1
|
Liu C, Miao R, Raza F, Qian H, Tian X. Research progress and challenges of TRPV1 channel modulators as a prospective therapy for diabetic neuropathic pain. Eur J Med Chem 2022; 245:114893. [DOI: 10.1016/j.ejmech.2022.114893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
2
|
Deng SY, Tang XC, Chang YC, Xu ZZ, Chen QY, Cao N, Kong LJY, Wang Y, Ma KT, Li L, Si JQ. Improving NKCC1 Function Increases the Excitability of DRG Neurons Exacerbating Pain Induced After TRPV1 Activation of Primary Sensory Neurons. Front Cell Neurosci 2021; 15:665596. [PMID: 34113239 PMCID: PMC8185156 DOI: 10.3389/fncel.2021.665596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/13/2021] [Indexed: 11/13/2022] Open
Abstract
Background Our aim was to investigate the effects of the protein expression and the function of sodium, potassium, and chloride co-transporter (NKCC1) in the dorsal root ganglion (DRG) after activation of transient receptor potential vanilloid 1 receptor (TRPV1) in capsaicin-induced acute inflammatory pain and the possible mechanism of action. Methods Male Sprague–Dawley rats were randomly divided into control, capsaicin, and inhibitor groups. The expression and distribution of TRPV1 and NKCC1 in rat DRG were observed by immunofluorescence. Thermal radiation and acetone test were used to detect the pain threshold of heat and cold noxious stimulation in each group. The expressions of NKCC1 mRNA, NKCC1 protein, and p-NKCC1 in the DRG were detected by PCR and western blotting (WB). Patch clamp and chloride fluorescent probe were used to observe the changes of GABA activation current and intracellular chloride concentration. After intrathecal injection of protein kinase C (PKC) inhibitor (GF109203X) or MEK/extracellular signal-regulated kinase (ERK) inhibitor (U0126), the behavioral changes and the expression of NKCC1 and p-ERK protein in L4–6 DRG were observed. Result: TRPV1 and NKCC1 were co-expressed in the DRG. Compared with the control group, the immunofluorescence intensity of NKCC1 and p-NKCC1 in the capsaicin group was significantly higher, and the expression of NKCC1 in the nuclear membrane was significantly higher than that in the control group. The expression of NKCC1 mRNA and protein of NKCC1 and p-NKCC1 in the capsaicin group were higher than those in the control group. After capsaicin injection, GF109203X inhibited the protein expression of NKCC1 and p-ERK, while U0126 inhibited the protein expression of NKCC1. In the capsaicin group, paw withdrawal thermal latency (WTL) was decreased, while cold withdrawal latency (CWL) was prolonged. Bumetanide, GF109203X, or U0126 could reverse the effect. GABA activation current significantly increased in the DRG cells of the capsaicin group, which could be reversed by bumetanide. The concentration of chloride in the DRG cells of the capsaicin group increased, but decreased after bumetanide, GF109203X, and U0126 were administered. Conclusion Activation of TRPV1 by exogenous agonists can increase the expression and function of NKCC1 protein in DRG, which is mediated by activation of PKC/p-ERK signaling pathway. These results suggest that DRG NKCC1 may participate in the inflammatory pain induced by TRPV1.
Collapse
Affiliation(s)
- Shi-Yu Deng
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,Department of Anesthesia, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Xue-Chun Tang
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.,Department of Cardiology, First Affiliated Hospital of Shihezi University, Shihezi, China
| | - Yue-Chen Chang
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.,Medical Teaching Experimental Center, Shihezi University Medical College, Shihezi, China
| | - Zhen-Zhen Xu
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.,Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin-Yi Chen
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,Department of Anesthesiology, Xiangyang Central Hospital, Xiangyang Central Hospital, China
| | - Nan Cao
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Liang-Jing-Yuan Kong
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Yang Wang
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Ke-Tao Ma
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Li Li
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.,Department of Physiology, Medical College of Jiaxing University, Jiaxing, China
| | - Jun-Qiang Si
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| |
Collapse
|
3
|
Hossain MZ, Ando H, Unno S, Kitagawa J. Targeting Peripherally Restricted Cannabinoid Receptor 1, Cannabinoid Receptor 2, and Endocannabinoid-Degrading Enzymes for the Treatment of Neuropathic Pain Including Neuropathic Orofacial Pain. Int J Mol Sci 2020; 21:E1423. [PMID: 32093166 PMCID: PMC7073137 DOI: 10.3390/ijms21041423] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
Neuropathic pain conditions including neuropathic orofacial pain (NOP) are difficult to treat. Contemporary therapeutic agents for neuropathic pain are often ineffective in relieving pain and are associated with various adverse effects. Finding new options for treating neuropathic pain is a major priority in pain-related research. Cannabinoid-based therapeutic strategies have emerged as promising new options. Cannabinoids mainly act on cannabinoid 1 (CB1) and 2 (CB2) receptors, and the former is widely distributed in the brain. The therapeutic significance of cannabinoids is masked by their adverse effects including sedation, motor impairment, addiction and cognitive impairment, which are thought to be mediated by CB1 receptors in the brain. Alternative approaches have been developed to overcome this problem by selectively targeting CB2 receptors, peripherally restricted CB1 receptors and endocannabinoids that may be locally synthesized on demand at sites where their actions are pertinent. Many preclinical studies have reported that these strategies are effective for treating neuropathic pain and produce no or minimal side effects. Recently, we observed that inhibition of degradation of a major endocannabinoid, 2-arachydonoylglycerol, can attenuate NOP following trigeminal nerve injury in mice. This review will discuss the above-mentioned alternative approaches that show potential for treating neuropathic pain including NOP.
Collapse
Affiliation(s)
- Mohammad Zakir Hossain
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan; (S.U.); (J.K.)
| | - Hiroshi Ando
- Department of Biology, School of Dentistry, Matsumoto Dental University, 1780 Gobara, Hirooka, Shiojiri, Nagano 399-0781, Japan;
| | - Shumpei Unno
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan; (S.U.); (J.K.)
| | - Junichi Kitagawa
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan; (S.U.); (J.K.)
| |
Collapse
|
4
|
Tarragon E, Moreno JJ. Cannabinoids, Chemical Senses, and Regulation of Feeding Behavior. Chem Senses 2020; 44:73-89. [PMID: 30481264 DOI: 10.1093/chemse/bjy068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The herb Cannabis sativa has been traditionally used in many cultures and all over the world for thousands of years as medicine and recreation. However, because it was brought to the Western world in the late 19th century, its use has been a source of controversy with respect to its physiological effects as well as the generation of specific behaviors. In this regard, the CB1 receptor represents the most relevant target molecule of cannabinoid components on nervous system and whole-body energy homeostasis. Thus, the promotion of CB1 signaling can increase appetite and stimulate feeding, whereas blockade of CB1 suppresses hunger and induces hypophagia. Taste and flavor are sensory experiences involving the oral perception of food-derived chemicals and drive a primal sense of acceptable or unacceptable for what is sampled. Therefore, research within the last decades focused on deciphering the effect of cannabinoids on the chemical senses involved in food perception and consequently in the pattern of feeding. In this review, we summarize the data on the effect of cannabinoids on chemical senses and their influences on food intake control and feeding behavior.
Collapse
Affiliation(s)
- Ernesto Tarragon
- Department of Psychobiology, Faculty of Health Sciences, University Jaume I of Castellon, Castellon, Spain.,Department of Psychobiology and Methodology on Behavioral Sciences, Faculty of Psychology, Universidad Complutense de Madrid, Campus de Somosaguas, Ctra. de Húmera, Madrid, Spain
| | - Juan José Moreno
- Department of Nutrition, Food Sciences and Gastronomy, Institute of Nutrition and Food Safety, University of Barcelona, Campus Torribera, Barcelona, Spain.,IBEROBN Fisiopatologia de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
5
|
Zhang YY, Song N, Liu F, Lin J, Liu MK, Huang CL, Liao DQ, Zhou C, Wang H, Shen JF. Activation of the RAS/B-RAF-MEK-ERK pathway in satellite glial cells contributes to substance p-mediated orofacial pain. Eur J Neurosci 2019; 51:2205-2218. [PMID: 31705725 DOI: 10.1111/ejn.14619] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/11/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023]
Abstract
The cross talk between trigeminal ganglion (TG) neurons and satellite glial cells (SGCs) is crucial for the regulation of inflammatory orofacial pain. Substance P (SP) plays an important role by activating neurokinin (NK)-I receptors in this cross talk. The activation of extracellular signal-regulated kinase (ERK) 1/2, protein kinase A (PKA) and protein kinase C (PKC) in neurons and SGCs of peripheral ganglions by peripheral inflammation is associated with inflammatory hypersensitivity. This study tested the hypothesis that SP evoked SP-NK-I receptor positive feedback via the Renin-Angiotensin System/B-Protein Kinase A-Rapidly Accelerates Fibrosarcoma-MEK-Extracellular Signal-Regulated Kinase (RAS/PKA-RAF-MEK-ERK) pathway, which is involved in pain hypersensitivity. Inflammatory models were induced in vivo by injecting Complete Freund's adjuvant (CFA) into the whisker pad of rats. SP was administrated to SGCs in vitro for investigating, whether SP regulates the expression of NK-I receptor in the SGC nucleus. The effects of RAS-RAF-MEK, PKA and PKC pathways in this process were measured by co-incubating SGCs with respective Raf, PKA, PKC and MEK inhibitors in vitro and by pre-injecting these inhibitors into the TG in vivo. SP significantly upregulated NK-I receptor, p-ERK1/2, Ras, B-Raf, PKA and PKC in SGCs under inflammatory conditions. In addition, L703,606 (NK-I receptor antagonist), U0126 (MEK inhibitor), Sorafenib (Raf inhibitor) and H892HCL (PKA inhibitor) but not chelerythrine chloride (PKC inhibitor) significantly decreased NK-I mRNA and protein levels induced by SP. The allodynia-related behavior evoked by CFA was inhibited by pre-injection of L703,606, U0126, Sorafenib and H892HCL into the TG. Overall, SP upregulates NK-I receptor in TG SGCs via PKA/RAS-RAF-MEK-ERK pathway activation, contributing to a positive feedback of SP-NK-I receptor in inflammatory orofacial pain.
Collapse
Affiliation(s)
- Yan-Yan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ning Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Meng-Ke Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chao-Lan Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Da-Qing Liao
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China
| | - Hang Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Gambino G, Rizzo V, Giglia G, Ferraro G, Sardo P. Cannabinoids, TRPV and nitric oxide: the three ring circus of neuronal excitability. Brain Struct Funct 2019; 225:1-15. [PMID: 31792694 DOI: 10.1007/s00429-019-01992-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022]
Abstract
Endocannabinoid system is considered a relevant player in the regulation of neuronal excitability, since it contributes to maintaining the balance of the synaptic ionic milieu. Perturbations to bioelectric conductances have been implicated in the pathophysiological processes leading to hyperexcitability and epileptic seizures. Cannabinoid influence on neurosignalling is exerted on classic receptor-mediated mechanisms or on further molecular targets. Among these, transient receptor potential vanilloid (TRPV) are ionic channels modulated by cannabinoids that are involved in the transduction of a plethora of stimuli and trigger fundamental downstream pathways in the post-synaptic site. In this review, we aim at providing a brief summary of the most recent data about the cross-talk between cannabinoid system and TRPV channels, drawing attention on their role on neuronal hyperexcitability. Then, we aim to unveil a plausible point of interaction between these neural signalling systems taking into consideration nitric oxide, a gaseous molecule inducing profound modifications to neural performances. From this novel perspective, we struggle to propose innovative cellular mechanisms in the regulation of hyperexcitability phenomena, with the goal of exploring plausible CB-related mechanisms underpinning epileptic seizures.
Collapse
Affiliation(s)
- Giuditta Gambino
- Department of Experimental Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Sezione di Fisiologia Umana G. Pagano, University of Palermo, Corso Tukory 129, Palermo, Italy.
| | - Valerio Rizzo
- Department of Experimental Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Sezione di Fisiologia Umana G. Pagano, University of Palermo, Corso Tukory 129, Palermo, Italy
| | - Giuseppe Giglia
- Department of Experimental Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Sezione di Fisiologia Umana G. Pagano, University of Palermo, Corso Tukory 129, Palermo, Italy
| | - Giuseppe Ferraro
- Department of Experimental Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Sezione di Fisiologia Umana G. Pagano, University of Palermo, Corso Tukory 129, Palermo, Italy
| | - Pierangelo Sardo
- Department of Experimental Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Sezione di Fisiologia Umana G. Pagano, University of Palermo, Corso Tukory 129, Palermo, Italy
| |
Collapse
|
7
|
McConachie SM, Caputo RA, Wilhelm SM, Kale-Pradhan PB. Efficacy of Capsaicin for the Treatment of Cannabinoid Hyperemesis Syndrome: A Systematic Review. Ann Pharmacother 2019; 53:1145-1152. [DOI: 10.1177/1060028019852601] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objective: Cannabinoid hyperemesis syndrome (CHS) is characterized by cyclic vomiting, abdominal pain, and alleviation of symptoms via hot showers in chronic cannabinoid users. Capsaicin is recommended as a reasonable first-line treatment approach for CHS despite limited clinical evidence regarding its use. The objective of this study is to systematically review the efficacy data for capsaicin in CHS. Data Sources: A literature search using keywords related to cannabinoids, emesis, and capsaicin was performed in MEDLINE, CINAHL, and EMBASE from inception through March 31, 2019. Study Selection and Data Extraction: Studies and published abstracts in which capsaicin was used for CHS and clinical outcomes were reported were eligible for inclusion. Data Synthesis: A total of 241 articles were screened, of which 5 full-text articles and 6 conference abstracts were included. Full-text case reports (n = 3) and case series (n = 2) found capsaicin to be effective in a total of 18 patients. Published abstracts were in the form of case reports (n = 1), case series (n = 3), and retrospective cohort studies (n = 2). Relevance to Patient Care and Clinical Practice: Capsaicin use was described as beneficial in all case series and case reports; however, both retrospective cohort studies were unable to find a significant benefit for capsaicin on primary outcomes (emergency department length of stay). Conclusion: Current data for capsaicin efficacy in CHS is of low methodological quality. However, the limited data on alternative antiemetic therapies and capsaicin’s favorable risk-benefit profile make it a reasonable adjunctive treatment option.
Collapse
Affiliation(s)
- Sean M. McConachie
- Wayne State University, Detroit, MI, USA
- Beaumont Hospital, Dearborn, MI, USA
| | | | | | | |
Collapse
|
8
|
Guo R, Zhou Y, Long H, Shan D, Wen J, Hu H, Yang H, Wu Z, Lai W. Transient receptor potential Vanilloid 1-based gene therapy alleviates orthodontic pain in rats. Int J Oral Sci 2019; 11:11. [PMID: 30853711 PMCID: PMC6409362 DOI: 10.1038/s41368-019-0044-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/06/2018] [Accepted: 12/13/2018] [Indexed: 02/05/2023] Open
Abstract
Orthodontic pain that is induced by tooth movement is an important sequela of orthodontic treatment and has a significant effect on patient quality of life. Studies have shown that the high expression of transient receptor potential vanilloid 1 (TRPV1) in trigeminal ganglions plays a vital role in the transmission and modulation of orofacial pain. However, little is known about the role of TRPV1 in orthodontic pain. In this study, male Sprague-Dawley rats were randomly assigned to six groups to study the role of TRPV1 in the modulation of tooth-movement pain. The expression levels of TRPV1 mRNA and protein were determined by real-time PCR and western blot, respectively. Moreover, pain levels were assessed using the rat grimace scale (RGS). The role of TRPV1 in modulating tooth-movement pain was examined by injecting a TRPV1 antagonist into the trigeminal ganglia of rats. A lentivirus containing a TRPV1 shRNA sequence was constructed and transduced into the rats' trigeminal ganglia. The results showed that the expression levels of TRPV1 protein and mRNA were elevated following tooth-movement pain. Pain levels increased rapidly on the 1st day, peaked on the 3rd day and returned to baseline on the 14th day. The TRPV1 antagonist significantly reduced tooth-movement pain. The lentivirus containing a TRPV1 shRNA sequence was able to inhibit the expression of TRPV1 and relieved tooth-movement pain. In conclusion, TRPV1-based gene therapy may be a treatment strategy for the relief of orthodontic pain.
Collapse
Affiliation(s)
- Rui Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hu Long
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Di Shan
- Jiangsu Key Laboratory of Oral Diseases, Department of Orthodontics, Stomatology Hospital Affiliated with Nanjing Medical University, Nanjing, China
| | - Jing Wen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Huimin Hu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hong Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhouqiang Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenli Lai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Cannabinoid CB1 and CB2 receptors differentially modulate L- and T-type Ca 2+ channels in rat retinal ganglion cells. Neuropharmacology 2017; 124:143-156. [PMID: 28431968 DOI: 10.1016/j.neuropharm.2017.04.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/15/2017] [Accepted: 04/17/2017] [Indexed: 01/09/2023]
Abstract
Endocannabinoid signaling system is involved in regulating multiple neuronal functions in the central nervous system by activating G-protein coupled cannabinoid CB1 and CB2 receptors (CB1Rs and CB2Rs). Growing evidence has shown that CB1Rs and CB2Rs are extensively expressed in retinal ganglion cells (RGCs). Here, modulation of L- and T-types Ca2+ channels by activating CB1Rs and CB2Rs in RGCs was investigated. Triple immunofluorescent staining showed that L-type subunit CaV1.2 was co-localized with T-type subunits (CaV3.1, CaV3.2 and CaV3.3) in rat RGCs. In acutely isolated rat RGCs, the CB1R agonist WIN55212-2 suppressed both peak and steady-state Ca2+ currents in a dose-dependent manner, with IC50 being 9.6 μM and 8.4 μM, respectively. It was further shown that activation of CB1Rs by WIN55212-2 or ACEA, another CB1R agonist, significantly suppressed both L- and T-type Ca2+ currents, and shifted inactivation curve of T-type one toward hyperpolarization direction. While the effect on L-type Ca2+ channels was mediated by intracellular cAMP/protein kinase A (PKA), mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) and calcium/calmodulin-dependent protein kinase II (CaMKII) signaling pathways, only CaMKII signaling pathway was involved in the effect on T-type Ca2+ channels. Furthermore, CB65 and HU308, two specific CB2R agonists, significantly suppressed T-type Ca2+ channels, which was mediated by intracellular cAMP/PKA and CaMKII signaling pathways, but had no effect on L-type channels. These results imply that endogenous cannabinoids may modulate the excitability and the output of RGCs by differentially suppressing the activity of L- and T-type Ca2+ channels through activation of CB1Rs and CB2Rs. This article is part of the Special Issue entitled "A New Dawn in Cannabinoid Neurobiology".
Collapse
|
10
|
Carletti F, Gambino G, Rizzo V, Ferraro G, Sardo P. Involvement of TRPV1 channels in the activity of the cannabinoid WIN 55,212-2 in an acute rat model of temporal lobe epilepsy. Epilepsy Res 2016; 122:56-65. [PMID: 26970948 DOI: 10.1016/j.eplepsyres.2016.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/18/2016] [Accepted: 02/09/2016] [Indexed: 10/21/2022]
Abstract
The exogenous cannabinoid agonist WIN 55,212-2, (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl) pyrrolo[1,2,3-de]-1,4-benzoxazin-6-Yl]-1-naphthalenylmethanone (WIN), has revealed to play a role on modulating the hyperexcitability phenomena in the hippocampus. Cannabinoid-mediated mechanisms of neuroprotection have recently been found to imply the modulation of transient receptor potential vanilloid 1 (TRPV1), a cationic channel subfamily that regulate synaptic excitation. In our study, we assessed the influence of pharmacological manipulation of TRPV1 function, alone and on WIN antiepileptic activity, in the Maximal Dentate Activation (MDA) acute model of temporal lobe epilepsy. Our results showed that the TRPV1 agonist, capsaicin, increased epileptic outcomes; whilst antagonizing TRPV1 with capsazepine exerts a protective role on paroxysmal discharge. When capsaicin is co-administered with WIN effective dose of 10mg/kg is able to reduce its antiepileptic strength, especially on the triggering of MDA response. Accordingly, capsazepine at the protective dose of 2mg/kg managed to potentiate WIN antiepileptic effects, when co-treated. Moreover, WIN subeffective dose of 5mg/kg was turned into effective when capsazepine comes into play. This evidence suggests that systemic administration of TRPV1-active drugs influences electrically induced epilepsy, with a noticeable protective activity for capsazepine. Furthermore, results from the pharmacological interaction with WIN support an interplay between cannabinoid and TRPV1 signaling that could represent a promising approach for a future pharmacological strategy to challenge hyperexcitability-based diseases.
Collapse
Affiliation(s)
- Fabio Carletti
- Department of "Biomedicina Sperimentale e Neuroscienze Cliniche" (Bio.Ne.C.), "Sezione di Fisiologia umana G. Pagano", University of Palermo, Corso Tukory 129-90134 Palermo, Italy.
| | - Giuditta Gambino
- Department of "Biomedicina Sperimentale e Neuroscienze Cliniche" (Bio.Ne.C.), "Sezione di Fisiologia umana G. Pagano", University of Palermo, Corso Tukory 129-90134 Palermo, Italy.
| | - Valerio Rizzo
- Department of "Biomedicina Sperimentale e Neuroscienze Cliniche" (Bio.Ne.C.), "Sezione di Fisiologia umana G. Pagano", University of Palermo, Corso Tukory 129-90134 Palermo, Italy.
| | - Giuseppe Ferraro
- Department of "Biomedicina Sperimentale e Neuroscienze Cliniche" (Bio.Ne.C.), "Sezione di Fisiologia umana G. Pagano", University of Palermo, Corso Tukory 129-90134 Palermo, Italy.
| | - Pierangelo Sardo
- Department of "Biomedicina Sperimentale e Neuroscienze Cliniche" (Bio.Ne.C.), "Sezione di Fisiologia umana G. Pagano", University of Palermo, Corso Tukory 129-90134 Palermo, Italy.
| |
Collapse
|
11
|
Lipina C, Hundal HS. Modulation of cellular redox homeostasis by the endocannabinoid system. Open Biol 2016; 6:150276. [PMID: 27248801 PMCID: PMC4852457 DOI: 10.1098/rsob.150276] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/01/2016] [Indexed: 02/06/2023] Open
Abstract
The endocannabinoid system (ECS) and reactive oxygen species (ROS) constitute two key cellular signalling systems that participate in the modulation of diverse cellular functions. Importantly, growing evidence suggests that cross-talk between these two prominent signalling systems acts to modulate functionality of the ECS as well as redox homeostasis in different cell types. Herein, we review and discuss evidence pertaining to ECS-induced regulation of ROS generating and scavenging mechanisms, as well as highlighting emerging work that supports redox modulation of ECS function. Functionally, the studies outlined reveal that interactions between the ECS and ROS signalling systems can be both stimulatory and inhibitory in nature, depending on cell stimulus, the source of ROS species and cell context. Importantly, such cross-talk may act to maintain cell function, whereas abnormalities in either system may propagate and undermine the stability of both systems, thereby contributing to various pathologies associated with their dysregulation.
Collapse
Affiliation(s)
- Christopher Lipina
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Harinder S Hundal
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
12
|
Yin S, Wang ZF, Duan JG, Ji L, Lu XJ. Extraction (DSX) from Erigeron breviscapus modulates outward potassium currents in rat retinal ganglion cells. Int J Ophthalmol 2015; 8:1101-6. [PMID: 26682155 DOI: 10.3980/j.issn.2222-3959.2015.06.04] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 04/15/2015] [Indexed: 02/02/2023] Open
Abstract
AIM To investigate the effect of DSX, an active component extracted from Erigeron breviscapus, on the voltage-gated outward K(+) channel currents in rat retinal ganglion cells (RGCs) by using electrophysiological method, and to explore the possible mechanisms of DSX on optic nerve protection. METHODS Outward K(+) currents were recorded by using whole-cell patch-clamp techniques on acutely isolated rat RGCs. Outward K(+) currents were induced by a series of depolarizing voltage pulses from a holding potential of -70 mV to +20 mV in an increment of 10 mV. RESULTS Extracellular application of DSX voltage-dependently suppressed both the steady-state and peak current amplitudes of outward K(+) currents in rat RGCs. Furthermore, DSX reversibly and dose-dependently inhibited the amplitudes of outward K(+) currents of the cells. At +20 mV membrane potential DSX at the concentrations of 0.02 g/L and 0.05 g/L showed no significant effects on the currents. In contrast, DSX at higher concentrations (0.1 g/L, 0.2 g/L and 0.5 g/L) significantly suppressed the current amplitudes. CONCLUSION These results suggest that DSX reversibly and dose-dependently suppress outward K(+) channel currents in rat RGCs, which may be one of the possible mechanisms underlying Erigeron breviscapus prevents vision loss and RGC damage caused by glaucoma.
Collapse
Affiliation(s)
- Shuo Yin
- Key Laboratory for Visual Function and Ophthalmopathy, Chengdu University of Traditional Chinese Medicine, Chengdu 610032, Sichuan Province, China
| | - Zhong-Feng Wang
- Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Jun-Guo Duan
- Key Laboratory for Visual Function and Ophthalmopathy, Chengdu University of Traditional Chinese Medicine, Chengdu 610032, Sichuan Province, China
| | - Lu Ji
- Key Laboratory for Visual Function and Ophthalmopathy, Chengdu University of Traditional Chinese Medicine, Chengdu 610032, Sichuan Province, China
| | - Xue-Jing Lu
- Key Laboratory for Visual Function and Ophthalmopathy, Chengdu University of Traditional Chinese Medicine, Chengdu 610032, Sichuan Province, China
| |
Collapse
|
13
|
Nguelefack TB, Dutra RC, Paszcuk AF, de Andrade EL, Calixto JB. TRPV1 channel inhibition contributes to the antinociceptive effects of Croton macrostachyus extract in mice. Altern Ther Health Med 2015; 15:293. [PMID: 26303910 PMCID: PMC4548910 DOI: 10.1186/s12906-015-0816-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 08/10/2015] [Indexed: 12/28/2022]
Abstract
Background Previous study showed that extracts from Croton macrostachyus (Euphorbiaceae) exhibit analgesic effects in acute pain models. The present study evaluates the antinociceptive properties of the methanol/methylene chloride extract (MECM) of the stem bark of this plant using mice models of persistent inflammatory and neuropathic pain, and assesses its mechanism of action. Methods MECM was tested on Complete Freund adjuvant (CFA)-induced persistent thermal and mechanical pain, neuropathic pain induced by partial sciatic nerve ligation (PSNL), prostaglandin E2 (PGE2)-induced acute mechanical hyperalgesia, as well as on nociception induced by capsaicin in mice. Mechanical hyperalgesia was assessed using von Frey hair in awake mice. The mechanism of action of MECM was evaluated by using glibenclamide on PGE2-induced hyperalgesia or rimonabant on capsaicin-induced pain. Results MECM administered orally at the doses of 250 and 500 mg/kg, induced long lasting and significant antihyperalgesic effects on CFA-inflammatory and PSNL-induced neuropathic pain. MECM significantly reduced the mechanical hyperalgesia induced by PGE2 either when administered preventively or therapeutically. MECM also significantly and time dependently inhibited the capsaicin-induced nociception. These effects were not affected by glibenclamide or by rimonabant. Conclusions The present results demonstrate that the oral administration of MECM to mice resulted in long lasting antihyperalgesic activity in inflammatory and neuropathic pain as well as in acute and persistent pain. The mechanism underlying the long lasting MECM antihyperalgesic effect is currently unknown, but might be mediated, at least partially, through the modulation of TRPV1 receptors.
Collapse
|
14
|
McDonough P, McKenna JP, McCreary C, Downer EJ. Neuropathic orofacial pain: cannabinoids as a therapeutic avenue. Int J Biochem Cell Biol 2014; 55:72-8. [PMID: 25150831 DOI: 10.1016/j.biocel.2014.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/07/2014] [Accepted: 08/09/2014] [Indexed: 01/09/2023]
Abstract
Neuropathic orofacial pain (NOP) exists in several forms including pathologies such as burning mouth syndrome (BMS), persistent idiopathic facial pain (PIFP), trigeminal neuralgia (TN) and postherpetic neuralgia (PHN). BMS and PIFP are classically diagnosed by excluding other facial pain syndromes. TN and PHN are most often diagnosed based on a typical history and presenting pain characteristics. The pathophysiology of some of these conditions is still unclear and hence treatment options tend to vary and include a wide variety of treatments including cognitive behaviour therapy, anti-depressants, anti-convulsants and opioids; however such treatments often have limited efficacy with a great amount of inter-patient variability and poorly tolerated side effects. Analgesia is one the principal therapeutic targets of the cannabinoid system and many studies have demonstrated the efficacy of cannabinoid compounds in the treatment of neuropathic pain. This review will investigate the potential use of cannabinoids in the treatment of symptoms associated with NOP.
Collapse
Affiliation(s)
- Patrick McDonough
- Cork University Dental School and Hospital, University College Cork, Cork, Ireland
| | - Joseph P McKenna
- Cork University Dental School and Hospital, University College Cork, Cork, Ireland
| | - Christine McCreary
- Cork University Dental School and Hospital, University College Cork, Cork, Ireland
| | - Eric J Downer
- Department of Anatomy and Neuroscience, Western Gateway Building, University College Cork, Cork, Ireland.
| |
Collapse
|
15
|
Zhang CQ, Wu HJ, Wang SY, Yin S, Lu XJ, Miao Y, Wang XH, Yang XL, Wang Z. Suppression of outward K⁺ currents by WIN55212-2 in rat retinal ganglion cells is independent of CB1/CB2 receptors. Neuroscience 2013; 253:183-93. [PMID: 24013008 DOI: 10.1016/j.neuroscience.2013.08.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 08/25/2013] [Accepted: 08/26/2013] [Indexed: 10/26/2022]
Abstract
Cannabinoid CB1 receptor (CB1R) signaling system is extensively distributed in the vertebrate retina. Activation of CB1Rs regulates a variety of functions of retinal neurons through modulating different ion channels. In the present work we studied effects of this receptor signaling on K(+) channels in retinal ganglion cells by patch-clamp techniques. The CB1R agonist WIN55212-2 (WIN) suppressed outward K(+) currents in acutely isolated rat retinal ganglion cells in a dose-dependent manner, with an IC50 of 4.7 μM. We further showed that WIN mainly suppressed the tetraethylammonium (TEA)-sensitive K(+) current component. While CB1Rs were expressed in rat retinal ganglion cells, the WIN effect on K(+) currents was not blocked by either AM251/SR141716, specific CB1R antagonists, or AM630, a selective CB2R antagonist. Consistently, cAMP-protein kinase A (PKA) and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling pathways were unlikely involved in the WIN-induced suppression of the K(+) currents because both PKA inhibitors H-89/Rp-cAMP and MAPK/ERK1/2 inhibitor U0126 failed to block the WIN effects. WIN-induced suppression of the K(+) currents was not observed when WIN was intracellularly applied. Furthermore, an endogenous ligand of the cannabinoid receptor anandamide, the specific CB1R agonist ACEA and the selective CB2R agonist CB65 also suppressed the K(+) currents, and the effects were not blocked by AM251/SR141716 or AM630 respectively. All these results suggest that the WIN-induced suppression of the outward K(+) currents in rat retinal ganglion cells, thereby regulating the cell excitability, were not through CB1R/CB2R signaling pathways.
Collapse
Affiliation(s)
- C-Q Zhang
- Institutes of Brain Science, Institute of Neurobiology and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Chen D, Wang Z, Zhang Z, Zhang R, Yu L. Capsaicin up-regulates protease-activated receptor-4 mRNA and protein in primary cultured dorsal root ganglion neurons. Cell Mol Neurobiol 2013; 33:337-46. [PMID: 23274964 PMCID: PMC11497916 DOI: 10.1007/s10571-012-9899-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 12/07/2012] [Indexed: 01/22/2023]
Abstract
Previous study has shown that there is a functional link between the transient receptor potential vanilloid type 1 (TRPV1) receptor and protease-activated receptor-4 (PAR4) in modulation of inflammation and pain. Capsaicin activation of TRPV1 is involved in enhancement of the expression of TRPV1 in mRNA and protein in dorsal root ganglion (DRG) in vivo. Whether capsaicin could influence expression of PAR4 in primary sensory neurons remains unknown. In the present study, expression of PAR4 in cultured rat DRG neurons was observed using immunofluorescence, real-time PCR and Western blots to examine whether increases in PAR4 mRNA and protein levels are induced by capsaicin treatment with or without pre-treatment of forskolin, a cyclic AMP/protein kinase A (cAMP/PKA) activator or PKA inhibitor fragment 14-22 (PKI14-22), a PKA inhibitor. Capsaicin treatment of cultured DRG neurons significantly increased the expression of PAR4 in mRNA and protein levels. The percentage of PAR4-, TRPV1-immunoreactive neurons and their co-localization in cultured DRG neurons increased significantly in the presence of capsaicin as compared with that in the absence of capsaicin. Compared with capsaicin-only group, pre-incubation with forskolin strongly enhanced the capsaicin-induced increase of PAR4 in mRNA and protein levels. Consistent with the involvement of PKA in the modulation of PAR4 expression, this evoked expression both at mRNA and protein levels was significantly inhibited after PKA was inhibited by pre-incubation with PKI14-22. Taken together, these results provide evidence that TRPV1 activation significantly increases the expression of PAR4 mRNA and protein levels in primary cultures of DRG neurons after capsaicin incubation. Effects of capsaicin on PAR4 expression appear to be mediated by cAMP/PKA signal pathways in DRG neurons.
Collapse
Affiliation(s)
- Dan Chen
- Department of Anatomy, Taishan Medical University, Taian, 271000 Shandong Province China
| | - Zhaojin Wang
- Department of Anatomy, Taishan Medical University, Taian, 271000 Shandong Province China
| | - Zaifeng Zhang
- Department of Anatomy, Taishan Medical University, Taian, 271000 Shandong Province China
| | - Rui Zhang
- Department of Anatomy, Taishan Medical University, Taian, 271000 Shandong Province China
| | - Lianfeng Yu
- Department of Anatomy, Taishan Medical University, Taian, 271000 Shandong Province China
| |
Collapse
|
17
|
Yang Y, Yang H, Wang Z, Varadaraj K, Kumari SS, Mergler S, Okada Y, Saika S, Kingsley PJ, Marnett LJ, Reinach PS. Cannabinoid receptor 1 suppresses transient receptor potential vanilloid 1-induced inflammatory responses to corneal injury. Cell Signal 2012; 25:501-11. [PMID: 23142606 DOI: 10.1016/j.cellsig.2012.10.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/09/2012] [Accepted: 10/16/2012] [Indexed: 10/27/2022]
Abstract
Cannabinoid receptor type 1 (CB1)-induced suppression of transient receptor potential vanilloid type 1 (TRPV1) activation provides a therapeutic option to reduce inflammation and pain in different animal disease models through mechanisms involving dampening of TRPV1 activation and signaling events. As we found in both mouse corneal epithelium and human corneal epithelial cells (HCEC) that there is CB1 and TRPV1 expression colocalization based on overlap of coimmunostaining, we determined in mouse corneal wound healing models and in human corneal epithelial cells (HCEC) if they interact with one another to reduce TRPV1-induced inflammatory and scarring responses. Corneal epithelial debridement elicited in vivo a more rapid wound healing response in wildtype (WT) than in CB1(-/-) mice suggesting functional interaction between CB1 and TRPV1. CB1 activation by injury is tenable based on the identification in mouse corneas of 2-arachidonylglycerol (2-AG) with tandem LC-MS/MS, a selective endocannabinoid CB1 ligand. Suppression of corneal TRPV1 activation by CB1 is indicated since following alkali burning, CB1 activation with WIN55,212-2 (WIN) reduced immune cell stromal infiltration and scarring. Western blot analysis of coimmunoprecipitates identified protein-protein interaction between CB1 and TRPV1. Other immunocomplexes were also identified containing transforming growth factor kinase 1 (TAK1), TRPV1 and CB1. CB1 siRNA gene silencing prevented suppression by WIN of TRPV1-induced TAK1-JNK1 signaling. WIN reduced TRPV1-induced Ca(2+) transients in fura2-loaded HCEC whereas pertussis toxin (PTX) preincubation obviated suppression by WIN of such rises caused by capsaicin (CAP). Whole cell patch clamp analysis of HCEC showed that WIN blocked subsequent CAP-induced increases in nonselective outward currents. Taken together, CB1 activation by injury-induced release of endocannabinoids such as 2-AG downregulates TRPV1 mediated inflammation and corneal opacification. Such suppression occurs through protein-protein interaction between TRPV1 and CB1 leading to declines in TRPV1 phosphorylation status. CB1 activation of the GTP binding protein, G(i/o) contributes to CB1 mediated TRPV1 dephosphorylation leading to TRPV1 desensitization, declines in TRPV1-induced increases in currents and pro-inflammatory signaling events.
Collapse
Affiliation(s)
- Y Yang
- Biological Sciences, SUNY College of Optometry, NY 10036, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Carvalho AF, Van Bockstaele EJ. Cannabinoid modulation of noradrenergic circuits: implications for psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2012; 38:59-67. [PMID: 22296986 PMCID: PMC3351574 DOI: 10.1016/j.pnpbp.2012.01.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 01/17/2012] [Accepted: 01/17/2012] [Indexed: 12/17/2022]
Abstract
The interaction between the endocannabinoid system and catecholaminergic circuits has gained increasing attention as it is recognized that the development of synthetic cannabinoid receptor agonists/antagonists or compounds targeting endocannabinoid synthesis/metabolism may hold some therapeutic potential for the treatment of psychiatric disorders. The noradrenergic system plays a critical role in the modulation of emotional state, primarily related to anxiety, arousal, and stress. Recent evidence suggests that the endocannabinoid system mediates stress responses and emotional homeostasis, in part, by targeting noradrenergic circuits. This review summarizes our current knowledge regarding the anatomical substrates underlying regulation of noradrenergic circuitry by the endocannabinoid system. It then presents biochemical evidence showing an important effect of cannabinoid modulation on adrenergic receptor signaling. Finally, new evidence from behavioral pharmacology studies is provided demonstrating that norepinephrine is a critical determinant of cannabinoid-induced aversion, adding another dimension to how central noradrenergic circuitry is regulated by the cannabinoid system.
Collapse
Affiliation(s)
- Ana Franky Carvalho
- Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA, USA,Life and Health Science Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal,ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | |
Collapse
|