1
|
Cai X, Xie Z, Zhao J, Lu W, Zhu Z, Chen M, Huang Z, Ying Y, Fu Y, Xu J, Zhu S. FGF20 promotes spinal cord injury repair by inhibiting the formation of necrotic corpuscle P-MLKL/P-RIP1/P-RIP3 in neurons. J Cell Mol Med 2024; 28:e70109. [PMID: 39676730 DOI: 10.1111/jcmm.70109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 12/17/2024] Open
Abstract
The disruption of the local microenvironment subsequent to spinal cord injury (SCI) leads to a substantial loss of neurons in the affected region, which is a major contributing factor to impaired motor function recovery in patients. Fibroblast growth factor 20 (FGF20) is a neurotrophic factor that plays a crucial role in neuronal development and homeostasis. In this study, the recombinant human FGF20 (rhFGF20) was found to mitigate the process of necroptosis in a mouse model of SCI, thereby reducing neural functional deficits and promoting SCI repair. FGF20 protein was injected into the SCI mice via intraperitoneal injection. Using the BMS scale and inclined plane test, we found that FGF20 significantly promoted the recovery of motor function. The Nissl staining revealed the level of neuronal survival within the region of injury. The expression changes of NeuN, GAP43, NF200 and GFAP indicated that FGF20 has the nerve repair ability to delay the formation of glial scar. Through fluorescence detection of Ace-Tubulin and Tyr-Tubulin, FGF20 was revealed to promote the polymerization of axon-regenerated microtubules. Furthermore, FGF20 was also found to reduce the expression levels of necroptosis induced by SCI. These data suggest that FGF20 may exert a neuroprotective effect by inhibiting injury-induced necroptosis, thereby facilitating functional recovery following SCI. Moreover, systemic administration of FGF20 holds promise as a potential therapeutic strategy for repairing the damaged spinal cord. The discovery paves the way for a novel avenue of growth factor research in the field of SCI.
Collapse
Affiliation(s)
- Xiong Cai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhenwen Xie
- The First Clinical School of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Juan Zhao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenjie Lu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhongwei Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Min Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiyang Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yibo Ying
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yining Fu
- The First Clinical School of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiake Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
2
|
Dlugosova S, Spoutil F, Madureira Trufen CE, Melike Ogan B, Prochazkova M, Fedosieieva O, Nickl P, Aranaz Novaliches G, Sedlacek R, Prochazka J. Skeletal dysmorphology and mineralization defects in Fgf20 KO mice. Front Endocrinol (Lausanne) 2024; 15:1286365. [PMID: 39129916 PMCID: PMC11310068 DOI: 10.3389/fendo.2024.1286365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 07/02/2024] [Indexed: 08/13/2024] Open
Abstract
Introduction Fibroblast growth factor 20 (Fgf20), a member of the Fgf9 subfamily, was identified as an important regulator of bone differentiation and homeostasis processes. However, the role of Fgf20 in bone physiology has not been approached yet. Here we present a comprehensive bone phenotype analysis of mice with functional ablation of Fgf20. Methods The study conducts an extensive analysis of Fgf20 knockout mice compared to controls, incorporating microCT scanning, volumetric analysis, Fgf9 subfamily expression and stimulation experiment and histological evaluation. Results The bone phenotype could be detected especially in the area of the lumbar and caudal part of the spine and in fingers. Regarding the spine, Fgf20-/- mice exhibited adhesions of the transverse process of the sixth lumbar vertebra to the pelvis as well as malformations in the distal part of their tails. Preaxial polydactyly and polysyndactyly in varying degrees of severity were also detected. High resolution microCT analysis of distal femurs and the fourth lumbar vertebra showed significant differences in structure and mineralization in both cortical and trabecular bone. These findings were histologically validated and may be associated with the expression of Fgf20 in chondrocytes and their progenitors. Moreover, histological sections demonstrated increased bone tissue formation, disruption of Fgf20-/- femur cartilage, and cellular-level alterations, particularly in osteoclasts. We also observed molar dysmorphology, including root taurodontism, and described variations in mineralization and dentin thickness. Discussion Our analysis provides evidence that Fgf20, together with other members of the Fgf9 subfamily, plays a crucial regulatory role in skeletal development and bone homeostasis.
Collapse
Affiliation(s)
- Sylvie Dlugosova
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Frantisek Spoutil
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | | | - Betul Melike Ogan
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Michaela Prochazkova
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Olha Fedosieieva
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Petr Nickl
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Goretti Aranaz Novaliches
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Jan Prochazka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| |
Collapse
|
3
|
Jiménez KM, Pereira-Morales AJ, Adan A, Lopez-Leon S, Forero DA. Depressive symptoms are associated with a functional polymorphism in a miR-433 binding site in the FGF20 gene. Mol Brain 2018; 11:53. [PMID: 30241547 PMCID: PMC6151041 DOI: 10.1186/s13041-018-0397-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/18/2018] [Indexed: 01/30/2023] Open
Abstract
Genetic studies of major depressive disorder and its associated endophenotypes are useful for the identification of candidate genes. In recent years, variations in non-coding RNA genes, such as miRNAs, have been explored as novel candidates for psychiatric disorders and related endophenotypes. The aim of the present study was to evaluate the possible association between a functional polymorphism (rs12720208) in the FGF20 gene, which regulates its modulation by miR-433, and depressive symptoms in young adults. A sample of 270 participants from Colombia were evaluated with the Hospital Anxiety and Depression Scale - Depression Subscale (HADS-D) and genotyped for the rs12720208 polymorphism using a TaqMan assay. A lineal regression analysis was used. A statistically significant association of the functional polymorphism in the FGF20 gene (rs12720208) with depressive symptoms was found. It was observed that individuals with the G/A genotype had higher scores for the HADS-D subscale. Our results are the first description in the scientific literature about a significant association between a functional polymorphism in the FGF20 gene, which regulates its modulation by miR-433, and depressive symptoms.
Collapse
Affiliation(s)
- Karen M Jiménez
- Laboratory of Neuropsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, 110231, Bogotá, Colombia
| | - Angela J Pereira-Morales
- Laboratory of Neuropsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, 110231, Bogotá, Colombia
| | - Ana Adan
- Department of Clinical Psychology and Psychobiology, School of Psychology, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Sandra Lopez-Leon
- Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, NJ, 07936-1080, USA.
| | - Diego A Forero
- Laboratory of Neuropsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, 110231, Bogotá, Colombia.
| |
Collapse
|
4
|
Genetic analysis of FGF20 in Chinese patients with Parkinson’s disease. Neurol Sci 2017; 38:887-891. [DOI: 10.1007/s10072-017-2868-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/21/2017] [Indexed: 11/27/2022]
|
5
|
Williams JK, Andersson KE. Regenerative pharmacology: recent developments and future perspectives. Regen Med 2016; 11:859-870. [DOI: 10.2217/rme-2016-0108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This review focuses on the current status of research that utilizes the application of pharmacological sciences to accelerate, optimize and characterize the development, maturation and function of bioengineered and regenerating tissues. These regenerative pharmacologic approaches have been applied to diseases of the urogenital tract, the heart, the brain, the musculoskeletal system and diabetes. Approaches have included the use of growth factors (such as VEGF and chemokines (stromal-derived factor – CXCL12) to mobilize cell to the sights of tissue loss or damage. The promise of this approach is to bypass the lengthy and expensive processes of cell isolation and implant fabrication to stimulate the body to heal itself with its own tissue regenerative pathways.
Collapse
Affiliation(s)
- James Koudy Williams
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC 27101, USA
| | - Karl-Erik Andersson
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC 27101, USA
- Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Yuan L, Song Z, Deng X, Zheng W, Guo Y, Yang Z, Deng H. Systematic analysis of genetic variants in Han Chinese patients with sporadic Parkinson's disease. Sci Rep 2016; 6:33850. [PMID: 27653456 PMCID: PMC5032117 DOI: 10.1038/srep33850] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/05/2016] [Indexed: 01/21/2023] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative disorders. Accumulated evidence confirms that genetic factors play a considerable role in PD pathogenesis. To examine whether point variants or haplotypes are associated with PD development, genotyping of 35 variants in 22 PD-related genes was performed in a well-characterized cohort of 512 Han Chinese PD patients and 512 normal controls. Both Pearson's χ2 test and haplotype analysis were used to evaluate whether variants or their haplotypes were associated with PD in this cohort. The only statistically significant differences in genotypic and allelic frequencies between the patients and the controls were in the DnaJ heat shock protein family (Hsp40) member C10 gene (DNAJC10) variant rs13414223 (P = 0.004 and 0.002, respectively; odds ratio = 0.652, 95% confidence interval: 0.496-0.857). No other variants or haplotypes exhibited any significant differences between these two groups (all corrected P > 0.05). Our findings indicate that the variant rs13414223 in the DNAJC10 gene, a paralog of PD-related genes DNAJC6 and DNAJC13, may play a protective role in PD. This suggests it may be a PD-associated gene.
Collapse
Affiliation(s)
- Lamei Yuan
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Song
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiong Deng
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Wen Zheng
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Yi Guo
- Department of Medical Information, Information Security and Big Data Research Institute, Central South University, Changsha, China
| | - Zhijian Yang
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Deng
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Yuan L, Song Z, Deng X, Zheng W, Yang Z, Yang Y, Deng H. Genetic analysis of FGF20 variants in Chinese Han patients with essential tremor. Neurosci Lett 2016; 620:159-62. [PMID: 27040428 DOI: 10.1016/j.neulet.2016.03.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/15/2016] [Accepted: 03/31/2016] [Indexed: 12/22/2022]
Abstract
Essential tremor (ET) is one of the most frequent neurological disorders with elusive etiology, typically characterized by postural and kinetic tremors. Evidence reveals that genetic components are implicated in the development of ET and there are some overlaps between ET and Parkinson's disease in clinical features and etiology. Variants in the fibroblast growth factor 20 gene (FGF20) have been reported to be associated with the risk of Parkinson's disease. To evaluate the association between the FGF20 gene variants and ET susceptibility, we conducted genetic analysis of five FGF20 variants (rs1721100, rs1989754, rs10089600, rs12720208, and rs17550360) in 200 patients with ET and 426 ethnically-matched Chinese Han normal controls. Statistical analysis did not identify significant differences in genotypic or allelic frequencies of variants between ET patients and normal controls (all P>0.05). No related haplotype was found to be related to the risk of ET. The findings indicate the FGF20 gene might not play a dominating role in the genetic predisposition to ET in Chinese Han population.
Collapse
Affiliation(s)
- Lamei Yuan
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China; Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Song
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiong Deng
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wen Zheng
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhijian Yang
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yan Yang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Deng
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China; Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
8
|
Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Agúndez JAG. Advances in understanding genomic markers and pharmacogenetics of Parkinson's disease. Expert Opin Drug Metab Toxicol 2016; 12:433-48. [PMID: 26910127 DOI: 10.1517/17425255.2016.1158250] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The inheritance pattern of Parkinson's disease (PD) is likely multifactorial (owing to the interplay of genetic predisposition and environmental factors). Many pharmacogenetic studies have tried to establish a possible role of candidate genes in PD risk. Several studies have focused on the influence of genes in the response to antiparkinsonian drugs and in the risk of developing side-effects of these drugs. AREAS COVERED This review presents an overview of current knowledge, with particular emphasis on the most recent advances, both in case-control association studies on the role of candidate genes in the risk for PD as well as pharmacogenetic studies on the role of genes in the development of side effects of antiparkinsonian drugs. The most reliable results should be derived from meta-analyses of case-control association studies on candidate genes involving large series of PD patients and controls, and from genome-wide association studies (GWAS). EXPERT OPINION Prospective studies of large samples involving several genes with a detailed history of exposure to environmental factors in the same cohort of subjects, should be useful to clarify the role of genes in the risk for PD. The results of studies on the role of genes in the development of side-effects of antiparkinsonian drugs should, at this stage, only be considered preliminary.
Collapse
Affiliation(s)
| | | | | | - José A G Agúndez
- b Department of Pharmacology , University of Extremadura , Cáceres , Spain
| |
Collapse
|
9
|
High production in E. coli of biologically active recombinant human fibroblast growth factor 20 and its neuroprotective effects. Appl Microbiol Biotechnol 2015; 100:3023-34. [PMID: 26603761 DOI: 10.1007/s00253-015-7168-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 10/29/2015] [Accepted: 11/04/2015] [Indexed: 01/20/2023]
Abstract
Fibroblast growth factor 20 (FGF20) has a wide range of biological activities; its expression is most pronounced in neural tissues where it has functions in development and neuroprotection. Given these activities, interest in the clinical applications of FGF20 is rising, which will lead to increasing demand for active recombinant human FGF20 (rhFGF20). To improve the production of rhFGF20, an artificial gene encoding fgf20 was cloned into pET3a and expressed in E. coli BL21(DE3)pLysS. By optimizing induction conditions, we successfully induced large amounts of insoluble rhFGF20. Following solubilization and refolding of the rhFGF20 from inclusion bodies, it was purified by HiTrap heparin affinity chromatography to a purity of over 96% with a yield of 218 mg rhFGF20/100 g wet cells. The purified rhFGF20 could stimulate proliferation of both NIH 3T3 cells and PC-12 cells, measured by the MTT assay. In a model of Aβ25-35-induced apoptosis on PC-12 cells, rhFGF20 had a clear protective effect. RT-PCR and Western blot analysis of apoptosis-related genes and proteins revealed that the FGF20-derived protective mechanism was likely due to the relief of endoplasmic reticulum stress (ER stress). In conclusion, the approach described here may be a better means to produce active rhFGF20 in good quantity, thereby allowing for its future pharmacological and clinical use.
Collapse
|
10
|
Variation in the miRNA-433 binding site of FGF20 is a risk factor for Parkinson's disease in Iranian population. J Neurol Sci 2015; 355:72-4. [DOI: 10.1016/j.jns.2015.05.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/21/2015] [Accepted: 05/18/2015] [Indexed: 02/03/2023]
|
11
|
|