1
|
Alfei S, Zuccari G. Ellagic Acid: A Green Multi-Target Weapon That Reduces Oxidative Stress and Inflammation to Prevent and Improve the Condition of Alzheimer's Disease. Int J Mol Sci 2025; 26:844. [PMID: 39859559 PMCID: PMC11766176 DOI: 10.3390/ijms26020844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Oxidative stress (OS), generated by the overrun of reactive species of oxygen and nitrogen (RONS), is the key cause of several human diseases. With inflammation, OS is responsible for the onset and development of clinical signs and the pathological hallmarks of Alzheimer's disease (AD). AD is a multifactorial chronic neurodegenerative syndrome indicated by a form of progressive dementia associated with aging. While one-target drugs only soften its symptoms while generating drug resistance, multi-target polyphenols from fruits and vegetables, such as ellagitannins (ETs), ellagic acid (EA), and urolithins (UROs), having potent antioxidant and radical scavenging effects capable of counteracting OS, could be new green options to treat human degenerative diseases, thus representing hopeful alternatives and/or adjuvants to one-target drugs to ameliorate AD. Unfortunately, in vivo ETs are not absorbed, while providing mainly ellagic acid (EA), which, due to its trivial water-solubility and first-pass effect, metabolizes in the intestine to yield UROs, or irreversible binding to cellular DNA and proteins, which have very low bioavailability, thus failing as a therapeutic in vivo. Currently, only UROs have confirmed the beneficial effect demonstrated in vitro by reaching tissues to the extent necessary for therapeutic outcomes. Unfortunately, upon the administration of food rich in ETs or ETs and EA, URO formation is affected by extreme interindividual variability that renders them unreliable as novel clinically usable drugs. Significant attention has therefore been paid specifically to multitarget EA, which is incessantly investigated as such or nanotechnologically manipulated to be a potential "lead compound" with protective action toward AD. An overview of the multi-factorial and multi-target aspects that characterize AD and polyphenol activity, respectively, as well as the traditional and/or innovative clinical treatments available to treat AD, constitutes the opening of this work. Upon focus on the pathophysiology of OS and on EA's chemical features and mechanisms leading to its antioxidant activity, an all-around updated analysis of the current EA-rich foods and EA involvement in the field of AD is provided. The possible clinical usage of EA to treat AD is discussed, reporting results of its applications in vitro, in vivo, and during clinical trials. A critical view of the need for more extensive use of the most rapid diagnostic methods to detect AD from its early symptoms is also included in this work.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genova, Italy
| | - Guendalina Zuccari
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genova, Italy
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genoa, Italy
| |
Collapse
|
2
|
Ghazaee H, Raouf Sheibani A, Mahdian H, Gholami S, Askari VR, Baradaran Rahimi V. Ellagic acid as potential therapeutic compound for diabetes and its complications: a systematic review from bench to bed. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9345-9366. [PMID: 38980410 DOI: 10.1007/s00210-024-03280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Diabetes mellitus (DM) is a worldwide-concerning disease with a rising prevalence. There are many ongoing studies aimed at finding new and effective treatments. Ellagic acid (EA) is a natural polyphenolic compound abundant in certain fruits and vegetables. It is the objective of this investigation to assess the effectiveness and preventive mechanisms of EA on DM and associated complications. This systematic review used PubMed, Scopus, and Google Scholar as search databases using a predetermined protocol from inception to June 2024. We assessed all related English studies, including in vitro, in vivo, and clinical trials. EA counteracted DM and its complications by diminishing inflammation, oxidative stress, hyperglycemia, apoptosis, insulin resistance, obesity, lipid profile, and histopathological alterations. Several mechanisms contributed to the anti-diabetic effect of EA, the most significant being the upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), peroxisome proliferator-activated receptor gamma (PPAR-γ), protein kinase B, and downregulation of nuclear factor-kappa-B (NF-κB) gene expression. EA also revealed protective effects against diabetes complications, such as diabetic-induced hepatic damage, testicular damage, endothelial dysfunction, muscle dysfunction, retinopathy, nephropathy, cardiomyopathy, neuropathy, and behavioral deficit. Administration of EA could have various protective effects in preventing, treating, and alleviating DM and its complications. Although it could be considered a cost-effective, safe, and accessible treatment, to fully establish the effectiveness of EA as a medication for DM, it is crucial to conduct further well-designed studies.
Collapse
Affiliation(s)
- Hossein Ghazaee
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Raouf Sheibani
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Haniyeh Mahdian
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shamim Gholami
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Azadi Sq, Vakil Abad Highway, Mashhad, 9177948564, Iran.
| |
Collapse
|
3
|
Moreira P, Macedo J, Matos P, Bicker J, Fortuna A, Figueirinha A, Salgueiro L, Batista MT, Silva A, Silva S, Resende R, Branco PC, Cruz MT, Pereira CF. Effect of bioactive extracts from Eucalyptus globulus leaves in experimental models of Alzheimer's disease. Biomed Pharmacother 2024; 181:117652. [PMID: 39486370 DOI: 10.1016/j.biopha.2024.117652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
Current therapies for Alzheimer's disease (AD) do not delay its progression, therefore, novel disease-modifying strategies are urgently needed. Recently, an increasing number of compounds from natural origin with protective properties against AD have been identified. Mixtures or extracts obtained from natural products containing several bioactive compounds have multifunctional properties and have drawn the attention because multiple AD pathways can be simultaneously modulated. This study evaluated the in vitro and in vivo effect of the essential oil (EO) obtained from the hydrodistillation of Eucalyptus globulus leaves, and an extract obtained from the hydrodistillation residual water (HRW). It was observed that EO and HRW have anti-inflammatory effect in brain immune cells modeling AD, namely lipopolysaccharide (LPS)- and amyloid-beta (Aβ)-stimulated microglia. In cell models that mimic AD-related neuronal dysfunction, HRW attenuated Aβ secretion and Aβ-induced mitochondrial dysfunction. Since the HRW's major components did not cross the blood-brain barrier, both EO and HRW were administered to the APP/PS1 transgenic AD mouse model by an intranasal route, which reduced cortical and hippocampal Aβ levels, and to rescue memory deficits and anxiety-like behaviors. Finally, HRW and EO were found to regulate cholesterol levels in aged mice after intranasal administration, suggesting that these extracts can reduce hypercholesterolemia and avoid risk for AD development. Overall, findings support a protective role of E. globulus extracts against AD‑like pathology and cognitive impairment highlighting the underlying mechanisms. These extracts obtained from underused forest biomass could be useful to develop nutraceutical supplements helpful to avoid AD risk and to prevent its progression.
Collapse
Affiliation(s)
- Patrícia Moreira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal.
| | - Jéssica Macedo
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Patrícia Matos
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Joana Bicker
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Ana Fortuna
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Artur Figueirinha
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Maria Teresa Batista
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Ana Silva
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal
| | - Sónia Silva
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; iCBR-Coimbra Institute for Clinical and Biomedical Research, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal
| | - Rosa Resende
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal
| | - Pedro Costa Branco
- RAIZ-Forest and Paper Research Institute, Eixo, Aveiro 3800-783, Portugal
| | - Maria Teresa Cruz
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Cláudia Fragão Pereira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal; Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal.
| |
Collapse
|
4
|
Norouzkhani N, Afshari S, Sadatmadani SF, Mollaqasem MM, Mosadeghi S, Ghadri H, Fazlizade S, Alizadeh K, Akbari Javar P, Amiri H, Foroughi E, Ansari A, Mousazadeh K, Davany BA, Akhtari kohnehshahri A, Alizadeh A, Dadkhah PA, Poudineh M. Therapeutic potential of berries in age-related neurological disorders. Front Pharmacol 2024; 15:1348127. [PMID: 38783949 PMCID: PMC11112503 DOI: 10.3389/fphar.2024.1348127] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
Aging significantly impacts several age-related neurological problems, such as stroke, brain tumors, oxidative stress, neurodegenerative diseases (Alzheimer's, Parkinson's, and dementia), neuroinflammation, and neurotoxicity. Current treatments for these conditions often come with side effects like hallucinations, dyskinesia, nausea, diarrhea, and gastrointestinal distress. Given the widespread availability and cultural acceptance of natural remedies, research is exploring the potential effectiveness of plants in common medicines. The ancient medical system used many botanical drugs and medicinal plants to treat a wide range of diseases, including age-related neurological problems. According to current clinical investigations, berries improve motor and cognitive functions and protect against age-related neurodegenerative diseases. Additionally, berries may influence signaling pathways critical to neurotransmission, cell survival, inflammation regulation, and neuroplasticity. The abundance of phytochemicals in berries is believed to contribute to these potentially neuroprotective effects. This review aimed to explore the potential benefits of berries as a source of natural neuroprotective agents for age-related neurological disorders.
Collapse
Affiliation(s)
- Narges Norouzkhani
- Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shaghayegh Afshari
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | | | - Shakila Mosadeghi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hani Ghadri
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Safa Fazlizade
- Student Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Keyvan Alizadeh
- Student Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Pouyan Akbari Javar
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Hamidreza Amiri
- Student Research Committee, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Elaheh Foroughi
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arina Ansari
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Kourosh Mousazadeh
- School of Medicine, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | | | - Ata Akhtari kohnehshahri
- Student Research Committee, Faculty of Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Alaleh Alizadeh
- Student Research Committee, Faculty of Medicine, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Parisa Alsadat Dadkhah
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
5
|
Wang J, Wang S, Fang Z, Zhao J, Zhang G, Guo Y, Wang Q, Jiang Z, Zhong H, Hou W. Estrogen receptor GPR30 in the anterior cingulate cortex mediates exacerbated neuropathic pain in ovariectomized mice. Brain Res 2024; 1829:148798. [PMID: 38403038 DOI: 10.1016/j.brainres.2024.148798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/27/2024]
Abstract
Menopausal women experience neuropathic pain 63% more frequently than men do, which may attribute to the estrogen withdrawal. However, the underlying mechanisms remain unclear. Here, the role of estrogen receptors (ERs) in ovariectomized (OVX) female mice following chronic constriction injury (CCI) was investigated. With 17β-estradiol (E2) supplemented, aggravated mechanical allodynia in OVX mice could be significantly alleviated, particularly after intra-anterior cingulate cortex (ACC) E2 delivery. Pharmacological interventions further demonstrated that the agonist of G-protein-coupled estrogen receptor 30 (GPR30), rather than ERα or ERβ in the ACC, exhibited the similar analgesic effect as E2, whereas antagonist of GPR30 exacerbated allodynia. Furthermore, OVX surgery reduced GPR30 expression in the ACC, which could be restored with estrogen supplementation. Selective downregulation of GPR30 in the ACC of naïve female mice induces mechanical allodynia, whereas GPR30 overexpression in the ACC remarkedly alleviated OVX-exacerbated allodynia. Collectively, estrogen withdrawal could downregulate the ACC GPR30 expression, resulting in exacerbated neuropathic pain. Our findings highlight the importance of GPR30 in the ACC in aggravated neuropathic pain during menopause, and offer a potential therapeutic candidate for neuropathic pain management in menopausal women.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Shiquan Wang
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zongping Fang
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jianshuai Zhao
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Guoqing Zhang
- Department of Cardiovasology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Yaru Guo
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Qun Wang
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhenhua Jiang
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China; Department of Nursing, Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Haixing Zhong
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Wugang Hou
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
6
|
Nasir A, Afridi OK, Ullah S, Khan H, Bai Q. Mitigation of sciatica injury-induced neuropathic pain through active metabolites derived from medicinal plants. Pharmacol Res 2024; 200:107076. [PMID: 38237646 DOI: 10.1016/j.phrs.2024.107076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Sciatica characterized by irritation, inflammation, and compression of the lower back nerve, is considered one of the most common back ailments globally. Currently, the therapeutic regimens for sciatica are experiencing a paradigm shift from the conventional pharmacological approach toward exploring potent phytochemicals from medicinal plants. There is a dire need to identify novel phytochemicals with anti-neuropathic potential. This review aimed to identify the potent phytochemicals from diverse medicinal plants capable of alleviating neuropathic pain associated with sciatica. This review describes the pathophysiology of sciatic nerve pain, its cellular mechanisms, and the pharmacological potential of various plants and phytochemicals using animal-based models of sciatic nerve injury-induced pain. Extensive searches across databases such as Medline, PubMed, Web of Science, Scopus, ScienceDirect, and Google Scholar were conducted. The findings highlights 39 families including Lamiaceae, Asteraceae, Fabaceae, and Apocyanaceae and Cucurbitaceae, effectively treating sciatic nerve injury-induced pain. Flavonoids made up 53% constituents, phenols and terpenoids made up 15%, alkaloids made up 13%, and glycosides made up 6% to be used in neuorpathic pain. Phytochemicals derived from various medicinal plants can serve as potential therapeutic targets for both acute and chronic sciatic injury-induced neuropathic pain.
Collapse
Affiliation(s)
- Abdul Nasir
- Department of Anesthesiology, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Medical Research Center, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Sami Ullah
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Pakistan.
| | - Qian Bai
- Department of Anesthesiology, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Medical Research Center, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
7
|
Shibata S, Kon S. Functional Ingredients Associated with the Prevention and Suppression of Locomotive Syndrome: A Review. Biol Pharm Bull 2024; 47:1978-1991. [PMID: 39617444 DOI: 10.1248/bpb.b24-00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
In 2007, the Japanese Orthopaedic Association proposed the concept of locomotive syndrome, a comprehensive description of conditions involving the functional decline of the locomotor system. Locomotive syndrome includes bone-related diseases such as osteoporosis, joint cartilage and disc-related diseases such as osteoarthritis and lumbar spondylosis, and sarcopenia and locomotive syndrome-related diseases. If left untreated, these diseases are likely to reduce mobility, necessitating nursing care. To prevent the progression of locomotive syndrome, a daily exercise routine and well-balanced diet are important, in addition to recognizing one's own decline in mobility. Therefore, research on the effectiveness of functional ingredients in the prevention and suppression of locomotive syndrome progression is ongoing. In this review, we summarize the latest reports on the effectiveness of five functional ingredients, namely, epigallocatechin gallate, resveratrol, curcumin, ellagic acid, and carnosic acid, in the treatment of osteoarthritis, osteoporosis, and rheumatoid arthritis, which are considered representative diseases of the locomotive syndrome.
Collapse
Affiliation(s)
- Sachi Shibata
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University
| | - Shigeyuki Kon
- Department of Molecular Immunology, Faculty of Pharmaceutical Sciences, Fukuyama University
| |
Collapse
|
8
|
Hajiluian G, Karegar SJ, Shidfar F, Aryaeian N, Salehi M, Lotfi T, Farhangnia P, Heshmati J, Delbandi AA. The effects of Ellagic acid supplementation on neurotrophic, inflammation, and oxidative stress factors, and indoleamine 2, 3-dioxygenase gene expression in multiple sclerosis patients with mild to moderate depressive symptoms: A randomized, triple-blind, placebo-controlled trial. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155094. [PMID: 37806153 DOI: 10.1016/j.phymed.2023.155094] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/17/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Depression is one of the most common psychological disorders among multiple sclerosis (MS) patients that characterized as the first symptoms. Ellagic acid is a natural polyphenol that may have neuroprotective properties through antioxidant, anti-inflammatory, and immunomodulatory effects. PURPOSE The aim of the present study was to investigate the effects of Ellagic acid on circulating levels of brain derived neurotrophic factor (BDNF), interferon-γ (IFN-ƴ), nitric oxide (NO), nuclear factor erythroid-2-related factor 2 (Nrf2), cortisol, serotonergic system, and indoleamine 2, 3-dioxygenase (IDO) gene expression in MS patients with mild to moderate depressive symptoms. STUDY DESIGN A randomized triple-blind clinical trial. METHODS The eligible patients according to the inclusion criteria were randomly divided into two groups: either 180 mg Ellagic acid (Axenic company) (n = 25) or 180 mg maltodextrin (n = 25) group for 12 weeks. The Ellagic acid supplement were identical to placebo in shape, color and odor. Serum BDNF, NO, Nrf2, cortisol, serotonin, and IFN-ƴ were measured by ELISA kit in the baseline and end of the study. Also, demographic characteristics, anthropometric measurements, physical activity, food intake, Beck Depression Inventory-II (BDI-II) and expanding disability status scale (EDSS) questionnaires, as well as IDO gene expression were assessed. SPSS software version 24 was used for statistical analysis. RESULTS Fifty patients were evaluated, and a significant decrease in BDI-II (p = 0.001), IFN-ƴ (p = 0.001), NO (p = 0.004), cortisol (p = 0.015), IDO gene expression (p = 0.001) and as well as increased the level of BDNF (p = 0.006) and serotonin (p = 0.019) was observed among those who received 90 mg Ellagic acid twice a day for 12 weeks versus control group. However, there were no significant differences between groups for Nrf2 levels (p>0.05) at the end of study. CONCLUSION The current study indicates that Ellagic acid intervention has a favorable effect on depression in MS patients. This is achieved by reducing BDI-II scores, as well as levels of NO, cortisol, IFN-ƴ, and IDO gene expression. Furthermore, we found a significant elevation in circulating levels of BDNF and serotonin.
Collapse
Affiliation(s)
- Ghazaleh Hajiluian
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Sahar Jafari Karegar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| | - Naheed Aryaeian
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Salehi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| | - Teyebeh Lotfi
- Rasoul Akram Clinical Research Development Unit, Iran University of Medical Sciences, Tehran, Iran
| | - Pooya Farhangnia
- Immunology Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Heshmati
- Songhor Healthcare Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali-Akbar Delbandi
- Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Yalçın MB, Bora ES, Çakır A, Akbulut S, Erbaş O. Autophagy and anti-inflammation ameliorate diabetic neuropathy with Rilmenidine. Acta Cir Bras 2023; 38:e387823. [PMID: 38055406 DOI: 10.1590/acb387823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/25/2023] [Indexed: 12/08/2023] Open
Abstract
PURPOSE To evaluate the neuroprotective effects of Rilmenidine on diabetic peripheral neuropathy (DPN) in a rat model of diabetes induced by streptozotocin (STZ). METHODS STZ (60 mg/kg) was administered to adult Sprague-Dawley rats to induce diabetes. On the 30th day after STZ administration, electromyography (EMG) and motor function tests confirmed the presence of DPN. Group 1: Control (n = 10), Group 2: DM + 0.1 mg/kg Rilmenidine (n = 10), and Group 3: DM + 0.2 mg/kg Rilmenidine (n = 10) were administered via oral lavage for four weeks. EMG, motor function test, biochemical analysis, and histological and immunohistochemical analysis of sciatic nerves were then performed. RESULTS The administration of Rilmenidine to diabetic rats substantially reduced sciatic nerve inflammation and fibrosis and prevented electrophysiological alterations. Immunohistochemistry of sciatic nerves from saline-treated rats revealed increased perineural thickness, HMGB-1, tumor necrosis factor-α, and a decrease in nerve growth factor (NGF), LC-3. In contrast, Rilmendine significantly inhibited inflammation markers and prevented the reduction in NGF expression. In addition, Rilmenidine significantly decreased malondialdehyde and increased diabetic rats' total antioxidative capacity. CONCLUSIONS The findings of this study suggest that Rilmenidine may have therapeutic effects on DNP by modulating antioxidant and autophagic pathways.
Collapse
Affiliation(s)
- Mehmet Burak Yalçın
- Bahcelievler Memorial Hospital - Department of Orthopedics and Traumatology - Istanbul - Turkey
| | - Ejder Saylav Bora
- Izmir Ataturk Research and Training Hospital - Department of Emergency Medicine - Izmir - Turkey
| | - Adem Çakır
- Canakkale Mehmet Akif Ersoy State SBU Kartal Kosuyolu Training and Research Hospital - Department of Emergency Medicine - Canakkale - Turkey
| | - Sabiye Akbulut
- SBU Kartal Kosuyolu Training and Research - Hospital Department of Gastroenterology - Istanbul - Turkey
| | - Oytun Erbaş
- Demiroğlu Bilim University - Faculty of Medicine - Department of Physiology - Istanbul - Turkey
| |
Collapse
|
10
|
Naraki K, Ghasemzadeh Rahbardar M, Ajiboye BO, Hosseinzadeh H. The effect of ellagic acid on the metabolic syndrome: A review article. Heliyon 2023; 9:e21844. [PMID: 38027887 PMCID: PMC10661066 DOI: 10.1016/j.heliyon.2023.e21844] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Objective (s): Metabolic syndrome is a collection of metabolic abnormalities that includes hyperglycemia, dyslipidemia, hypertension, and obesity. Ellagic acid is found in various fruits and vegetables. It has been reported to have several pharmacological properties, such as antibacterial, antifungal, antiviral, anti-inflammatory, hepatoprotective, cardioprotective, chemopreventive, neuroprotective, gastroprotective, and antidiabetic. Our current study aims to shed light on the probable efficiency of ellagic acid in managing metabolic syndrome and its complications. Materials and methods To prepare the present review, the databases or search engines utilized included Scopus, PubMed, Science Direct, and Google Scholar, and relevant articles have been gathered with no time limit until March 2023. Results Several investigations indicated that ellagic acid could be a potent compound for the treatment of many disorders such as diabetes, hypertension, and hyperlipidemia by various mechanisms, including increasing insulin secretion, insulin receptor substrate protein 1 expression, regulating glucose transporter 4, triglyceride, total cholesterol, low-density lipoprotein (LDL), high-density lipoprotein (HDL), attenuating tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), reactive oxygen species (ROS), malondialdehyde (MDA), and oxidative stress in related tissues. Furthermore, ellagic acid ameliorates mitochondrial function, upregulates uncoupling protein 1 (found in brown and white adipose tissues), and regulates blood levels of nitrate/nitrite and vascular relaxations in response to acetylcholine and sodium nitroprusside. Conclusion Ellagic acid can treat or manage metabolic syndrome and associated complications, according to earlier studies. To validate the beneficial effects of ellagic acid on metabolic syndrome, additional preclinical and clinical research is necessary.
Collapse
Affiliation(s)
- Karim Naraki
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Basiru Olaitan Ajiboye
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Ekiti State, Nigeria
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Shayan TK, Abdolmaleki A, Asadi A, Hassanpour H. Neuroprotective anticonvulsant and anxiolytic effects of octreotide in wistar rats. J Chem Neuroanat 2023; 132:102320. [PMID: 37499770 DOI: 10.1016/j.jchemneu.2023.102320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Somatostatin interneurons exhibited anti-epileptic activity. As a result, somatostatin agonists appear to be a promising target for antiepileptic drug development (AEDs). In this regard, we investigated the effects of octreotide, a somatostatin analog, on pentylenetetrazol (PTZ)-induced seizures in male Wistar rats. Animals were given octreotide at doses of 50 or 100 µg/kg for seven days. The anxiolytic effects of octreotide were then evaluated using open field and elevated plus-maze tests. Following that, mice were intraperitoneally given a single convulsive dosage of PTZ (60 mg/kg) and then monitored for 30 min for symptoms of seizures. Finally, the antioxidant capacity of brain tissue and histopathological changes in the hippocampus were investigated. Octreotide therapy for seven days at 50 or 100 µg/kg was more effective than diazepam in preventing acute PTZ-induced seizures (P < 0.05). Furthermore, both octreotide dosages revealed substantial anxiolytic effects in open-field and elevated plus-maze tests compared to untreated rats. Nonetheless, octreotide's anxiolytic impact was less effective than diazepam's. On the other hand, octreotide also suppressed neuronal apoptosis and attenuated oxidative stress. Our results suggest that chronic administration of octreotide has anticonvulsant, anxiolytic, and antioxidant activity in the male Wistar rat model.
Collapse
Affiliation(s)
- Tahereh Karimi Shayan
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Arash Abdolmaleki
- Department of Biophysics, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran
| | - Asadollah Asadi
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Hossein Hassanpour
- Department of Basic Science, Faculty of Veterinary Medicine Shahrekord University, Saman Road P.O.115, Shahrekord, Iran
| |
Collapse
|
12
|
Colcimen N, Altindag F. Evaluation of the effects of sinapic acid and ellagic acid on sciatic nerve in experimental diabetic rats by immunohistochemical and stereological methods. J Chem Neuroanat 2023; 131:102274. [PMID: 37085061 DOI: 10.1016/j.jchemneu.2023.102274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/23/2023]
Abstract
In our study, we aimed to examine the effects of sinapic acid and ellagic acid on neuropathy caused by diabetes in peripheral nerves. Fifty-six adult Wistar Albino rats Control, Diabetes, Diabetes+Sinapic Acid, Diabetes+Ellagic Acid, Diabetes+Sinapic Acid+Ellagic Acid, Sinapic Acid, Ellagic Acid and as Sinapic Acid+Ellagic Acid, they were randomly divided into eight groups(n:7). A single dose of 50 mg/kg streptozotocin(STZ) was administered intraperitoneally to the groups to be diagnosed with diabetes. Diabetes was accepted as blood glucose value of 250 mg/dL and above. Streptozotocin was given to the diabetes groups, 20 mg/kg/day intragastric Sinapic acid to the Sinapic acid groups, 50 mg/kg/day intragastric Ellagic acid to the Ellagic acid groups for 28 days. At the end of the experiment, 0.5 cm of the right sciatic nerve was removed. It was fixed in 10% formaldehyde. After histological follow-up, it was embedded in paraffin, 5 µm thick sections were taken. Immunohistochemical staining with Fibrinogen alpha, Laminin β-1 and Collagen IV antibodies and stereological evaluation was performed by Physical Dissector Combination method. Collagen IV was used in control, diabetes and treatment groups showed similar immunostaining. Fibrinogen alpha was observed to be increased in the vessel wall in the diabetes group, while the uptake was minimal in the control and treatment groups. While Laminin β-1 was increased in the diabetes group compared to the control group, immunostaining was observed in the treatment groups similar to the control group. It was observed that the total nerve area diabetes group decreased significantly compared to the control group, and the treatment groups, except for D+EA group were similar to the control group, but there was no statistically significant difference. The axon numbers in the diabetes group decreased significantly compared to the control group, and the treatment groups were similar to the control group, and there was no statistically significant difference (P > 0.05). It was determined that Sinapic Acid and Ellagic acid had positive effects on the nervous tissue in diabetic neuropathy.
Collapse
Affiliation(s)
- Nese Colcimen
- Department of Histology and Embryology, Medical School of Van Yuzuncu Yil University, Van, Turkey.
| | - Fikret Altindag
- Department of Histology and Embryology, Medical School of Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
13
|
Abrishamdar M, Farbood Y, Sarkaki A, Rashno M, Badavi M. Evaluation of betulinic acid effects on pain, memory, anxiety, catalepsy, and oxidative stress in animal model of Parkinson's disease. Metab Brain Dis 2023; 38:467-482. [PMID: 35708868 DOI: 10.1007/s11011-022-00962-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/11/2022] [Indexed: 01/25/2023]
Abstract
Parkinson's disease (PD) is known for motor impairments. Betulinic acid (BA) is a natural compound with antioxidant activity. The present study addresses the question of whether BA affects motor and non-motor dysfunctions and molecular changes in the rat model of PD. The right medial forebrain bundle was lesioned by injection of 6-hydroxydopamine in Male Wistar rats (10-12 weeks old, 270-320 g). Animals were divided into Sham, PD, 3 treated groups with BA (0.5, 5, and 10 mg/kg, IP), and a positive control group received L-dopa (20 mg/kg, P.O) for 7 days. rigidity, anxiety, analgesia, and memory were assessed by bar test, open-field, elevated plus-maze (EPM), tail-flick, and shuttle box. Additionally, the malondialdehyde (MDA), Superoxide dismutase (SOD), glutathione peroxidase (GPx) activity, Brain-derived neurotrophic factor (BDNF) and Interleukin 10 (IL10) levels in the whole brain were measured. BA significantly reversed the 6-hydroxydopamine-induced motor and memory complication in the bar test and shuttle box. It modified anxiety-like behavior neither in open-field nor in EPM. It only decreased the time spent in open arms. Moreover, no significant changes were found in the tail-flick between treatment and sham groups. On the other hand, the level of MDA & IL10 were decreased, while the activity of GPx levels of SOD & BDNF in the rats' brains was increased. Our results showed that BA as a free radical scavenger can account for a possible promise as a good therapeutic agent for motor and non-motor complications in PD however further studies may be needed.
Collapse
Affiliation(s)
- M Abrishamdar
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Department of Physiology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yaghoob Farbood
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Physiology, Medicine Faculty and Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - A Sarkaki
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - M Rashno
- Department of Immunulogy, Cellular and Molecular Research Center, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - M Badavi
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
14
|
Hosseini A, Razavi BM, Hosseinzadeh H. Protective effects of pomegranate (Punica granatum) and its main components against natural and chemical toxic agents: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154581. [PMID: 36610118 DOI: 10.1016/j.phymed.2022.154581] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/15/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Different chemical toxicants or natural toxins can damage human health through various routes such as air, water, fruits, foods, and vegetables. PURPOSE Herbal medicines may be safe and selective for the prevention of toxic agents due to their active ingredients and various pharmacological properties. According to the beneficial properties of pomegranate, this paper summarized the protective effects of this plant against toxic substances. STUDY DESIGN In this review, we focused on the findings of in vivo and in vitro studies of the protective effects of pomegranate (Punica granatum) and its active components including ellagic acid and punicalagin, against natural and chemical toxic agents. METHODS We collected articles from the following databases or search engines such as Web of Sciences, Google Scholar, Pubmed and Scopus without a time limit until the end of September 2022. RESULTS P. granatum and its constituents have shown protective effects against natural toxins such as aflatoxins, and endotoxins as well as chemical toxicants for instance arsenic, diazinon, and carbon tetrachloride. The protective effects of these compounds are related to different mechanisms such as the prevention of oxidative stress, and reduction of inflammatory mediators including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), cyclooxygenase-2(COX-2) and nuclear factor ĸB (NF-ĸB) as well as the modulation of apoptosis, mitogen-activated protein kinase (MAPK) signaling pathways and improvement of liver or cardiac function via regulation of enzymes. CONCLUSION In this review, different in vitro and in vivo studies have shown that P. granatum and its active constituents have protective effects against natural and chemical toxic agents via different mechanisms. There are no clinical trials on the protective effects of P. granatum against toxic agents.
Collapse
Affiliation(s)
- Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Amin A, Akhtar MF, Saleem A, Sharif A, Shah S, Khan MI, Anwar F, Abbas G, Zubair HM, Sohail MF. Pterostilbene improves CFA-induced arthritis and peripheral neuropathy through modulation of oxidative stress, inflammatory cytokines and neurotransmitters in Wistar rats. Inflammopharmacology 2022; 30:2285-2300. [PMID: 36138303 DOI: 10.1007/s10787-022-01069-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/03/2022] [Indexed: 11/05/2022]
Abstract
Pterostilbene is a stilbene flavonoid that occurs naturally in various plants as well as produced by genetic engineering. It exhibits anti-inflammatory, analgesic, anti-oxidant and neuroprotective activities. This research was aimed to determine the potential of pterostilbene against arthritis and peripheral neuropathy in Complete Freund's Adjuvant (CFA) induced arthritis. Rat hind paw was injected with 0.1 ml CFA to induce arthritis. Standard control animals received oral methotrexate (3 mg/kg/week). Pterostilbene at 12.5, 25 and 50 mg/kg was given orally to different groups of arthritic rats from day 7-28 for 21 days. Pterostilbene significantly reduced paw diameter and retarded the decrease in body weight of arthritic rats. It profoundly (p < 0.05-0.0001) reduced lipid peroxidation and nitrites, while increased superoxide dismutase (SOD) in the liver tissue. Pterostilbene treatment significantly (p < 0.0001) reduced TNF-α and IL-6 levels. Pterostilbene markedly improved (p < 0.05-0.001) motor activity and showed analgesic effect in arthritic rats at 25 and 50 mg/kg as compared to disease control rats. Furthermore, it notably (p < 0.05-0.0001) increased SOD activity, nitrites, noradrenaline and serotonin levels in the sciatic nerve of arthritic rats. Treatment with pterostilbene also ameliorated the CFA-induced pannus formation, cartilage damage and synovial hyperplasia in the arthritic rat paws. It is determined from the current study that pterostilbene was effective in reducing CFA-induced arthritis in rats through amelioration of oxidative stress and inflammatory mediators. It was also effective to treat peripheral neuropathy through modulation of oxidative stress and neurotransmitters in sciatic nerves.
Collapse
Affiliation(s)
- Ayesha Amin
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan.
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Ali Sharif
- Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan
| | - Shahid Shah
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Imran Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Ghulam Abbas
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | | | - Muhammad Farhan Sohail
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
| |
Collapse
|
16
|
Moreira P, Matos P, Figueirinha A, Salgueiro L, Batista MT, Branco PC, Cruz MT, Pereira CF. Forest Biomass as a Promising Source of Bioactive Essential Oil and Phenolic Compounds for Alzheimer's Disease Therapy. Int J Mol Sci 2022; 23:ijms23158812. [PMID: 35955963 PMCID: PMC9369093 DOI: 10.3390/ijms23158812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/24/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder affecting elderly people worldwide. Currently, there are no effective treatments for AD able to prevent disease progression, highlighting the urgency of finding new therapeutic strategies to stop or delay this pathology. Several plants exhibit potential as source of safe and multi-target new therapeutic molecules for AD treatment. Meanwhile, Eucalyptus globulus extracts revealed important pharmacological activities, namely antioxidant and anti-inflammatory properties, which can contribute to the reported neuroprotective effects. This review summarizes the chemical composition of essential oil (EO) and phenolic extracts obtained from Eucalyptus globulus leaves, disclosing major compounds and their effects on AD-relevant pathological features, including deposition of amyloid-β (Aβ) in senile plaques and hyperphosphorylated tau in neurofibrillary tangles (NFTs), abnormalities in GABAergic, cholinergic and glutamatergic neurotransmission, inflammation, and oxidative stress. In general, 1,8-cineole is the major compound identified in EO, and ellagic acid, quercetin, and rutin were described as main compounds in phenolic extracts from Eucalyptus globulus leaves. EO and phenolic extracts, and especially their major compounds, were found to prevent several pathological cellular processes and to improve cognitive function in AD animal models. Therefore, Eucalyptus globulus leaves are a relevant source of biological active and safe molecules that could be used as raw material for nutraceuticals and plant-based medicinal products useful for AD prevention and treatment.
Collapse
Affiliation(s)
- Patrícia Moreira
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Patrícia Matos
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Artur Figueirinha
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria Teresa Batista
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | | | - Maria Teresa Cruz
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Cláudia Fragão Pereira
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
17
|
Rostami A, Vakili S, Koohpeyma F, Jahromi BN, Aghajari ZA, Mahmoudikohani F, Saki F, Mahmoodi M, Jaberi KR, Movahedpour A, Khorchani MJ, Noroozi S. Ellagic acid effects on testis, sex hormones, oxidative stress, and apoptosis in the relative sterility rat model following busulfan administration. BMC Complement Med Ther 2022; 22:170. [PMID: 35739528 PMCID: PMC9229441 DOI: 10.1186/s12906-022-03650-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Busulfan is an antineoplastic medication that is broadly utilized for cancer treatment. It affects the testicular function and leads to sterility. The present study aimed to evaluate the effects of ellagic acid on testicular tissue changes, sexual hormones, antioxidant defense system, and caspase-9 and Bcl2 gene expression in the busulfan-induced relative sterile rat model. METHODS This is an interventional-experimental animal study that was performed on 65 Adult male rats; they were randomly divided into five groups including control (1 ml of 0.9% normal saline), ellagic acid (50 mg/kg); busulfan (10 mg/kg); and busulfan plus ellagic acid (10 mg/kg and 50 mg/kg). At the end of the experiment, blood samples were collected, and plasma levels of sex hormones, antioxidant system, apoptosis-related genes, and testis histology were assessed. RESULTS Busulfan reduced the levels of serum testosterone, total antioxidant capacity, gene expression of Bcl2, testicular volume, seminiferous tubule, germinal epithelium, interstitial tissue volume, and the number of spermatogonia, spermatocyte, round spermatid, elongated spermatid, Sertoli cells and Leydig cells (p < 0.05). Busulfan administration resulted in a significant increase (p < 0.05) in the level of LH, FSH, malondialdehyde, and caspase 9. Busulfan + ellagic acid (50 mg/kg) showed higher serum levels of testosterone, gene expression of Bcl-2 and antioxidant markers, and lower LH, FSH levels, and gene expression of caspase 9 compared to the Busulfan-treated rats (p < 0.05). Stereological parameters were also ameliorated in the group treated with Busulfan+ 50 mg/kg ellagic acid (p < 0.05). CONCLUSION In conclusion, the consumption of ellagic acid may have beneficial effects on the antioxidant defense system, sexual hormone abnormality, and testicular tissue damage induced by busulfan.
Collapse
Affiliation(s)
- Amirabbas Rostami
- Department of Internal Medicine, Faculty of General Medicine, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
| | - Sina Vakili
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farhad Koohpeyma
- Shiraz Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahia Namavar Jahromi
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Obstetrics and Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Fatemeh Mahmoudikohani
- Department of Midwifery, School of Nursing and Midwifery, Bam University of Medical Sciences, Bam, Iran
| | - Forough Saki
- Shiraz Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Mahmoodi
- School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khojaste Rahimi Jaberi
- Shiraz nephro-urology research center, shiraz university of medical sciences, Shiraz, Iran
| | | | | | - Saam Noroozi
- Department of Biochemistry, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
18
|
Varesi A, Chirumbolo S, Campagnoli LIM, Pierella E, Piccini GB, Carrara A, Ricevuti G, Scassellati C, Bonvicini C, Pascale A. The Role of Antioxidants in the Interplay between Oxidative Stress and Senescence. Antioxidants (Basel) 2022; 11:1224. [PMID: 35883714 PMCID: PMC9311946 DOI: 10.3390/antiox11071224] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
Cellular senescence is an irreversible state of cell cycle arrest occurring in response to stressful stimuli, such as telomere attrition, DNA damage, reactive oxygen species, and oncogenic proteins. Although beneficial and protective in several physiological processes, an excessive senescent cell burden has been involved in various pathological conditions including aging, tissue dysfunction and chronic diseases. Oxidative stress (OS) can drive senescence due to a loss of balance between pro-oxidant stimuli and antioxidant defences. Therefore, the identification and characterization of antioxidant compounds capable of preventing or counteracting the senescent phenotype is of major interest. However, despite the considerable number of studies, a comprehensive overview of the main antioxidant molecules capable of counteracting OS-induced senescence is still lacking. Here, besides a brief description of the molecular mechanisms implicated in OS-mediated aging, we review and discuss the role of enzymes, mitochondria-targeting compounds, vitamins, carotenoids, organosulfur compounds, nitrogen non-protein molecules, minerals, flavonoids, and non-flavonoids as antioxidant compounds with an anti-aging potential, therefore offering insights into innovative lifespan-extending approaches.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
- Almo Collegio Borromeo, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy;
| | | | - Elisa Pierella
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | | | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy;
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy;
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
19
|
The Role of the NMDA Receptor in the Anticonvulsant Effect of Ellagic Acid in Pentylenetetrazole-Induced Seizures in Male Mice. Behav Neurol 2022; 2022:9015842. [PMID: 35600241 PMCID: PMC9117013 DOI: 10.1155/2022/9015842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 02/15/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
Methods In this experimental study, 64 mice were divided into 8 groups and received the following: normal saline; EA at doses of 6.25, 12.5, and 25 mg/kg; NMDA agonist at a dose of 75 mg/kg; NMDA antagonist (ketamine) at a dose of 0.5 mg/kg; an effective dose of EA plus NMDA agonist; and a subeffective dose of EA plus ketamine. We induced seizure using intravenous administration of PTZ. 60 minutes before induction of seizure, drugs were administrated. Duration lasts to seizure-induced was measured. Finally, the gene expression of NMDA receptor subunits (Nr2a and Nr2b) was assessed in the prefrontal cortex. Results Results showed that EA increased the seizure threshold and decreased the expression of Nr2a and Nr2b. We determined that ketamine potentiated and NMDA attenuated the effects of subeffective and effective doses of EA. Conclusion EA probably via attenuation of the NMDA-R pathway possesses an anticonvulsant effect in PTZ-induced seizure in mice.
Collapse
|
20
|
Muratori L, Fregnan F, Maurina M, Haastert-Talini K, Ronchi G. The Potential Benefits of Dietary Polyphenols for Peripheral Nerve Regeneration. Int J Mol Sci 2022; 23:ijms23095177. [PMID: 35563568 PMCID: PMC9102183 DOI: 10.3390/ijms23095177] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 12/04/2022] Open
Abstract
Peripheral nerves are frequently affected by lesions caused by trauma (work accidents, car incidents, combat injuries) and following surgical procedures (for instance cancer resection), resulting in loss of motor and sensory function with lifelong impairments. Irrespective of the intrinsic capability of the peripheral nervous system for regeneration, spontaneous or surgically supported regeneration is often unsatisfactory with the limited functional success of nerve repair. For this reason, many efforts have been made to improve the regeneration process. Beyond innovative microsurgical methods that, in certain cases, are necessary to repair nerve injuries, different nonsurgical treatment approaches and adjunctive therapies have been investigated to enhance nerve regeneration. One possibility could be taking advantage of a healthy diet or lifestyle and their relation with proper body functions. Over the years, scientific evidence has been obtained on the benefits of the intake of polyphenols or polyphenol-rich foods in humans, highlighting the neuroprotective effects of these compounds in many neurodegenerative diseases. In order to improve the available knowledge about the potential beneficial role of polyphenols in the process of peripheral nerve regeneration, this review assessed the biological effects of polyphenol administration in supporting and promoting the regenerative process after peripheral nerve injury.
Collapse
Affiliation(s)
- Luisa Muratori
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, (Torino), Italy; (L.M.); (F.F.); (M.M.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, (Torino), Italy
| | - Federica Fregnan
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, (Torino), Italy; (L.M.); (F.F.); (M.M.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, (Torino), Italy
| | - Monica Maurina
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, (Torino), Italy; (L.M.); (F.F.); (M.M.)
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany;
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| | - Giulia Ronchi
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, (Torino), Italy; (L.M.); (F.F.); (M.M.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, (Torino), Italy
- Correspondence: ; Tel.: +39-011-6705-433; Fax: +39-011-9038-639
| |
Collapse
|
21
|
Zhu W, Tang H, Li J, Guedes RM, Cao L, Guo C. Ellagic acid attenuates interleukin-1β-induced oxidative stress and exerts protective effects on chondrocytes through the Kelch-like ECH-associated protein 1 (Keap1)/ Nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. Bioengineered 2022; 13:9233-9247. [PMID: 35378052 PMCID: PMC9162011 DOI: 10.1080/21655979.2022.2059995] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Osteoarthritis (OA) is the most prevalent type of degenerative joint disease, and its pathological progression is highly associated with oxidative stress. Natural antioxidants can attenuate oxidative stress and chondrocyte injury, suggesting that antioxidants have potential applications in the management of OA. Ellagic acid (EA), a natural polyphenol derived from fruits or nuts, exerts antioxidant and anti-inflammatory effects in diseases related to oxidative stress. Herein, we investigated the effects of EA on interleukin-1β (IL-1β)-induced oxidative stress and degeneration in C28/I2 human chondrocytes. EA efficiently suppressed IL-1β-induced oxidative stress and ameliorated oxidative stress-induced dysfunction of chondrocytes, as indicated by the promotion of cartilage matrix secretion. Moreover, EA remarkably suppressed cell apoptosis and senescence, and reduced the expression of proinflammatory factors and metalloproteinases, suggesting that EA could alleviate chondrocyte injury under oxidative stress. Mechanistically, EA upregulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) as well as its downstream targets NADPH quinone oxidoreductase 1 and heme oxygenase-1. ML385, a specific Keap1/Nrf2 pathway inhibitor, blocked the antioxidant and chondroprotective effects of EA. Our findings demonstrated that EA could attenuate oxidative stress and exert protective effects on chondrocytes by upregulating the Keap1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Wenrun Zhu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Han Tang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Juncheng Li
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rui Miranda Guedes
- LABIOMEP, UMAI-INEGI, Faculty of Engineering of the University of Porto, Porto, Portugal
| | - Lu Cao
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Changan Guo
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Ellagic Acid Alleviates Oxidative Stress by Mediating Nrf2 Signaling Pathways and Protects against Paraquat-Induced Intestinal Injury in Piglets. Antioxidants (Basel) 2022; 11:antiox11020252. [PMID: 35204135 PMCID: PMC8868335 DOI: 10.3390/antiox11020252] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/26/2022] Open
Abstract
The gastrointestinal tract is a key source of superoxide so as to be one of the most vulnerable to oxidative stress damage. Ellagic acid (EA), a polyphenol displays widely biological activities owing to its strong antioxidant properties. Here, we investigated the protective benefits of EA on oxidative stress and intestinal barrier injury in paraquet (PQ)-challenged piglets. A total of 40 weaned piglets were randomly divided into five groups: Control, PQ, 0.005% EA-PQ, 0.01% EA-PQ, and 0.02% EA-PQ. Piglets were intraperitoneally injected with 4 mg/kg (BW) PQ or saline on d-18, and sacrificed on d-21 of experiment. EA treatments eliminated growth-check induced by PQ and increased serum superoxide dismutase (SOD) activity but decreased serum malondialdehyde (MDA) level as compared to PQ group. EA supplementation promoted Nrf2 nuclear translocation and enhanced heme oxygenase-1 (HO-1) and quinone oxidoreductase 1 (NQO1) protein abundances of small intestinal mucosa. Additionally, EA improved PQ-induced crypt deepening, goblet cells loss, and villi morphological damage. Consistently, EA increased tight junction protein expression as was evident from the decreased serum diamine oxidase (DAO) levels. EA could ameliorate the PQ-induced oxidative stress and intestinal damage through mediating Nrf2 signaling pathway. Intake of EA-rich food might prevent oxidative stress-mediated gut diseases.
Collapse
|
23
|
Grewal AS, Thapa K, Kanojia N, Sharma N, Singh S. Natural Compounds as Source of Aldose Reductase (AR) Inhibitors for the Treatment of Diabetic Complications: A Mini Review. Curr Drug Metab 2021; 21:1091-1116. [PMID: 33069193 DOI: 10.2174/1389200221666201016124125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/07/2020] [Accepted: 07/18/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Aldol reductase (AR) is the polyol pathway's main enzyme that portrays a crucial part in developing 'complications of diabetes' involving cataract, retinopathy, nephropathy, and neuropathy. These diabetic abnormalities are triggered tremendously via aggregation of sorbitol formation (catalyzed by AR) in the polyol pathway. Consequently, it represents an admirable therapeutic target and vast research was done for the discovery of novel molecules as potential AR inhibitors for diabetic complications. OBJECTIVE This review article has been planned to discuss an outline of diabetic complications, AR and its role in diabetic complications, natural compounds reported as AR inhibitors, and benefits of natural/plant derived AR inhibitors for the management of diabetic abnormalities. RESULTS The goal of AR inhibition remedy is to stabilize the increased flux of blood glucose and sorbitol via the 'polyol pathway' in the affected tissues. A variety of synthetic inhibitors of AR have been established such as tolrestat and sorbinil, but both of these face limitations including low permeability and health problems. Pharmaceutical industries and other scientists were also undertaking work to develop newer, active, and 'safe' AR inhibitors from natural sources. Therefore, several naturally found molecules were documented to possess a potent inhibitory action on AR activity. CONCLUSION Natural inhibitors of AR appeared as harmless pharmacological agents for controlling diabetic complications. The detailed literature throughout this article shows the significance of herbal extracts and phytochemicals as prospective useful AR inhibitors in treating diabetic complications.
Collapse
Affiliation(s)
- Ajmer Singh Grewal
- Chitkara School of Basic Sciences, Chitkara University, Himachal Pradesh, India
| | - Komal Thapa
- Chitkara School of Basic Sciences, Chitkara University, Himachal Pradesh, India
| | - Neha Kanojia
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
24
|
Gupta A, Singh AK, Kumar R, Jamieson S, Pandey AK, Bishayee A. Neuroprotective Potential of Ellagic Acid: A Critical Review. Adv Nutr 2021; 12:1211-1238. [PMID: 33693510 PMCID: PMC8321875 DOI: 10.1093/advances/nmab007] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/02/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Ellagic acid (EA) is a dietary polyphenol present in various fruits, vegetables, herbs, and nuts. It exists either independently or as part of complex structures, such as ellagitannins, which release EA and several other metabolites including urolithins following absorption. During the past few decades, EA has drawn considerable attention because of its vast range of biological activities as well as its numerous molecular targets. Several studies have reported that the oxidative stress-lowering potential of EA accounts for its broad-spectrum pharmacological attributes. At the biochemical level, several mechanisms have also been associated with its therapeutic action, including its efficacy in normalizing lipid metabolism and lipidemic profile, regulating proinflammatory mediators, such as IL-6, IL-1β, and TNF-α, upregulating nuclear factor erythroid 2-related factor 2 and inhibiting NF-κB action. EA exerts appreciable neuroprotective activity by its free radical-scavenging action, iron chelation, initiation of several cell signaling pathways, and alleviation of mitochondrial dysfunction. Numerous in vivo studies have also explored the neuroprotective attribute of EA against various neurotoxins in animal models. Despite the increasing number of publications with experimental evidence, a critical analysis of available literature to understand the full neuroprotective potential of EA has not been performed. The present review provides up-to-date, comprehensive, and critical information regarding the natural sources of EA, its bioavailability, metabolism, neuroprotective activities, and underlying mechanisms of action in order to encourage further studies to define the clinical usefulness of EA for the management of neurological disorders.
Collapse
Affiliation(s)
- Ashutosh Gupta
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Amit Kumar Singh
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Ramesh Kumar
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Sarah Jamieson
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| | - Abhay Kumar Pandey
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| |
Collapse
|
25
|
Kale MB, Bajaj K, Umare M, Wankhede NL, Taksande BG, Umekar MJ, Upaganlawar A. Exercise and Nutraceuticals: Eminent approach for Diabetic Neuropathy. Curr Mol Pharmacol 2021; 15:108-128. [PMID: 34191703 DOI: 10.2174/1874467214666210629123010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/28/2021] [Accepted: 03/05/2021] [Indexed: 11/22/2022]
Abstract
Diabetic neuropathy is an incapacitating chronic pathological condition that encompasses a large group of diseases and manifestations of nerve damage. It affects approximately 50% of patients with diabetes mellitus. Autonomic, sensory, and motor neurons are affected. Disabilities are severe, along with poor recovery and diverse pathophysiology. Physical exercise and herbal-based therapies have the potential to decrease the disabilities associated with diabetic neuropathy. Aerobic exercises like walking, weight lifting, the use of nutraceuticals and herbal extracts are found to be effective. Literature from the public domain was studied emphasizing various beneficial effects of different exercises, use of herbal and nutraceuticals for their therapeutic action in diabetic neuropathy. Routine exercises and administration of herbal and nutraceuticals, either the extract of plant material containing the active phytoconstituent or isolated phytoconstituent at safe concentration, have been shown to have promising positive action in the treatment of diabetic neuropathy. Exercise has shown promising effects on vascular and neuronal health and has proven to be well effective in the treatment as well as prevention of diabetic neuropathy by various novel mechanisms, including herbal and nutraceuticals therapy is also beneficial for the condition. They primarily show the anti-oxidant effect, secretagogue, anti-inflammatory, analgesic, and neuroprotective action. Severe adverse events are rare with these therapies. The current review investigates the benefits of exercise and nutraceutical therapies in the treatment of diabetic neuropathy.
Collapse
Affiliation(s)
- Mayur Bhimrao Kale
- Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India
| | - Komal Bajaj
- Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India
| | - Mohit Umare
- Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India
| | - Nitu L Wankhede
- Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India
| | | | - Milind Janrao Umekar
- Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India
| | - Aman Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad-42310, Nasik, Maharashtra, India
| |
Collapse
|
26
|
Effects of Curcumin and Its Different Formulations in Preclinical and Clinical Studies of Peripheral Neuropathic and Postoperative Pain: A Comprehensive Review. Int J Mol Sci 2021; 22:ijms22094666. [PMID: 33925121 PMCID: PMC8125634 DOI: 10.3390/ijms22094666] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
Abstract
Lesion or disease of the somatosensory system leads to the development of neuropathic pain. Peripheral neuropathic pain encompasses damage or injury of the peripheral nervous system. On the other hand, 10–15% of individuals suffer from acute postoperative pain followed by persistent pain after undergoing surgeries. Antidepressants, anticonvulsants, baclofen, and clonidine are used to treat peripheral neuropathy, whereas opioids are used to treat postoperative pain. The negative effects associated with these drugs emphasize the search for alternative therapeutics with better efficacy and fewer side effects. Curcumin, a polyphenol isolated from the roots of Curcuma longa, possesses antibacterial, antioxidant, and anti-inflammatory properties. Furthermore, the low bioavailability and fast metabolism of curcumin have led to the advent of various curcumin formulations. The present review provides a comprehensive analysis on the effects of curcumin and its formulations in preclinical and clinical studies of neuropathic and postoperative pain. Based on the positive outcomes from both preclinical and clinical studies, curcumin holds the promise of mitigating or preventing neuropathic and postoperative pain conditions. However, more clinical studies with improved curcumin formulations are required to involve its use as adjuvant to neuropathic and postoperative drugs.
Collapse
|
27
|
Kábelová A, Malínská H, Marková I, Oliyarnyk O, Chylíková B, Šeda O. Ellagic Acid Affects Metabolic and Transcriptomic Profiles and Attenuates Features of Metabolic Syndrome in Adult Male Rats. Nutrients 2021; 13:nu13030804. [PMID: 33671116 PMCID: PMC8001306 DOI: 10.3390/nu13030804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022] Open
Abstract
Ellagic acid, a natural substance found in various fruits and nuts, was previously shown to exhibit beneficial effects towards metabolic syndrome. In this study, using a genetic rat model of metabolic syndrome, we aimed to further specify metabolic and transcriptomic responses to ellagic acid treatment. Adult male rats of the SHR-Zbtb16Lx/k.o. strain were fed a high-fat diet accompanied by daily intragastric gavage of ellagic acid (50 mg/kg body weight; high-fat diet–ellagic acid (HFD-EA) rats) or vehicle only (high-fat diet–control (HFD-CTL) rats). Morphometric and metabolic parameters, along with transcriptomic profile of liver and brown and epididymal adipose tissues, were assessed. HFD-EA rats showed higher relative weight of brown adipose tissue (BAT) and decreased weight of epididymal adipose tissue, although no change in total body weight was observed. Glucose area under the curve, serum insulin, and cholesterol levels, as well as the level of oxidative stress, were significantly lower in HFD-EA rats. The most differentially expressed transcripts reflecting the shift induced by ellagic acid were detected in BAT, showing downregulation of BAT activation markers Dio2 and Nr4a1 and upregulation of insulin-sensitizing gene Pla2g2a. Ellagic acid may provide a useful nutritional supplement to ameliorate features of metabolic syndrome, possibly by suppressing oxidative stress and its effects on brown adipose tissue.
Collapse
Affiliation(s)
- Adéla Kábelová
- Institute of Biology and Medical Genetics, The First Faculty of Medicine, Charles University and The General University Hospital, 121 08 Prague, Czech Republic; (A.K.); (B.C.)
| | - Hana Malínská
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (H.M.); (I.M.); (O.O.)
| | - Irena Marková
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (H.M.); (I.M.); (O.O.)
| | - Olena Oliyarnyk
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (H.M.); (I.M.); (O.O.)
| | - Blanka Chylíková
- Institute of Biology and Medical Genetics, The First Faculty of Medicine, Charles University and The General University Hospital, 121 08 Prague, Czech Republic; (A.K.); (B.C.)
| | - Ondřej Šeda
- Institute of Biology and Medical Genetics, The First Faculty of Medicine, Charles University and The General University Hospital, 121 08 Prague, Czech Republic; (A.K.); (B.C.)
- Correspondence: ; Tel.: +420-224-968-180
| |
Collapse
|
28
|
Ellagic Acid as a Tool to Limit the Diabetes Burden: Updated Evidence. Antioxidants (Basel) 2020; 9:antiox9121226. [PMID: 33287432 PMCID: PMC7761821 DOI: 10.3390/antiox9121226] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/29/2020] [Accepted: 12/02/2020] [Indexed: 12/30/2022] Open
Abstract
Oxidative stress contributes not only to the pathogenesis of type 2 diabetes (T2D) but also to diabetic vascular complications. It follows that antioxidants might contribute to limiting the diabetes burden. In this review we focus on ellagic acid (EA), a compound that can be obtained upon intestinal hydrolysis of dietary ellagitannins, a family of polyphenols naturally found in several fruits and seeds. There is increasing research on cardiometabolic effects of ellagitannins, EA, and urolithins (EA metabolites). We updated research conducted on these compounds and (I) glucose metabolism; (II) inflammation, oxidation, and glycation; and (III) diabetic complications. We included studies testing EA in isolation, extracts or preparations enriched in EA, or EA-rich foods (mostly pomegranate juice). Animal research on the topic, entirely conducted in murine models, mostly reported glucose-lowering, antioxidant, anti-inflammatory, and anti-glycation effects, along with prevention of micro- and macrovascular diabetic complications. Clinical research is incipient and mostly involved non-randomized and low-powered studies, which confirmed the antioxidant and anti-inflammatory properties of EA-rich foods, but without conclusive results on glucose control. Overall, EA-related compounds might be potential agents to limit the diabetes burden, but well-designed human randomized controlled trials are needed to fill the existing gap between experimental and clinical research.
Collapse
|
29
|
Huang X, Li W, You B, Tang W, Gan T, Feng C, Li C, Yang R. Serum Metabonomic Study on the Antidepressant-like Effects of Ellagic Acid in a Chronic Unpredictable Mild Stress-Induced Mouse Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9546-9556. [PMID: 32786855 DOI: 10.1021/acs.jafc.0c02895] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As a polyphenol, ellagic acid (EA) has shown potential antidepressant activity. In this study, the effects and serum metabolomic analysis of EA against depression were investigated using a chronic unpredictable mild stress-induced (CUMS) model. EA (20 or 100 mg/kg body weight) significantly ameliorated the CUMS-induced depression-like behaviors, including reduced body weight, decreased sucrose preference, and increased immobility time in both the tail suspension test and the forced swimming test. Furthermore, EA attenuated the CUMS-induced hippocampal damage and significantly increased the brain-derived neurotrophic factor (BDNF) and the serotonin (5-HT) levels as well as suppressed the inflammatory response. The metabolomics analysis showed that the disturbance of glycerophospholipid (phosphatidylethanolamine and phosphatidylinositol), amino acid (l-arginine and N-stearoyl serine), and purine (uric acid) metabolism induced by CUMS was attenuated by the EA treatment. Furthermore, the correlation analysis indicated that the metabolite changes were strongly correlated with behavioral disorders, BDNF, 5-HT, and inflammatory cytokines levels. This study provided new insights for the antidepressant effects of EA and suggests that EA may be a potential nutraceutical for improving the management of depression.
Collapse
Affiliation(s)
- Xiaoxia Huang
- Hainan Key Laboratory of Food Nutrition and Functional Food, College of Food Science and Engineering, Hainan University, Haikou 570228, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wu Li
- Hainan Key Laboratory of Food Nutrition and Functional Food, College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Bangyan You
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wanpei Tang
- Hainan Key Laboratory of Food Nutrition and Functional Food, College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Tingsheng Gan
- Hainan Key Laboratory of Food Nutrition and Functional Food, College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Chao Feng
- Hainan Key Laboratory of Food Nutrition and Functional Food, College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Congfa Li
- Hainan Key Laboratory of Food Nutrition and Functional Food, College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Ruili Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
30
|
Oliveira H, Fernandes A, F. Brás N, Mateus N, de Freitas V, Fernandes I. Anthocyanins as Antidiabetic Agents-In Vitro and In Silico Approaches of Preventive and Therapeutic Effects. Molecules 2020; 25:E3813. [PMID: 32825758 PMCID: PMC7504281 DOI: 10.3390/molecules25173813] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
Many efforts have been made in the past two decades into the search for novel natural and less-toxic anti-diabetic agents. Some clinical trials have assigned this ability to anthocyanins, although different factors like the food source, the amount ingested, the matrix effect and the time of consumption (before or after a meal) seem to result in contradictory conclusions. The possible mechanisms involved in these preventive or therapeutic effects will be discussed-giving emphasis to the latest in vitro and in silico approaches. Therapeutic strategies to counteract metabolic alterations related to hyperglycemia and Type 2 Diabetes Mellitus (T2DM) may include: (a) Inhibition of carbohydrate-metabolizing enzymes; (b) reduction of glucose transporters expression or activity; (c) inhibition of glycogenolysis and (d) modulation of gut microbiota by anthocyanin breakdown products. These strategies may be achieved through administration of individual anthocyanins or by functional foods containing complexes of anthocyanin:carbohydrate:protein.
Collapse
Affiliation(s)
| | | | | | | | | | - Iva Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (H.O.); (A.F.); (N.F.B.); (N.M.); (V.d.F.)
| |
Collapse
|
31
|
Ellagic Acid Inhibits Neuroinflammation and Cognitive Impairment Induced by Lipopolysaccharides. Neurochem Res 2020; 45:2456-2473. [PMID: 32779097 DOI: 10.1007/s11064-020-03105-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Neuroinflammation is a predisposing factor for the development of cognitive impairment and dementia. Among the new molecules that are currently being studied, ellagic acid (EA) has stood out for its neuroprotective properties. The present study investigated the effects of ellagic acid in the object recognition test, oxidative stress, cholinergic neurotransmission, glial cell expression, and phosphorylated Tau protein expression. For this, 32 male Wistar rats received an intraperitoneal (IP) application of lipopolysaccharides (LPS) at a dose of 250 µg/kg or 0.9% saline solution (SAL) for 8 days. Two hours after the IP injections, the animals received 100 mg/kg of EA or SAL via intragastric gavage. Behavioral parameters (open field test and object recognition) were performed on days 5, 6, and 7 of the experimental periods. The results showed that the treatment with EA in the LPS group was able to inhibit cognitive impairment, modulate the immune system response by significantly reducing glial cell expression, attenuating phosphorylated Tau and oxidative damage with consequent improvement in the antioxidant system, as well as preventing the increase of acetylcholinesterase activity. Thus, the neuroprotective effects of EA and its therapeutic potential in cognitive disorders secondary to neuroinflammation were demonstrated.
Collapse
|
32
|
Khodaei F, Khoshnoud MJ, Heidaryfar S, Heidari R, Karimpour Baseri MH, Azarpira N, Rashedinia M. The effect of ellagic acid on spinal cord and sciatica function in a mice model of multiple sclerosis. J Biochem Mol Toxicol 2020; 34:e22564. [PMID: 32640490 DOI: 10.1002/jbt.22564] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/08/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022]
Abstract
Multiple sclerosis (MS) is a well-known neurodegenerative disorder, causing toxicity in different organs, such as spinal cord tissue. The goal of this study was to investigate the protective effect of ellagic acid (EA) against spinal cord and sciatica function in cuprizone (Cup)-induced demyelination model. Animals were divided into six equal groups. The first group received tap water as the control. Cup group was treated with Cup (0.2% w/w in fed). EA 100 group was orally treated with EA (100 mg/kg). EA + Cup groups were orally treated with three doses of 5, 50, and 100 mg/kg of EA plus Cup (0.2% w/w). All groups received treatment for 42 days. Open field, rotarod, and gait tests were done to evaluate the behavioral changes following Cup and/or EA treatment. Also, lipid peroxidation, reactive oxygen species (ROS) content, antioxidant capacity, superoxide dismutase (SOD), and catalase enzymes activity in spinal cord was evaluated. Luxol fast blue (LFB) staining also the behavioral tests were performed to evaluate the model. Cup increased ROS levels and oxidative stress in their spinal cord tissues. Also, Cup reduced antioxidant capacity, SOD, and catalase activity. EA (especially at 100 mg/kg) prevented these abnormal changes. EA co-treatment dose-dependently was able to ameliorate behavioral impairments in mice that received Cup. EA might act as a protective agent in MS by modulating spinal cord function.
Collapse
Affiliation(s)
- Forouzan Khodaei
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Mohammad Javad Khoshnoud
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Food and Supplements Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sepideh Heidaryfar
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad H Karimpour Baseri
- Department of Neuroscience and Addiction, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Azarpira
- Transplant Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Rashedinia
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
33
|
El-Seedi HR, Khalifa SA, El-Wahed AA, Gao R, Guo Z, Tahir HE, Zhao C, Du M, Farag MA, Musharraf SG, Abbas G. Honeybee products: An updated review of neurological actions. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.04.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
34
|
Tan SJ, Ismail IS. Potency of Selected Berries, Grapes, and Citrus Fruit as Neuroprotective Agents. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:3582947. [PMID: 32565853 PMCID: PMC7277024 DOI: 10.1155/2020/3582947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022]
Abstract
A healthy diet should nourish the brain with essential nutrients, including bioactive compounds, for normal brain functioning and to protect it from the negative effects of inflammation and oxidative stress. In this review, a concise summation of the protective effects of selected fruits, namely, berries, grapes, and citrus fruits, against neurological disorder is presented. The focus is on the neuroprotective potential of these fruits against neurodegenerative and mental disorders. The fruits selection was based on the vast reported pharmacological studies on their neuroprotection efficacies. Hence, the respective knowledge and limitations are discussed based on the biological and pharmacological evidence compiled from the previously reported laboratory, epidemiology, and intervention trials.
Collapse
Affiliation(s)
- Shih Jen Tan
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43000 Serdang, Selangor, Malaysia
| | - Intan Safinar Ismail
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43000 Serdang, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
35
|
Ebrahimi SO, Reiisi S, Shareef S. miRNAs, oxidative stress, and cancer: A comprehensive and updated review. J Cell Physiol 2020; 235:8812-8825. [PMID: 32394436 DOI: 10.1002/jcp.29724] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 04/07/2020] [Indexed: 01/17/2023]
Abstract
Oxidative stress refers to elevated levels of intracellular reactive oxygen species (ROS). ROS homeostasis functions as a signaling pathway for normal cell survival and appropriate cell signaling. Chronic inflammation induced by imbalanced levels of ROS contributes to many diseases and different types of cancer. ROS can alter the expression of oncogenes and tumor suppressor genes through epigenetic modifications, transcription factors, and non-coding RNAs. MicroRNAs (miRNAs) are small non-coding RNAs that play a key role in most biological pathways. Each miRNA regulates hundreds of target genes by inhibiting protein translation and/or promoting messenger RNA degradation. In normal conditions, miRNAs play a physiological role in cell proliferation, differentiation, and apoptosis. However, different factors that can dysregulate cell signaling and cellular homeostasis can also affect miRNA expression. The alteration of miRNA expression can work against disturbing factors or mediate their effects. Oxidative stress is one of these factors. Considering the complex interplay between ROS level and miRNA regulation and both of these with cancer development, we review the role of miRNAs in cancer, focusing on their function in oxidative stress.
Collapse
Affiliation(s)
- Seyed Omar Ebrahimi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Salar Shareef
- Department of Medical Laboratory Science, College of Sciences, University of Raparin, Ranya, Kurdistan Region, Iraq
| |
Collapse
|
36
|
Gorgisen G, Ozkol H, Tuluce Y, Arslan A, Ecer Y, Keskin S, Kaya Z, Ragbetli MC. Silibinin and ellagic acid increase the expression of insulin receptor substrate 1 protein in ultraviolet irradiated rat skin. Biotech Histochem 2020; 95:641-646. [PMID: 32347127 DOI: 10.1080/10520295.2020.1753238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Daily exposure to ultraviolet (UV) light induces inflammation and tumorigenesis in the skin. Silibinin and ellagic acid are natural products that exhibit anti-inflammatory and anti-tumorigenic properties. Insulin receptor substrate protein 1 (IRS1) is important for skin homeostasis and physiology, but its activity following UV radiation remains unclear. We investigated the effects of ellagic acid and silibinin on IRS1 expression in ultraviolet A (UVA) and ultraviolet B (UVB) irradiated rat skin. Forty-two female Wistar rats were divided randomly into six groups of seven animals. The dorsal skin of rats was exposed to UVA + UVB, then treated with ellagic acid and silibinin by gavage. IRS1 expression in skin tissues was determined by western blot analysis. IRS1 expression increased significantly following treatment with ellagic acid and silibinin in UVA + UVB irradiated skin compared to the UVA + UVB only group. After UVA + UVB treatment, ellagic acid effected greater induction of IRS1 expression than silibinin. Our findings suggest that the photoprotective roles of ellagic acid and silibinin may be due to induction of IRS1 expression in UVA + UVB treated rat skin.
Collapse
Affiliation(s)
- G Gorgisen
- Department of Medical Biology, Van Yuzuncu Yil University Medical School , Van, Turkey
| | - H Ozkol
- Department of Medical Biology, Van Yuzuncu Yil University Medical School , Van, Turkey
| | - Y Tuluce
- Department of Medical Biology, Van Yuzuncu Yil University Medical School , Van, Turkey
| | - A Arslan
- Department of Medical Biology, Van Yuzuncu Yil University Medical School , Van, Turkey
| | - Y Ecer
- Department of Medical Biology, Van Yuzuncu Yil University Medical School , Van, Turkey
| | - S Keskin
- Department of Medical Histology and Embryology, Van Yuzuncu Yil University Medical School , Van, Turkey
| | - Z Kaya
- Department of Medical Biology, Van Yuzuncu Yil University Medical School , Van, Turkey
| | - M C Ragbetli
- Department of Medical Histology and Embryology, Van Yuzuncu Yil University Medical School , Van, Turkey
| |
Collapse
|
37
|
Tancheva LP, Lazarova MI, Alexandrova AV, Dragomanova ST, Nicoletti F, Tzvetanova ER, Hodzhev YK, Kalfin RE, Miteva SA, Mazzon E, Tzvetkov NT, Atanasov AG. Neuroprotective Mechanisms of Three Natural Antioxidants on a Rat Model of Parkinson's Disease: A Comparative Study. Antioxidants (Basel) 2020; 9:antiox9010049. [PMID: 31935828 PMCID: PMC7022962 DOI: 10.3390/antiox9010049] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/28/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023] Open
Abstract
We compared the neuroprotective action of three natural bio-antioxidants (AOs): ellagic acid (EA), α-lipoic acid (LA), and myrtenal (Myrt) in an experimental model of Parkinson’s disease (PD) that was induced in male Wistar rats through an intrastriatal injection of 6-hydroxydopamine (6-OHDA). The animals were divided into five groups: the sham-operated (SO) control group; striatal 6-OHDA-lesioned control group; and three groups of 6-OHDA-lesioned rats pre-treated for five days with EA, LA, and Myrt (50 mg/kg; intraperitoneally- i.p.), respectively. On the 2nd and the 3rd week post lesion, the animals were subjected to several behavioral tests: apomorphine-induced rotation; rotarod; and the passive avoidance test. Biochemical evaluation included assessment of main oxidative stress parameters as well as dopamine (DA) levels in brain homogenates. The results showed that all three test compounds improved learning and memory performance as well as neuromuscular coordination. Biochemical assays showed that all three compounds substantially decreased lipid peroxidation (LPO) levels, and restored catalase (CAT) activity and DA levels that were impaired by the challenge with 6-OHDA. Based on these results, we can conclude that the studied AOs demonstrate properties that are consistent with significant antiparkinsonian effects. The most powerful neuroprotective effect was observed with Myrt, and this work represents the first demonstration of its anti-Parkinsonian impact.
Collapse
Affiliation(s)
- Lyubka P. Tancheva
- Department of Behavior Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria; (S.T.D.); (S.A.M.)
- Correspondence: (L.P.T.); (A.G.A.); Tel.: +359-2979-2175 (L.P.T.); +48-227-367-022 (A.G.A.)
| | - Maria I. Lazarova
- Department of Synaptic Signaling and Communications, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria; (M.I.L.); (R.E.K.)
| | - Albena V. Alexandrova
- Department Biological Effects of Natural and Synthetic Substances, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria; (A.V.A.); (E.R.T.)
| | - Stela T. Dragomanova
- Department of Behavior Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria; (S.T.D.); (S.A.M.)
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University, Varna 9002, Bulgaria
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy;
| | - Elina R. Tzvetanova
- Department Biological Effects of Natural and Synthetic Substances, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria; (A.V.A.); (E.R.T.)
| | - Yordan K. Hodzhev
- Department of Sensory Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria;
| | - Reni E. Kalfin
- Department of Synaptic Signaling and Communications, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria; (M.I.L.); (R.E.K.)
| | - Simona A. Miteva
- Department of Behavior Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria; (S.T.D.); (S.A.M.)
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy;
| | - Nikolay T. Tzvetkov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria;
| | - Atanas G. Atanasov
- Department of Synaptic Signaling and Communications, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria; (M.I.L.); (R.E.K.)
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
- Correspondence: (L.P.T.); (A.G.A.); Tel.: +359-2979-2175 (L.P.T.); +48-227-367-022 (A.G.A.)
| |
Collapse
|
38
|
Kharat P, Sarkar P, Mouliganesh S, Tiwary V, Priya VBR, Sree NY, Annapoorna HV, Saikia DK, Mahanta K, Thirumurugan K. Ellagic acid prolongs the lifespan of Drosophila melanogaster. GeroScience 2019; 42:271-285. [PMID: 31786733 DOI: 10.1007/s11357-019-00135-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022] Open
Abstract
Wild-type Canton-S flies of Drosophila melanogaster were treated with ellagic acid at 100 μM and 200 μM concentrations. Longevity assay showed male flies fed with 200 μM ellagic acid displayed longer mean lifespan and maximum lifespan than control flies. Female flies fed with 200 μM ellagic acid laid less number of eggs than control. The eclosion time was less in female flies fed with 200 μM ellagic acid. Ellagic acid fed female flies performed better than male flies and control flies for heat shock tolerance and starvation stress. Male flies treated with 100 μM ellagic acid recovered faster from cold shock compared with control flies. Male and female flies treated with ellagic acid displayed increased survival following exposure to 5% hydrogen peroxide. Gene expression studies displayed upregulated expressions of CAT, dFOXO, ATG1, and SOD2 in ellagic acid-treated male flies, and upregulated expressions of dFOXO, CAT, and SOD2 in ellagic acid-treated female flies. Results from these studies show the pro-longevity effect of ellagic acid on Drosophila melanogaster.
Collapse
Affiliation(s)
- Priyanka Kharat
- 206, Structural Biology Laboratory, Centre for Biomedical Research, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - Priyanka Sarkar
- 206, Structural Biology Laboratory, Centre for Biomedical Research, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - S Mouliganesh
- 206, Structural Biology Laboratory, Centre for Biomedical Research, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - Vaibhav Tiwary
- 206, Structural Biology Laboratory, Centre for Biomedical Research, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - V B Ramya Priya
- 206, Structural Biology Laboratory, Centre for Biomedical Research, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - N Yamini Sree
- 206, Structural Biology Laboratory, Centre for Biomedical Research, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - H Vinu Annapoorna
- 206, Structural Biology Laboratory, Centre for Biomedical Research, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - Diganta K Saikia
- 206, Structural Biology Laboratory, Centre for Biomedical Research, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - Kaustav Mahanta
- 206, Structural Biology Laboratory, Centre for Biomedical Research, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - Kavitha Thirumurugan
- 206, Structural Biology Laboratory, Centre for Biomedical Research, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India.
| |
Collapse
|
39
|
Hamza RZ, Al-Baqami NM. Testicular protective effects of ellagic acid on monosodium glutamate-induced testicular structural alterations in male rats. Ultrastruct Pathol 2019; 43:170-183. [PMID: 31658851 DOI: 10.1080/01913123.2019.1671569] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ellagic acid (EA) has significant protective and antioxidant effects on several tissues. Monosodium glutamate (MG) is known as a flavor promoter that reversibly influences the male reproductive system. This study aims to assess the ameliorative effect of EA on oxidative stress and testicular damage induced by MG. In total, 48 male rats were included in this study and separated into six groups: control, EA (20 mg/kg), MG (low dose) (17.5 mg/kg), MG (high dose) (60 mg/kg), MG (low dose) combined with EA, and MG (high dose) combined with EA. Testicular antioxidant biomarkers [superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GRx), catalase (CAT), myeloperoxidase (MPO), and xanthine oxidase (XO)] were examined. Testes were examined and scored for histological variation as an indicator of testicular damage following administration of MG alone or in combination with EA. Serum testosterone, inhibin B, 8-hydroxydeoxyguanosine (as a marker of DNA damage), and transmission electron microscope sections of the testis were evaluated, and a comet assay was performed. Results showed that administration of EA combined with MG significantly elevated the levels of enzymatic antioxidants and decreased lipid peroxidation compared with MG treatment alone. EA elevated testosterone hormone levels and thus enhanced male reproductive capacity. It is clear from the data that EA inhibits histological and ultrastructure testicular damage and improves the redox state in male rats.
Collapse
Affiliation(s)
- Reham Z Hamza
- Biology Department, Faculty of Science, Taif University, Taif, Saudi Arabia.,Zoology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Najah M Al-Baqami
- Biology Department, Faculty of Science, King abdulaziz Universiy, Jeddah, Saudi Arabia
| |
Collapse
|
40
|
Amini-Khoei H, Saghaei E, Mobini GR, Sabzevary-Ghahfarokhi M, Ahmadi R, Bagheri N, Mokhtari T. Possible involvement of PI3K/AKT/mTOR signaling pathway in the protective effect of selegiline (deprenyl) against memory impairment following ischemia reperfusion in rat. Neuropeptides 2019; 77:101942. [PMID: 31272684 DOI: 10.1016/j.npep.2019.101942] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/17/2019] [Accepted: 06/26/2019] [Indexed: 02/08/2023]
Abstract
Short-term cerebral ischemia led to memory dysfunction. There is a pressing need to introduce effective agents to reduce complications of the ischemia. Involvement of PI3K/AKT/mTOR signaling pathway has been determined in the neuroprotective effect of various agents. Selegiline (deprenyl) possessed neuroprotective properties. In this study global ischemia/reperfusion was established in rats. Selegiline (5 mg/kg for 7 consecutive days) administrated via intraperitoneal route. Possible involvement of PI3K/AKT/mTOR signaling pathway was evaluated using qRT-PCR, immunohistochemistry and histophatologic evaluations in the hippocampus. Spatial memory was evaluated by morris water maze (MWM). Results showed that ischemia impaired the memory and ischemic rats spent more time to find hidden platform in the MWM. Ischemia significantly decreased levels of PI3K, AKT and mTOR in the hippocampus. Histopathologic assessment revealed that the percent of dark neurons significantly increased in the CA1 area of the hippocampus of ischemic rats. Selegiline improved the memory as ischemic rats spent fewer time to find hidden platform in the MWM. Findings showed that selegiline increased the level and expression of PI3K, AKT and mTOR as well as decreased the proportion of dark neurons in the CA1 area of the pyramidal layer of the hippocampus. We concluded that selegiline, partially at least, through increases the expression of PI3K, AKT and mTOR as well as decreases the percent of dark neurons in the hippocampus could improve the memory impairment following the ischemia in rats.
Collapse
Affiliation(s)
- Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Elham Saghaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Gholam-Reza Mobini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Milad Sabzevary-Ghahfarokhi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Reza Ahmadi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Nader Bagheri
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Tahmineh Mokhtari
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran; Department of Anatomy, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
41
|
Lo Dico GM, Ulrici A, Pulvirenti A, Cammilleri G, Macaluso A, Vella A, Giaccone V, Lo Cascio G, Graci S, Scuto M, Trovato Salinaro A, Calabrese V, Lo Dico R, Ferrantelli V. Multivariate statistical analysis of the polyphenols content for the discrimination of honey produced in Sicily (Southern Italy). J Food Compost Anal 2019. [DOI: 10.1016/j.jfca.2019.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
42
|
Soleymani S, Farzaei MH, Zargaran A, Niknam S, Rahimi R. Promising plant-derived secondary metabolites for treatment of acne vulgaris: a mechanistic review. Arch Dermatol Res 2019; 312:5-23. [PMID: 31448393 DOI: 10.1007/s00403-019-01968-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
|
43
|
Ameliorative Effects of Ellagic Acid on Maximal Electroshock and Pentylenetetrazole-Induced Seizures in Mice. Jundishapur J Nat Pharm Prod 2019. [DOI: 10.5812/jjnpp.80039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
44
|
Lorigooini Z, Salimi N, Soltani A, Amini-Khoei H. Implication of NMDA-NO pathway in the antidepressant-like effect of ellagic acid in male mice. Neuropeptides 2019; 76:101928. [PMID: 31078318 DOI: 10.1016/j.npep.2019.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 01/19/2023]
Abstract
Depression is one the common psychiatric disorders through the world. Nitric oxide (NO) and N-methyl-d-aspartate receptor (NMDA-R) are involved in the pathophysiology of depression. Previous studies have been reported various pharmacological properties for ellagic acid (EA). We aimed to evaluate possible involvement of NMDA-NO pathway in the antidepressant-like effect of EA. To do this, we used relevant behavioral tests to evaluate depressive-like behavior. In order to find effective and sub-effective doses of agents, mice treated with EA (6.25, 12.5, 25, 50 and 100 mg/kg), L-NAME (5 and 10 mg/kg), L-arg (25 and 50 mg/kg), NMDA (75 and 150 mg/kg) and ketamine (0.25 and 0.5 mg/kg). Furthermore, mice were treated with combination of sub-effective dose of EA plus sub-effective doses of L-NAME and/or ketamine as well as treated with effective dose of EA in combination of effective doses of L-arg and/or NMDA. Level of NO and gene expression of NR2A and NR2B subunits of NMDA-R were assessed in the hippocampus. Results showed that EA dose dependently provoked antidepressant-like effects and also decreased the hippocampal NO level as well as expression of NMDA-Rs. Co-administration of sub-effective doses of L-NAME or ketamine with sub-effective dose of EA potentiated the effect of EA on behaviors, NO level as well as NMDA-Rs gene expression in the hippocampus. However, co-treatment of effective dose of EA with effective doses of L-arg or NMDA mitigated effects of EA. In conclusion, our data suggested that NMDA-NO, partially at least, are involved in the antidepressant-like effect of EA.
Collapse
Affiliation(s)
- Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Negin Salimi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amin Soltani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
45
|
Farbood Y, Rashno M, Ghaderi S, Khoshnam SE, Sarkaki A, Rashidi K, Rashno M, Badavi M. Ellagic acid protects against diabetes-associated behavioral deficits in rats: Possible involved mechanisms. Life Sci 2019; 225:8-19. [PMID: 30943382 DOI: 10.1016/j.lfs.2019.03.078] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/23/2019] [Accepted: 03/30/2019] [Indexed: 12/16/2022]
Abstract
AIMS Diabetes mellitus (DM), a chronic metabolic disease, is associated with behavioral deficits. It has been suggested that ellagic acid (EA), a natural polyphenol compound, has potent anti-diabetic, anti-inflammatory, and neuroprotective properties. The present study was aimed to explore the potential protective effects of EA against diabetes-associated behavioral deficits and verified possible involved mechanisms. MAIN METHODS Fifty adult male Wistar rats were randomly divided into five groups: i.e., CON: normal rats treated with vehicle (5 ml/kg/day; P.O.), EA: normal rats treated with EA (50 mg/kg/day; P.O.), STZ: diabetic rats treated with vehicle (5 ml/kg/day; P.O.), STZ + INS: diabetic rats treated with insulin (6 IU/rat/day; S.C.), STZ + EA: diabetic rats treated with EA (50 mg/kg/day; P.O.). All the groups were under treatment for eight consecutive weeks. During the seventh and eighth weeks, behavioral functions of the rats were assessed by commonly used behavioral tests. Subsequently, pro- and anti-inflammatory cytokines, neurotrophic factors, and also histological changes were evaluated in both cerebral cortex and hippocampus of the rats. KEY FINDINGS Chronic EA treatment attenuated anxiety/depression-like behaviors, improved exploratory/locomotor activities, and ameliorated cognitive deficits in diabetic rats. These results were accompanied by decreased blood glucose levels, modulation of inflammation status, improved neurotrophic support, and amelioration of neuronal loss in diabetic rats. In some aspects, treatment with EA was even more effective than insulin therapy. SIGNIFICANCE The current work's data confirms that EA could potentially serve as a novel, promising, and accessible protective agent against diabetes-associated behavioral deficits, owing to its anti-hyperglycemic, anti-inflammatory, and neurotrophic properties.
Collapse
Affiliation(s)
- Yaghoob Farbood
- Department of Physiology, Faculty of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masome Rashno
- Department of Physiology, Faculty of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Shahab Ghaderi
- Department of Physiology, Faculty of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Seyed Esmaeil Khoshnam
- Department of Physiology, Faculty of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Department of Physiology, Faculty of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Khodabakhsh Rashidi
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Rashno
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Badavi
- Department of Physiology, Faculty of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
46
|
Goudarzi M, Mombeini MA, Fatemi I, Aminzadeh A, Kalantari H, Nesari A, Najafzadehvarzi H, Mehrzadi S. Neuroprotective effects of Ellagic acid against acrylamide-induced neurotoxicity in rats. Neurol Res 2019; 41:419-428. [DOI: 10.1080/01616412.2019.1576319] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Mehdi Goudarzi
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Amin Mombeini
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Iman Fatemi
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and Pharmacology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Azadeh Aminzadeh
- Department of Pharmacology and Toxicology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Heibatullah Kalantari
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Nesari
- Department of Physiology, Faculty of Medicine, Faculty of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Najafzadehvarzi
- Cellular and molecular biology research center, Health research Institute, Department of Pharmacology, Faculty of Medicine, Babol University of Medical sciences, Babol, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Jha AB, Panchal SS, Shah A. Ellagic acid: Insights into its neuroprotective and cognitive enhancement effects in sporadic Alzheimer's disease. Pharmacol Biochem Behav 2018; 175:33-46. [DOI: 10.1016/j.pbb.2018.08.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/20/2018] [Accepted: 08/23/2018] [Indexed: 12/30/2022]
|
48
|
Kırdağ MK, Tuğlu D, Yuvanç E, Kısa Ü, Balcı M, Batislam E, Yılmaz E. The effect of coenzyme Q and selenium on kidney in rats with partial unilateral ureteral obstruction. Turk J Urol 2018; 45:S70-S77. [PMID: 30461382 DOI: 10.5152/tud.2018.22556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/26/2018] [Indexed: 01/06/2023]
Abstract
OBJECTIVE In this study, we aimed to investigate the antioxidant effects of selenium and coenzyme Q on renal damage in a partial unilateral ureteral obstruction (PUUO) in a rat model. MATERIAL AND METHODS A total of 24 Sprague-Dawley rats were divided into four groups as Group 1 Control Group, Group 2, PUUO Group, Group 3 PUUO + coenzyme Q group, Group 4 PUUO + selenium group. Paraoxonase (PON), total antioxidant capacity (TAC), and total oxidant levels (TOS) were analyzed biochemically from tissue and blood samples. Tissue samples were examined histopathologically. RESULTS The TAC in the tissues was found to be statistically significantly increased in Groups 3 and 4, compared to Group 2. Tissue TOS was found to be significantly reduced in Groups 3 and 4, compared to Group 2. Serum PON levels were significantly increased in Group 3 and 4, compared to Group 1 and 2. Histopathological examination showed that interstitial inflammation and congestion were lesser in the coenzyme Q and selenium groups than in the PUUO group. A more significant decrease was found in the selenium group than in the coenzyme Q group. CONCLUSION Our study results showed that coenzyme Q and selenium reduced the oxidation and the damage in tissue in PUUO in rats.
Collapse
Affiliation(s)
- Mustafa Koray Kırdağ
- Department of Urology, Kırıkkale University School of Medicine, Kırıkkale, Turkey
| | - Devrim Tuğlu
- Department of Urology, Kırıkkale University School of Medicine, Kırıkkale, Turkey
| | - Ercan Yuvanç
- Department of Urology, Kırıkkale University School of Medicine, Kırıkkale, Turkey
| | - Üçler Kısa
- Department of Biochemistry, Kırıkkale University School of Medicine, Kırıkkale, Turkey
| | - Mahi Balcı
- Department of Pathology, Kırıkkale University School of Medicine, Kırıkkale, Turkey
| | - Ertan Batislam
- Department of Urology, Kırıkkale University School of Medicine, Kırıkkale, Turkey
| | - Erdal Yılmaz
- Department of Urology, Kırıkkale University School of Medicine, Kırıkkale, Turkey
| |
Collapse
|
49
|
Ding X, Jian T, Wu Y, Zuo Y, Li J, Lv H, Ma L, Ren B, Zhao L, Li W, Chen J. Ellagic acid ameliorates oxidative stress and insulin resistance in high glucose-treated HepG2 cells via miR-223/keap1-Nrf2 pathway. Biomed Pharmacother 2018; 110:85-94. [PMID: 30466006 DOI: 10.1016/j.biopha.2018.11.018] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/30/2018] [Accepted: 11/06/2018] [Indexed: 12/27/2022] Open
Abstract
As a promising new target, miR-233 may regulate oxidative stress by targeting keap1-Nrf2 system to affect the pathological process of liver injury in T2DM. Ellagic acid (EA) is versatile for protecting oxidative stress damage and metabolic disorders. In the present study, we investigated the effect of EA on oxidative stress and insulin resistance in high glucose-induced T2DM HepG2 cells and examined the role of miR-223/keap1-Nrf2 pathway in system. HepG2 cells were incubated in 30 mM of glucose, with or without EA (15 and 30 μM) or metformin (Met, 150 μM) for 12 h. Glucose consumption, phosphorylation of IRS1, Akt and ERK under insulin stimulation, ROS and O2- production, MDA level, SOD activity and miR-223 expression, as well as protein levels of keap1, Nrf2, HO-1, SOD1 and SOD2 were analyzed. Furthermore, dual luciferase reporter assay, miR-223 mimic and inhibitor were implemented in cellular studies to explore the possible mechanism. EA upregulated glucose consumption, IRS1, Akt and ERK phosphorylation under insulin stimulation, reduced ROS and O2- production and MDA level, and increased SOD activity in high glucose-exposed HepG2 cells. In addition, EA elevated miR-223 expression level, downregulated mRNA and protein levels of keap1, and upregulated Nrf2, HO-1, SOD1 and SOD2 protein levels in this cell model. What's more, dual luciferase reporter assay, miR-223 mimic and inhibitor transfection confirmed that EA activated keap1-Nrf2 system via elevating miR-223. The miR-223, a negative regulator of keap1, represents an attractive therapeutic target in hepatic injury in T2DM. EA ameliorates oxidative stress and insulin resistance via miR-223-mediated keap1-Nrf2 activation in high glucose-induced T2DM HepG2 cells.
Collapse
Affiliation(s)
- Xiaoqin Ding
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Tunyu Jian
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yuexian Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yuanyuan Zuo
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jiawei Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Han Lv
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Li Ma
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Bingru Ren
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Lei Zhao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Weilin Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; Nanjing Forestry University, Nanjing 210037, China.
| | - Jian Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| |
Collapse
|
50
|
Gurel-Gokmen B, Ipekci H, Oktay S, Alev B, Ustundag UV, Ak E, Akakın D, Sener G, Emekli-Alturfan E, Yarat A, Tunali-Akbay T. Melatonin improves hyperglycemia induced damages in rat brain. Diabetes Metab Res Rev 2018; 34:e3060. [PMID: 30098300 DOI: 10.1002/dmrr.3060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/14/2018] [Accepted: 07/30/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Diabetes mellitus is an endocrine disorder which is characterized by the development of resistance to the cellular activity of insulin or inadequate insulin production. It leads to hyperglycemia, prolonged inflammation, and oxidative stress. Oxidative stress is assumed to play an important role in the development of diabetic complications. Melatonin is the hormone that interacts with insulin in diabetes. Therefore, in this study, the effects of melatonin treatment with or without insulin were examined in diabetic rat brain. METHODS Rats were divided into five groups as control, diabetes, diabetes + insulin, diabetes + melatonin, and diabetes + melatonin + insulin. Experimental diabetes was induced by streptozotocin (60 mg/kg, i.p.). Twelve weeks after diabetes induction, rats were decapitated. Malondialdehyde, glutathione, sialic acid and nitric oxide levels, superoxide dismutase, catalase, glutathione-S-transferase, myeloperoxidase, and tissue factor activities were determined in brain tissue. RESULTS Melatonin alone showed its antioxidant effect by increasing brain glutathione level, superoxide dismutase, catalase, and glutathione-S-transferase activities and decreasing malondialdehyde level in experimental diabetes. Although insulin did not have a significant effect on glutathione and glutathione-S-transferase, its effects on lipid peroxidation, superoxide dismutase, and catalase were similar to melatonin; insulin also decreased myolopeoxidase activity and increased tissue factor activity. Combined melatonin and insulin treatment mimicked the effects of insulin. CONCLUSION Addition of melatonin to the insulin treatment did not change the effects of insulin, but the detailed role of melatonin alone in the treatment of diabetes merits further experimental and clinical investigation.
Collapse
Affiliation(s)
- Begum Gurel-Gokmen
- Basic Medical Sciences, Biochemistry, Marmara University, Faculty of Dentistry, Istanbul, Turkey
| | - Hazal Ipekci
- Basic Medical Sciences, Biochemistry, Marmara University, Faculty of Dentistry, Istanbul, Turkey
| | - Sehkar Oktay
- Basic Medical Sciences, Biochemistry, Marmara University, Faculty of Dentistry, Istanbul, Turkey
| | - Burcın Alev
- Basic Medical Sciences, Biochemistry, Marmara University, Faculty of Dentistry, Istanbul, Turkey
| | - Unsal Velı Ustundag
- Basic Medical Sciences, Biochemistry, Marmara University, Faculty of Dentistry, Istanbul, Turkey
| | - Esın Ak
- Basic Medical Sciences, Histology and Embryology, Marmara University, Faculty of Dentistry, Istanbul, Turkey
| | - Dılek Akakın
- Basic Medical Sciences, Histology and Embryology, Marmara University, Faculty of Medicine, Istanbul, Turkey
| | - Goksel Sener
- Pharmacology, Marmara University, Faculty of Pharmacy, Istanbul, Turkey
| | - Ebru Emekli-Alturfan
- Basic Medical Sciences, Biochemistry, Marmara University, Faculty of Dentistry, Istanbul, Turkey
| | - Aysen Yarat
- Basic Medical Sciences, Biochemistry, Marmara University, Faculty of Dentistry, Istanbul, Turkey
| | - Tugba Tunali-Akbay
- Basic Medical Sciences, Biochemistry, Marmara University, Faculty of Dentistry, Istanbul, Turkey
| |
Collapse
|