognitive decline in patients with MS. GM can also be involved in cognitive impairment in the context of cortical reorganization, which is probably an adaptive phenomenon, the failure of which has been reported to be associated with cognitive impairment. In this review, the evidence for the involvement of GM damage in cognitive impairment in MS and the future directions of research are discussed.
Collapse
Affiliation(s)
- Carmen Tur
- Multiple Sclerosis Centre of Catalonia (CEM-Cat), Vall d’Hebron University Hospital, Barcelona, Spain
| | - Olga Ciccarelli
- Department of Brain Repair & Rehabilitation, University College London, Institute of Neurology, Queen Square, London, UK
| |
Collapse
|
37
|
Neuropathologic Correlates of Magnetic Resonance Imaging in Multiple Sclerosis. J Neuropathol Exp Neurol 2012; 71:762-78. [DOI: 10.1097/nen.0b013e3182676388] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
38
|
Reynolds R, Roncaroli F, Nicholas R, Radotra B, Gveric D, Howell O. The neuropathological basis of clinical progression in multiple sclerosis. Acta Neuropathol 2011; 122:155-70. [PMID: 21626034 DOI: 10.1007/s00401-011-0840-0] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Accepted: 05/18/2011] [Indexed: 01/01/2023]
Abstract
Multiple sclerosis is the major inflammatory condition affecting the central nervous system (CNS) and is characterised by disseminated focal immune-mediated demyelination. Demyelination is accompanied by variable axonal damage and loss and reactive gliosis. It is this pathology that is thought to be responsible for the clinical relapses that often respond well to immunomodulatory therapy. However, the later secondary progressive stage of MS remains largely refractory to treatment and it is widely suggested that accumulating axon loss is responsible for clinical progression. Although initially thought to be a white matter (WM) disease, it is increasingly apparent that extensive pathology is also seen in the grey matter (GM) throughout the CNS. GM pathology is characterised by demyelination in the relative absence of an immune cell infiltrate. Neuronal loss is also seen both in the GM lesions and in unaffected areas of the GM. The slow progressive nature of this later stage combined with the presence of extensive grey matter pathology has led to the suggestion that neurodegeneration might play an increasing role with increasing disease duration. However, there is a paucity of studies that have correlated the pathological features with clinical milestones during secondary progressive MS. Here, we review the contributions that the various types of pathology are likely to make to the increasing neurological deficit in MS.
Collapse
Affiliation(s)
- Richard Reynolds
- Wolfson Neuroscience Laboratories, Division of Experimental Medicine, UK Multiple Sclerosis Tissue Bank, Centre for Neuroscience, Imperial Faculty of Medicine College London, Hammersmith Hospital Campus, UK.
| | | | | | | | | | | |
Collapse
|