1
|
Cheshire WP, Tipton PW, Koga S, Sekiya H, Uitti RJ, Ross OA, Heckman MG, Sledge HJ, Dickson DW. Occupational histories in neuropathologically confirmed multiple system atrophy. Clin Auton Res 2025:10.1007/s10286-025-01109-9. [PMID: 39847196 DOI: 10.1007/s10286-025-01109-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/10/2025] [Indexed: 01/24/2025]
Abstract
PURPOSE This study examined occupational histories in multiple system atrophy to identify environmental associations of potential relevance to disease causation. METHODS A total of 270 neuropathologically confirmed cases of multiple system atrophy obtained from the Mayo Clinic Brain Bank for neurodegenerative disorders in Jacksonville, Florida, were included in this case-control study. Demographic and disease information was collected from medical records. Information regarding occupational history was collected retrospectively from medical records and published obituaries. Proportions of employment by occupational sector were compared with US census data. RESULTS When comparing patients with US census data, significant differences were identified for education (15.2% versus 2.3%, P < 0.001), administration (14.8% versus 4.1%, P < 0.001), clerical (10.7% versus 5.5%, P = 0.001), petroleum industry (8.9% versus 5.6%, P = 0.024), metal industry (7.8% versus 3.0%, P < 0.001), electrical engineers and electricians (5.6% versus 0.4%, P < 0.001), civil or mechanical engineering (4.4% versus 0.2%, P < 0.001), real estate (4.4% versus 0.7%, P < 0.001), information technology (4.1% versus 1.8%, P = 0.011), woodworking (3.0% versus 0.03%, P < 0.001), writing or publishing (2.6% versus 0.3%, P < 0.001), law (2.2% versus 0.4%, P = 0.001), hairdressing (0.7% versus 0.1%, P = 0.03), and social work (0.7% versus 0.1%, P = 0.03). CONCLUSIONS The listed occupational categories were significantly overrepresented in our series of patients with multiple system atrophy as compared with population data. We hypothesize that these occupational associations may signify environmental exposures, increasing the disease risk in genetically susceptible individuals. We cannot exclude a potential selection bias in patients willing to donate their brains to an academic center to contribute to scientific knowledge.
Collapse
Affiliation(s)
- William P Cheshire
- Division of Autonomic Neurology, Department of Neurology, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL, 32224, USA.
| | - Philip W Tipton
- Division of Movement Disorders, Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Hiroaki Sekiya
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Ryan J Uitti
- Division of Movement Disorders, Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Michael G Heckman
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, FL, USA
| | - Hanna J Sledge
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, FL, USA
| | | |
Collapse
|
2
|
Chia R, Ray A, Shah Z, Ding J, Ruffo P, Fujita M, Menon V, Saez-Atienzar S, Reho P, Kaivola K, Walton RL, Reynolds RH, Karra R, Sait S, Akcimen F, Diez-Fairen M, Alvarez I, Fanciulli A, Stefanova N, Seppi K, Duerr S, Leys F, Krismer F, Sidoroff V, Zimprich A, Pirker W, Rascol O, Foubert-Samier A, Meissner WG, Tison F, Pavy-Le Traon A, Pellecchia MT, Barone P, Russillo MC, Marín-Lahoz J, Kulisevsky J, Torres S, Mir P, Periñán MT, Proukakis C, Chelban V, Wu L, Goh YY, Parkkinen L, Hu MT, Kobylecki C, Saxon JA, Rollinson S, Garland E, Biaggioni I, Litvan I, Rubio I, Alcalay RN, Kwei KT, Lubbe SJ, Mao Q, Flanagan ME, Castellani RJ, Khurana V, Ndayisaba A, Calvo A, Mora G, Canosa A, Floris G, Bohannan RC, Moore A, Norcliffe-Kaufmann L, Palma JA, Kaufmann H, Kim C, Iba M, Masliah E, Dawson TM, Rosenthal LS, Pantelyat A, Albert MS, Pletnikova O, Troncoso JC, Infante J, Lage C, Sánchez-Juan P, Serrano GE, Beach TG, Pastor P, Morris HR, Albani D, Clarimon J, Wenning GK, Hardy JA, Ryten M, Topol E, Torkamani A, Chiò A, Bennett DA, De Jager PL, Low PA, Singer W, Cheshire WP, Wszolek ZK, Dickson DW, et alChia R, Ray A, Shah Z, Ding J, Ruffo P, Fujita M, Menon V, Saez-Atienzar S, Reho P, Kaivola K, Walton RL, Reynolds RH, Karra R, Sait S, Akcimen F, Diez-Fairen M, Alvarez I, Fanciulli A, Stefanova N, Seppi K, Duerr S, Leys F, Krismer F, Sidoroff V, Zimprich A, Pirker W, Rascol O, Foubert-Samier A, Meissner WG, Tison F, Pavy-Le Traon A, Pellecchia MT, Barone P, Russillo MC, Marín-Lahoz J, Kulisevsky J, Torres S, Mir P, Periñán MT, Proukakis C, Chelban V, Wu L, Goh YY, Parkkinen L, Hu MT, Kobylecki C, Saxon JA, Rollinson S, Garland E, Biaggioni I, Litvan I, Rubio I, Alcalay RN, Kwei KT, Lubbe SJ, Mao Q, Flanagan ME, Castellani RJ, Khurana V, Ndayisaba A, Calvo A, Mora G, Canosa A, Floris G, Bohannan RC, Moore A, Norcliffe-Kaufmann L, Palma JA, Kaufmann H, Kim C, Iba M, Masliah E, Dawson TM, Rosenthal LS, Pantelyat A, Albert MS, Pletnikova O, Troncoso JC, Infante J, Lage C, Sánchez-Juan P, Serrano GE, Beach TG, Pastor P, Morris HR, Albani D, Clarimon J, Wenning GK, Hardy JA, Ryten M, Topol E, Torkamani A, Chiò A, Bennett DA, De Jager PL, Low PA, Singer W, Cheshire WP, Wszolek ZK, Dickson DW, Traynor BJ, Gibbs JR, Dalgard CL, Ross OA, Houlden H, Scholz SW. Genome sequence analyses identify novel risk loci for multiple system atrophy. Neuron 2024; 112:2142-2156.e5. [PMID: 38701790 PMCID: PMC11223971 DOI: 10.1016/j.neuron.2024.04.002] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/28/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024]
Abstract
Multiple system atrophy (MSA) is an adult-onset, sporadic synucleinopathy characterized by parkinsonism, cerebellar ataxia, and dysautonomia. The genetic architecture of MSA is poorly understood, and treatments are limited to supportive measures. Here, we performed a comprehensive analysis of whole genome sequence data from 888 European-ancestry MSA cases and 7,128 controls to systematically investigate the genetic underpinnings of this understudied neurodegenerative disease. We identified four significantly associated risk loci using a genome-wide association study approach. Transcriptome-wide association analyses prioritized USP38-DT, KCTD7, and lnc-KCTD7-2 as novel susceptibility genes for MSA within these loci, and single-nucleus RNA sequence analysis found that the associated variants acted as cis-expression quantitative trait loci for multiple genes across neuronal and glial cell types. In conclusion, this study highlights the role of genetic determinants in the pathogenesis of MSA, and the publicly available data from this study represent a valuable resource for investigating synucleinopathies.
Collapse
Affiliation(s)
- Ruth Chia
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Anindita Ray
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Zalak Shah
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Jinhui Ding
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Paola Ruffo
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA; Medical Genetics Laboratory, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Masashi Fujita
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Vilas Menon
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Sara Saez-Atienzar
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Paolo Reho
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Karri Kaivola
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Ronald L Walton
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Regina H Reynolds
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK; Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, University College London, London, UK; Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Ramita Karra
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Shaimaa Sait
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Fulya Akcimen
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Monica Diez-Fairen
- Memory and Movement Disorders Units, Department of Neurology, University Hospital Mutua de Terrassa, Barcelona, Spain
| | - Ignacio Alvarez
- Memory and Movement Disorders Units, Department of Neurology, University Hospital Mutua de Terrassa, Barcelona, Spain
| | | | - Nadia Stefanova
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus Seppi
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Susanne Duerr
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Fabian Leys
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Krismer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Victoria Sidoroff
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Walter Pirker
- Department of Neurology, Klinik Ottakring - Wilhelminenspital, Vienna, Austria
| | - Olivier Rascol
- MSA French Reference Center and CIC-1436, Department of Clinical Pharmacology and Neurosciences, University of Toulouse, Toulouse, France
| | - Alexandra Foubert-Samier
- Service de Neurologie des Maladies Neurodégénératives, French Reference Center for MSA, NS-Park/FCRIN Network, CHU Bordeaux, Bordeaux, France
| | - Wassilios G Meissner
- Service de Neurologie des Maladies Neurodégénératives, French Reference Center for MSA, NS-Park/FCRIN Network, CHU Bordeaux, Bordeaux, France; University of Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, France; Department of Medicine, University of Otago, and the New Zealand Brain Research Institute, Christchurch, New Zealand
| | - François Tison
- Service de Neurologie des Maladies Neurodégénératives, French Reference Center for MSA, NS-Park/FCRIN Network, CHU Bordeaux, Bordeaux, France; University of Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, France
| | - Anne Pavy-Le Traon
- French Reference Center for MSA, Department of Neurosciences, Centre d'Investigation Clinique de Toulouse CIC1436, UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University Hospital of Toulouse, INSERM, Toulouse, France
| | - Maria Teresa Pellecchia
- Neuroscience Section, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Paolo Barone
- Neuroscience Section, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Maria Claudia Russillo
- Neuroscience Section, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Juan Marín-Lahoz
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Institut d'Investigacions Biomèdiques Sant Pau (IIB-Sant Pau), Centro de Investigación en Red Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Barcelona, Spain; Servicio de Neurología, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Institut d'Investigacions Biomèdiques Sant Pau (IIB-Sant Pau), Centro de Investigación en Red Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Soraya Torres
- Institut d'Investigacions Biomèdiques Sant Pau (IIB-Sant Pau), Centro de Investigación en Red Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pablo Mir
- Unidad de Trastornos del Movimiento Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain; Departamento de Medicina Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Maria Teresa Periñán
- Unidad de Trastornos del Movimiento Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Seville, Spain; Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University, London, UK
| | - Christos Proukakis
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, UK
| | - Viorica Chelban
- Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, London, UK; The National Hospital for Neurology and Neurosurgery, London, UK
| | - Lesley Wu
- Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, London, UK
| | - Yee Y Goh
- Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, London, UK
| | - Laura Parkkinen
- Nuffield Department of Clinical Neurosciences, Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
| | - Michele T Hu
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Christopher Kobylecki
- Department of Neurology, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, UK
| | - Jennifer A Saxon
- Cerebral Function Unit, Manchester Centre for Clinical Neurosciences, Salfort, UK; Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Sara Rollinson
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Emily Garland
- Autonomic Dysfunction Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Italo Biaggioni
- Autonomic Dysfunction Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Irene Litvan
- Department of Neurosciences, University of California, San Diego, San Diego, CA, USA
| | - Ileana Rubio
- Department of Neurosciences, University of California, San Diego, San Diego, CA, USA
| | - Roy N Alcalay
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA; Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Kimberly T Kwei
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Steven J Lubbe
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Qinwen Mao
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Margaret E Flanagan
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA; Department of Pathology, UT Health San Antonio, San Antonio, TX, USA
| | - Rudolph J Castellani
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Vikram Khurana
- Ann Romney Center for Neurologic Disease, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Alain Ndayisaba
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria; Ann Romney Center for Neurologic Disease, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrea Calvo
- "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | - Gabriele Mora
- Istituti Clinici Scientifici Maugeri, IRCCS, Milan, Italy
| | - Antonio Canosa
- "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | - Gianluca Floris
- Department of Neurology, University Hospital of Cagliari, Cagliari, Italy
| | - Ryan C Bohannan
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Anni Moore
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | | | - Jose-Alberto Palma
- Department of Neurology, New York University School of Medicine, New York, NY, USA
| | - Horacio Kaufmann
- Department of Neurology, New York University School of Medicine, New York, NY, USA
| | - Changyoun Kim
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Michiyo Iba
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Eliezer Masliah
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Ted M Dawson
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA; Neuroregeneration and Stem Cell Programs, Institute of Cell Engineering, Johns Hopkins University Medical Center, Baltimore, MD, USA; Department of Pharmacology and Molecular Science, Johns Hopkins University Medical Center, Baltimore, MD, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Liana S Rosenthal
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Alexander Pantelyat
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Marilyn S Albert
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Olga Pletnikova
- Department of Pathology (Neuropathology), Johns Hopkins University Medical Center, Baltimore, MD, USA; Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Juan C Troncoso
- Department of Pathology (Neuropathology), Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Jon Infante
- Neurology Service, University Hospital Marqués de Valdecilla-IDIVAL-UC-CIBERNED, Santander, Spain
| | - Carmen Lage
- Neurology Service, University Hospital Marqués de Valdecilla-IDIVAL-UC-CIBERNED, Santander, Spain
| | - Pascual Sánchez-Juan
- Neurology Service, University Hospital Marqués de Valdecilla-IDIVAL-UC-CIBERNED, Santander, Spain; Alzheimer's Centre Reina Sofia-CIEN Foundation-ISCIII, Madrid, Spain
| | - Geidy E Serrano
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Thomas G Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Pau Pastor
- Genomics and Transcriptomics of Synucleinopathies, Neurosciences, The Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain; Unit of Neurodegenerative Diseases, Department of Neurology, University Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Huw R Morris
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Diego Albani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Jordi Clarimon
- Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; The Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Gregor K Wenning
- Autonomic Unit - Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - John A Hardy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK; UK Dementia Research Institute of UCL, UCL Institute of Neurology, University College London, London, UK; Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, University College London, London, UK; UCL Movement Disorders Centre, University College London, London, UK; Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Mina Ryten
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK; Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, University College London, London, UK
| | - Eric Topol
- Scripps Research Translational Institute, Scripps Research, La Jolla, CA, USA
| | - Ali Torkamani
- Scripps Research Translational Institute, Scripps Research, La Jolla, CA, USA
| | - Adriano Chiò
- "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy; Institute of Cognitive Sciences and Technologies, C.N.R., Rome, Italy; Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Turin, Italy
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Philip A Low
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | - Bryan J Traynor
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA; Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA; RNA Therapeutics Laboratory, Therapeutics Development Branch, National Center for Advancing Translational Sciences, Rockville, MD, USA
| | - J Raphael Gibbs
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Clifton L Dalgard
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, USA
| | - Henry Houlden
- Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, London, UK; The National Hospital for Neurology and Neurosurgery, London, UK
| | - Sonja W Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA; Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA.
| |
Collapse
|
3
|
Liu M, Wang Z, Shang H. Multiple system atrophy: an update and emerging directions of biomarkers and clinical trials. J Neurol 2024; 271:2324-2344. [PMID: 38483626 PMCID: PMC11055738 DOI: 10.1007/s00415-024-12269-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 04/28/2024]
Abstract
Multiple system atrophy is a rare, debilitating, adult-onset neurodegenerative disorder that manifests clinically as a diverse combination of parkinsonism, cerebellar ataxia, and autonomic dysfunction. It is pathologically characterized by oligodendroglial cytoplasmic inclusions containing abnormally aggregated α-synuclein. According to the updated Movement Disorder Society diagnostic criteria for multiple system atrophy, the diagnosis of clinically established multiple system atrophy requires the manifestation of autonomic dysfunction in combination with poorly levo-dopa responsive parkinsonism and/or cerebellar syndrome. Although symptomatic management of multiple system atrophy can substantially improve quality of life, therapeutic benefits are often limited, ephemeral, and they fail to modify the disease progression and eradicate underlying causes. Consequently, effective breakthrough treatments that target the causes of disease are needed. Numerous preclinical and clinical studies are currently focusing on a set of hallmarks of neurodegenerative diseases to slow or halt the progression of multiple system atrophy: pathological protein aggregation, synaptic dysfunction, aberrant proteostasis, neuronal inflammation, and neuronal cell death. Meanwhile, specific biomarkers and measurements with higher specificity and sensitivity are being developed for the diagnosis of multiple system atrophy, particularly for early detection of the disease. More intriguingly, a growing number of new disease-modifying candidates, which can be used to design multi-targeted, personalized treatment in patients, are being investigated, notwithstanding the failure of most previous attempts.
Collapse
Affiliation(s)
- Min Liu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, China
| | - Zhiyao Wang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
4
|
Matsukawa T, Porto KJL, Mitsui J, Chikada A, Ishiura H, Takahashi Y, Nakamoto FK, Seki T, Shiio Y, Toda T, Tsuji S. Clinical and Genetic Features of Multiplex Families with Multiple System Atrophy and Parkinson's Disease. CEREBELLUM (LONDON, ENGLAND) 2024; 23:22-30. [PMID: 36097244 DOI: 10.1007/s12311-022-01426-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
While multiple system atrophy (MSA) has been considered a sporadic disease, there were previously reported multiplex families with MSA. Furthermore, several families with multiple patients with MSA and Parkinson's disease (PD) have been reported. As genetic risk factors for MSA, functionally impaired variants in COQ2 and Gaucher-disease-causing GBA variants have been reported. While it has been established that GBA variants are associated with PD, COQ2 may also be associated with PD. In 672 patients with MSA, we identified 12 multiplex families of patients with MSA and PD in first-degree relatives. We conducted a detailed analysis of the clinical presentations of these patients and genetic analyses of GBA and COQ2. In the multiplex families, a patient with MSA with predominant parkinsonism (MSA-P) was observed in nine families, while a patient with MSA cerebellar subtype (MSA-C) was observed in three families. Six families had siblings with MSA and PD, five families had a parent-offspring pair with MSA and PD, and in one family, a sibling and a parent of an MSA patient had PD. In genetic analyses of these patients, GBA variants were identified in one of the 12 MSA patients and two of the seven PD patients. Functionally impaired variants of COQ2 were identified in two of the 12 MSA patients and not identified in the seven PD patients. This study further emphasizes the occurrence of MSA and PD in first-degree relatives, raising the possibility that a common genetic basis underlies MSA and PD. Even though variants of COQ2 and GBA were identified in some patients in multiplex families with MSA and PD, it is necessary to further explore as yet unidentified genetic risk factors shared by MSA and PD.
Collapse
Affiliation(s)
- Takashi Matsukawa
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kristine Joyce L Porto
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun Mitsui
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ayaka Chikada
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuji Takahashi
- Department of Neurology, National Center of Neurology and Psychiatry, National Center Hospital, Tokyo, Japan
| | | | - Tomonari Seki
- Department of Neurology, Tokyo Teishin Hospital, Tokyo, Japan
| | - Yasushi Shiio
- Department of Neurology, Tokyo Teishin Hospital, Tokyo, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shoji Tsuji
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- Institute of Medical Genomics, International University of Health and Welfare, Chiba, Japan.
| |
Collapse
|
5
|
Nakahara Y, Mitsui J, Date H, Porto KJ, Hayashi Y, Yamashita A, Kusakabe Y, Matsukawa T, Ishiura H, Yasuda T, Iwata A, Goto J, Ichikawa Y, Momose Y, Takahashi Y, Toda T, Ohta R, Yoshimura J, Morishita S, Gustavsson EK, Christy D, Maczis M, Farrer MJ, Kim HJ, Park SS, Jeon B, Zhang J, Gu W, Scholz SW, Singleton AB, Houlden H, Yabe I, Sasaki H, Matsushima M, Takashima H, Kikuchi A, Aoki M, Hara K, Kakita A, Yamada M, Takahashi H, Onodera O, Nishizawa M, Watanabe H, Ito M, Sobue G, Ishikawa K, Mizusawa H, Kanai K, Kuwabara S, Arai K, Koyano S, Kuroiwa Y, Hasegawa K, Yuasa T, Yasui K, Nakashima K, Ito H, Izumi Y, Kaji R, Kato T, Kusunoki S, Osaki Y, Horiuchi M, Yamamoto K, Shimada M, Miyagawa T, Kawai Y, Nishida N, Tokunaga K, Dürr A, Brice A, Filla A, Klockgether T, Wüllner U, Tanner CM, Kukull WA, Lee VMY, Masliah E, Low PA, Sandroni P, Ozelius L, Foroud T, Tsuji S. Genome-wide association study identifies a new susceptibility locus in PLA2G4C for Multiple System Atrophy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.02.23289328. [PMID: 37425910 PMCID: PMC10327266 DOI: 10.1101/2023.05.02.23289328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
To elucidate the molecular basis of multiple system atrophy (MSA), a neurodegenerative disease, we conducted a genome-wide association study (GWAS) in a Japanese MSA case/control series followed by replication studies in Japanese, Korean, Chinese, European and North American samples. In the GWAS stage rs2303744 on chromosome 19 showed a suggestive association ( P = 6.5 × 10 -7 ) that was replicated in additional Japanese samples ( P = 2.9 × 10 -6 . OR = 1.58; 95% confidence interval, 1.30 to 1.91), and then confirmed as highly significant in a meta-analysis of East Asian population data ( P = 5.0 × 10 -15 . Odds ratio= 1.49; 95% CI 1.35 to 1.72). The association of rs2303744 with MSA remained significant in combined European/North American samples ( P =0.023. Odds ratio=1.14; 95% CI 1.02 to 1.28) despite allele frequencies being quite different between these populations. rs2303744 leads to an amino acid substitution in PLA2G4C that encodes the cPLA2γ lysophospholipase/transacylase. The cPLA2γ-Ile143 isoform encoded by the MSA risk allele has significantly decreased transacylase activity compared with the alternate cPLA2γ-Val143 isoform that may perturb membrane phospholipids and α-synuclein biology.
Collapse
|
6
|
Kinoshita C, Kubota N, Aoyama K. Glutathione Depletion and MicroRNA Dysregulation in Multiple System Atrophy: A Review. Int J Mol Sci 2022; 23:15076. [PMID: 36499400 PMCID: PMC9740333 DOI: 10.3390/ijms232315076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Multiple system atrophy (MSA) is a rare neurodegenerative disease characterized by parkinsonism, cerebellar impairment, and autonomic failure. Although the causes of MSA onset and progression remain uncertain, its pathogenesis may involve oxidative stress via the generation of excess reactive oxygen species and/or destruction of the antioxidant system. One of the most powerful antioxidants is glutathione, which plays essential roles as an antioxidant enzyme cofactor, cysteine-storage molecule, major redox buffer, and neuromodulator, in addition to being a key antioxidant in the central nervous system. Glutathione levels are known to be reduced in neurodegenerative diseases. In addition, genes regulating redox states have been shown to be post-transcriptionally modified by microRNA (miRNA), one of the most important types of non-coding RNA. miRNAs have been reported to be dysregulated in several diseases, including MSA. In this review, we focused on the relation between glutathione deficiency, miRNA dysregulation and oxidative stress and their close relation with MSA pathology.
Collapse
Affiliation(s)
- Chisato Kinoshita
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Noriko Kubota
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
- Teikyo University Support Center for Women Physicians and Researchers, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Koji Aoyama
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| |
Collapse
|
7
|
Abstract
Multiple system atrophy (MSA) is a rare neurodegenerative disease that is characterized by neuronal loss and gliosis in multiple areas of the central nervous system including striatonigral, olivopontocerebellar and central autonomic structures. Oligodendroglial cytoplasmic inclusions containing misfolded and aggregated α-synuclein are the histopathological hallmark of MSA. A firm clinical diagnosis requires the presence of autonomic dysfunction in combination with parkinsonism that responds poorly to levodopa and/or cerebellar ataxia. Clinical diagnostic accuracy is suboptimal in early disease because of phenotypic overlaps with Parkinson disease or other types of degenerative parkinsonism as well as with other cerebellar disorders. The symptomatic management of MSA requires a complex multimodal approach to compensate for autonomic failure, alleviate parkinsonism and cerebellar ataxia and associated disabilities. None of the available treatments significantly slows the aggressive course of MSA. Despite several failed trials in the past, a robust pipeline of putative disease-modifying agents, along with progress towards early diagnosis and the development of sensitive diagnostic and progression biomarkers for MSA, offer new hope for patients.
Collapse
|
8
|
Jellinger KA. Heterogeneity of Multiple System Atrophy: An Update. Biomedicines 2022; 10:599. [PMID: 35327402 PMCID: PMC8945102 DOI: 10.3390/biomedicines10030599] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple system atrophy (MSA) is a fatal, rapidly progressing neurodegenerative disease of uncertain etiology, clinically characterized by various combinations of Levodopa unresponsive parkinsonism, cerebellar, autonomic and motor dysfunctions. The morphological hallmark of this α-synucleinopathy is the deposition of aberrant α-synuclein in both glia, mainly oligodendroglia (glial cytoplasmic inclusions /GCIs/) and neurons, associated with glioneuronal degeneration of the striatonigral, olivopontocerebellar and many other neuronal systems. Typical phenotypes are MSA with predominant parkinsonism (MSA-P) and a cerebellar variant (MSA-C) with olivocerebellar atrophy. However, MSA can present with a wider range of clinical and pathological features than previously thought. In addition to rare combined or "mixed" MSA, there is a broad spectrum of atypical MSA variants, such as those with a different age at onset and disease duration, "minimal change" or prodromal forms, MSA variants with Lewy body disease or severe hippocampal pathology, rare forms with an unusual tau pathology or spinal myoclonus, an increasing number of MSA cases with cognitive impairment/dementia, rare familial forms, and questionable conjugal MSA. These variants that do not fit into the current classification of MSA are a major challenge for the diagnosis of this unique proteinopathy. Although the clinical diagnostic accuracy and differential diagnosis of MSA have improved by using combined biomarkers, its distinction from clinically similar extrapyramidal disorders with other pathologies and etiologies may be difficult. These aspects should be taken into consideration when revising the current diagnostic criteria. This appears important given that disease-modifying treatment strategies for this hitherto incurable disorder are under investigation.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150 Vienna, Austria
| |
Collapse
|
9
|
Koga S, Sekiya H, Kondru N, Ross OA, Dickson DW. Neuropathology and molecular diagnosis of Synucleinopathies. Mol Neurodegener 2021; 16:83. [PMID: 34922583 PMCID: PMC8684287 DOI: 10.1186/s13024-021-00501-z] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022] Open
Abstract
Synucleinopathies are clinically and pathologically heterogeneous disorders characterized by pathologic aggregates of α-synuclein in neurons and glia, in the form of Lewy bodies, Lewy neurites, neuronal cytoplasmic inclusions, and glial cytoplasmic inclusions. Synucleinopathies can be divided into two major disease entities: Lewy body disease and multiple system atrophy (MSA). Common clinical presentations of Lewy body disease are Parkinson's disease (PD), PD with dementia, and dementia with Lewy bodies (DLB), while MSA has two major clinical subtypes, MSA with predominant cerebellar ataxia and MSA with predominant parkinsonism. There are currently no disease-modifying therapies for the synucleinopathies, but information obtained from molecular genetics and models that explore mechanisms of α-synuclein conversion to pathologic oligomers and insoluble fibrils offer hope for eventual therapies. It remains unclear how α-synuclein can be associated with distinct cellular pathologies (e.g., Lewy bodies and glial cytoplasmic inclusions) and what factors determine neuroanatomical and cell type vulnerability. Accumulating evidence from in vitro and in vivo experiments suggests that α-synuclein species derived from Lewy body disease and MSA are distinct "strains" having different seeding properties. Recent advancements in in vitro seeding assays, such as real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA), not only demonstrate distinct seeding activity in the synucleinopathies, but also offer exciting opportunities for molecular diagnosis using readily accessible peripheral tissue samples. Cryogenic electron microscopy (cryo-EM) structural studies of α-synuclein derived from recombinant or brain-derived filaments provide new insight into mechanisms of seeding in synucleinopathies. In this review, we describe clinical, genetic and neuropathologic features of synucleinopathies, including a discussion of the evolution of classification and staging of Lewy body disease. We also provide a brief discussion on proposed mechanisms of Lewy body formation, as well as evidence supporting the existence of distinct α-synuclein strains in Lewy body disease and MSA.
Collapse
Affiliation(s)
- Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, FL 32224 Jacksonville, USA
| | - Hiroaki Sekiya
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, FL 32224 Jacksonville, USA
| | - Naveen Kondru
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, FL 32224 Jacksonville, USA
| | - Owen A. Ross
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, FL 32224 Jacksonville, USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, FL 32224 Jacksonville, USA
| |
Collapse
|
10
|
Porto KJ, Hirano M, Mitsui J, Chikada A, Matsukawa T, Ishiura H, Toda T, Kusunoki S, Tsuji S. COQ2 V393A confers high risk susceptibility for multiple system atrophy in East Asian population. J Neurol Sci 2021; 429:117623. [PMID: 34455210 DOI: 10.1016/j.jns.2021.117623] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/04/2021] [Accepted: 08/22/2021] [Indexed: 11/30/2022]
Abstract
Multiple system atrophy (MSA) is a rare, late-onset, and devastating neurodegenerative disease characterized by autonomic failure, alongside with various combination of parkinsonism, cerebellar ataxia, and pyramidal dysfunction. Since we first identified biallelic mutations in the COQ2 gene in two multiplex MSA families and further reported that heterozygous COQ2 V393A variant confers a susceptibility to sporadic MSA, the results of nearly a decade of investigating this association globally were quite remarkable. COQ2 V393A was virtually absent in the American and European populations but was shown to have varying associations with sporadic MSA in the East Asian populations. In our attempt to clarify the latter and provide a coherent regional conclusion, we conducted two independent case-control series which showed clear association of the V393A variant with sporadic MSA in the Japanese population. We then pooled the results with other studies from the East Asian population and conducted a meta-analysis which broadened and established the association regionally (pooled OR 2.12, 95% CI: 1.35-3.31, PI: 0.63-7.15, p = 0.0047). The subgroup analysis identified a strong association of V393A with MSA-C (pooled OR 2.57, 95% CI: 1.98-3.35; p = 2.56 × 10-12) but not with MSA-P (pooled OR 1.41, 95% CI: 0.88-2.26; p = 0.16). Our results highlighted the importance of investigating region-specific and pan-regional genetic variants that may potentially underlie the pathomechanisms of neurodegenerative diseases. COQ2 V393A variant remains a susceptibility variant rather than causative for MSA particularly, MSA-C subtype, in the East Asian population.
Collapse
Affiliation(s)
- Kristine Joyce Porto
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Makito Hirano
- Department of Neurology, Kindai University, Faculty of Medicine, Osaka, Japan
| | - Jun Mitsui
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Neurology, The University of Tokyo, Tokyo, Japan
| | - Ayaka Chikada
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Matsukawa
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Neurology, The University of Tokyo, Tokyo, Japan
| | | | | | - Tatsushi Toda
- Department of Neurology, The University of Tokyo, Tokyo, Japan
| | - Susumu Kusunoki
- Department of Neurology, Kindai University, Faculty of Medicine, Osaka, Japan
| | - Shoji Tsuji
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; International University of Health and Welfare, Narita, Chiba, Japan.
| |
Collapse
|
11
|
Marmion DJ, Peelaerts W, Kordower JH. A historical review of multiple system atrophy with a critical appraisal of cellular and animal models. J Neural Transm (Vienna) 2021; 128:1507-1527. [PMID: 34613484 PMCID: PMC8528759 DOI: 10.1007/s00702-021-02419-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/15/2021] [Indexed: 12/31/2022]
Abstract
Multiple system atrophy (MSA) is a progressive neurodegenerative disorder characterized by striatonigral degeneration (SND), olivopontocerebellar atrophy (OPCA), and dysautonomia with cerebellar ataxia or parkinsonian motor features. Isolated autonomic dysfunction with predominant genitourinary dysfunction and orthostatic hypotension and REM sleep behavior disorder are common characteristics of a prodromal phase, which may occur years prior to motor-symptom onset. MSA is a unique synucleinopathy, in which alpha-synuclein (aSyn) accumulates and forms insoluble inclusions in the cytoplasm of oligodendrocytes, termed glial cytoplasmic inclusions (GCIs). The origin of, and precise mechanism by which aSyn accumulates in MSA are unknown, and, therefore, disease-modifying therapies to halt or slow the progression of MSA are currently unavailable. For these reasons, much focus in the field is concerned with deciphering the complex neuropathological mechanisms by which MSA begins and progresses through the course of the disease. This review focuses on the history, etiopathogenesis, neuropathology, as well as cell and animal models of MSA.
Collapse
Affiliation(s)
- David J Marmion
- Parkinson's Disease Research Unit, Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Wouter Peelaerts
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Jeffrey H Kordower
- ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
12
|
Diez-Fairen M, Alvarez Jerez P, Berghausen J, Bandres-Ciga S. The Genetic Landscape of Parkinsonism-Related Dystonias and Atypical Parkinsonism-Related Syndromes. Int J Mol Sci 2021; 22:ijms22158100. [PMID: 34360863 PMCID: PMC8347917 DOI: 10.3390/ijms22158100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 11/25/2022] Open
Abstract
In recent decades, genetic research has nominated promising pathways and biological insights contributing to the etiological landscape of parkinsonism-related dystonias and atypical parkinsonism-related syndromes. Several disease-causing mutations and genetic risk factors have been unraveled, providing a deeper molecular understanding of the complex genetic architecture underlying these conditions. These disorders are difficult to accurately diagnose and categorize, thus making genetics research challenging. On one hand, dystonia is an umbrella term linked to clinically heterogeneous forms of disease including dopa-responsive dystonia, myoclonus-dystonia, rapid-onset dystonia-parkinsonism and dystonia-parkinsonism, often viewed as a precursor to Parkinson’s disease. On the other hand, atypical parkinsonism disorders, such as progressive supranuclear palsy, multiple system atrophy and corticobasal degeneration, are rare in nature and represent a wide range of diverse and overlapping phenotypic variabilities, with genetic research limited by sample size availability. The current review summarizes the plethora of available genetic information for these diseases, outlining limits and future directions.
Collapse
|
13
|
Stankovic I, Fanciulli A, Kostic VS, Krismer F, Meissner WG, Palma JA, Panicker JN, Seppi K, Wenning GK. Laboratory-Supported Multiple System Atrophy beyond Autonomic Function Testing and Imaging: A Systematic Review by the MoDiMSA Study Group. Mov Disord Clin Pract 2021; 8:322-340. [PMID: 33816659 DOI: 10.1002/mdc3.13158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/24/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Background Neuroimaging has been used to support a diagnosis of possible multiple system atrophy (MSA). Only blood pressure changes upon standing are included in the second consensus criteria but other autonomic function tests (AFT) are also useful to diagnose widespread and progressive autonomic failure typical of MSA. Additional diagnostic tools are of interest to improve accuracy of MSA diagnosis. Objectives To assess the utility of diagnostic tools beyond brain imaging and AFT in enhancing a laboratory-supported diagnosis of MSA to support the upcoming revision of the consensus criteria. Methods The International Parkinson and Movement Disorders Society MSA Study Group (MoDiMSA) performed a systematic review of original papers on biomarkers, sleep studies, genetic, neuroendocrine, neurophysiological, neuropsychological and other tests including olfactory testing and acute levodopa challenge test published before August 2019. Results Evaluation of history of levodopa responsiveness and olfaction is useful in patients in whom MSA-parkinsonian subtype is suspected. Neuropsychological testing is useful to exclude dementia at time of diagnosis. Applicability of sphincter EMG is limited. When MSA-cerebellar subtype is suspected, a screening for the common causes of adult-onset progressive ataxia is useful, including spinocerebellar ataxias in selected patients. Diagnosing stridor and REM sleep behavior disorder is useful in both MSA subtypes. However, none of these tools are validated in large longitudinal cohorts of postmortem confirmed MSA cases. Conclusions Despite limited evidence, additional laboratory work-up of patients with possible MSA beyond imaging and AFT should be considered to optimize the clinical diagnostic accuracy.
Collapse
Affiliation(s)
- Iva Stankovic
- Neurology Clinic, Clinical Center of Serbia, School of Medicine University of Belgrade Belgrade Serbia
| | | | - Vladimir S Kostic
- Neurology Clinic, Clinical Center of Serbia, School of Medicine University of Belgrade Belgrade Serbia
| | - Florian Krismer
- Department of Neurology Medical University of Innsbruck Innsbruck Austria
| | - Wassilios G Meissner
- Department of Neurology for Neurodegenerative Diseases, French Reference Center for MSA University Hospital Bordeaux Bordeaux France.,Institute of Neurodegenerative Diseases, University Bordeaux, CNRS, UMR 5293 Bordeaux France.,Department of Medicine University of Otago Christchurch New Zealand.,New Zealand Brain Research Institute Christchurch New Zealand
| | - Jose Alberto Palma
- Department of Neurology, Dysautonomia Center, Langone Medical Center New York University School of Medicine New York New York USA
| | - Jalesh N Panicker
- UCL Institute of Neurology London United Kingdom.,Department of Uro-Neurology The National Hospital for Neurology and Neurosurgery London United Kingdom
| | - Klaus Seppi
- Department of Neurology Medical University of Innsbruck Innsbruck Austria
| | - Gregor K Wenning
- Department of Neurology Medical University of Innsbruck Innsbruck Austria
| | | |
Collapse
|
14
|
Piras IS, Bleul C, Schrauwen I, Talboom J, Llaci L, De Both MD, Naymik MA, Halliday G, Bettencourt C, Holton JL, Serrano GE, Sue LI, Beach TG, Stefanova N, Huentelman MJ. Transcriptional profiling of multiple system atrophy cerebellar tissue highlights differences between the parkinsonian and cerebellar sub-types of the disease. Acta Neuropathol Commun 2020; 8:76. [PMID: 32493431 PMCID: PMC7268362 DOI: 10.1186/s40478-020-00950-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/19/2020] [Indexed: 01/04/2023] Open
Abstract
Multiple system atrophy (MSA) is a rare adult-onset neurodegenerative disease of unknown cause, with no effective therapeutic options, and no cure. Limited work to date has attempted to characterize the transcriptional changes associated with the disease, which presents as either predominating parkinsonian (MSA-P) or cerebellar (MSC-C) symptoms. We report here the results of RNA expression profiling of cerebellar white matter (CWM) tissue from two independent cohorts of MSA patients (n = 66) and healthy controls (HC; n = 66). RNA samples from bulk brain tissue and from oligodendrocytes obtained by laser capture microdissection (LCM) were sequenced. Differentially expressed genes (DEGs) were obtained and were examined before and after stratifying by MSA clinical sub-type.We detected the highest number of DEGs in the MSA-C group (n = 747) while only one gene was noted in MSA-P, highlighting the larger dysregulation of the transcriptome in the MSA-C CWM. Results from both bulk tissue and LCM analysis showed a downregulation of oligodendrocyte genes and an enrichment for myelination processes with a key role noted for the QKI gene. Additionally, we observed a significant upregulation of neuron-specific gene expression in MSA-C and enrichment for synaptic processes. A third cluster of genes was associated with the upregulation of astrocyte and endothelial genes, two cell types with a key role in inflammation processes. Finally, network analysis in MSA-C showed enrichment for β-amyloid related functional classes, including the known Alzheimer's disease (AD) genes, APP and PSEN1.This is the largest RNA profiling study ever conducted on post-mortem brain tissue from MSA patients. We were able to define specific gene expression signatures for MSA-C highlighting the different stages of the complex neurodegenerative cascade of the disease that included alterations in several cell-specific transcriptional programs. Finally, several results suggest a common transcriptional dysregulation between MSA and AD-related genes despite the clinical and neuropathological distinctions between the two diseases.
Collapse
Affiliation(s)
- Ignazio S Piras
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Christiane Bleul
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Isabelle Schrauwen
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
- Present Address: Department of Neurology, Center for Statistical Genetics, Gertrude H. Sergievsky Center, Columbia University Medical Center, 630 W 168th St, New York, NY, 10032, USA
| | - Joshua Talboom
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Lorida Llaci
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
- Present address: Division of Biology and Biomedical Sciences, Molecular Genetics and Genomics Program, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Matthew D De Both
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Marcus A Naymik
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Glenda Halliday
- The University of Sydney Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Science, and Neuroscience Research Australia, Sydney, Australia
| | - Conceicao Bettencourt
- Queen Square Brain Bank for Neurological Disorders and Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Janice L Holton
- Queen Square Brain Bank for Neurological Disorders and Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Geidy E Serrano
- Civin Laboratory of Neuropathology at Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Lucia I Sue
- Civin Laboratory of Neuropathology at Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Thomas G Beach
- Civin Laboratory of Neuropathology at Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Nadia Stefanova
- Department of Neurology, Division of Neurobiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Matthew J Huentelman
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, USA.
| |
Collapse
|
15
|
Monzio Compagnoni G, Di Fonzo A, Corti S, Comi GP, Bresolin N, Masliah E. The Role of Mitochondria in Neurodegenerative Diseases: the Lesson from Alzheimer's Disease and Parkinson's Disease. Mol Neurobiol 2020; 57:2959-2980. [PMID: 32445085 DOI: 10.1007/s12035-020-01926-1] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 04/22/2020] [Indexed: 12/15/2022]
Abstract
Although the pathogenesis of neurodegenerative diseases is still widely unclear, various mechanisms have been proposed and several pieces of evidence are supportive for an important role of mitochondrial dysfunction. The present review provides a comprehensive and up-to-date overview about the role of mitochondria in the two most common neurodegenerative disorders: Alzheimer's disease (AD) and Parkinson's disease (PD). Mitochondrial involvement in AD is supported by clinical features like reduced glucose and oxygen brain metabolism and by numerous microscopic and molecular findings, including altered mitochondrial morphology, impaired respiratory chain function, and altered mitochondrial DNA. Furthermore, amyloid pathology and mitochondrial dysfunction seem to be bi-directionally correlated. Mitochondria have an even more remarkable role in PD. Several hints show that respiratory chain activity, in particular complex I, is impaired in the disease. Mitochondrial DNA alterations, involving deletions, point mutations, depletion, and altered maintenance, have been described. Mutations in genes directly implicated in mitochondrial functioning (like Parkin and PINK1) are responsible for rare genetic forms of the disease. A close connection between alpha-synuclein accumulation and mitochondrial dysfunction has been observed. Finally, mitochondria are involved also in atypical parkinsonisms, in particular multiple system atrophy. The available knowledge is still not sufficient to clearly state whether mitochondrial dysfunction plays a primary role in the very initial stages of these diseases or is secondary to other phenomena. However, the presented data strongly support the hypothesis that whatever the initial cause of neurodegeneration is, mitochondrial impairment has a critical role in maintaining and fostering the neurodegenerative process.
Collapse
Affiliation(s)
- Giacomo Monzio Compagnoni
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy. .,Department of Neurology, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy. .,Department of Neurology, Khurana Laboratory, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Alessio Di Fonzo
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Corti
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Neuroscience Section, Dino Ferrari Center, University of Milan, Milan, Italy
| | - Giacomo P Comi
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Neuroscience Section, Dino Ferrari Center, University of Milan, Milan, Italy
| | - Nereo Bresolin
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Neuroscience Section, Dino Ferrari Center, University of Milan, Milan, Italy
| | - Eliezer Masliah
- Division of Neuroscience and Laboratory of Neurogenetics, National Institute on Aging, National Institute of Health, Bethesda, MD, USA
| |
Collapse
|
16
|
Heras-Garvin A, Stefanova N. MSA: From basic mechanisms to experimental therapeutics. Parkinsonism Relat Disord 2020; 73:94-104. [PMID: 32005598 DOI: 10.1016/j.parkreldis.2020.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/14/2020] [Accepted: 01/19/2020] [Indexed: 01/16/2023]
Abstract
Multiple system atrophy (MSA) is a rare and fatal neurodegenerative disorder characterized by rapidly progressive autonomic and motor dysfunction. Pathologically, MSA is mainly characterized by the abnormal accumulation of misfolded α-synuclein in the cytoplasm of oligodendrocytes, which plays a major role in the pathogenesis of the disease. Striatonigral degeneration and olivopontecerebellar atrophy underlie the motor syndrome, while degeneration of autonomic centers defines the autonomic failure in MSA. At present, there is no treatment that can halt or reverse its progression. However, over the last decade several studies in preclinical models and patients have helped to better understand the pathophysiological events underlying MSA. The etiology of this fatal disorder remains unclear and may be multifactorial, caused by a combination of factors which may serve as targets for novel therapeutic approaches. In this review, we summarize the current knowledge about the etiopathogenesis and neuropathology of MSA, its different preclinical models, and the main disease modifying therapies that have been used so far or that are planned for future clinical trials.
Collapse
Affiliation(s)
- Antonio Heras-Garvin
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Austria.
| | - Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Austria.
| |
Collapse
|
17
|
Ngo KJ, Rexach JE, Lee H, Petty LE, Perlman S, Valera JM, Deignan JL, Mao Y, Aker M, Posey JE, Jhangiani SN, Coban-Akdemir ZH, Boerwinkle E, Muzny D, Nelson AB, Hassin-Baer S, Poke G, Neas K, Geschwind MD, Grody WW, Gibbs R, Geschwind DH, Lupski JR, Below JE, Nelson SF, Fogel BL. A diagnostic ceiling for exome sequencing in cerebellar ataxia and related neurological disorders. Hum Mutat 2019; 41:487-501. [PMID: 31692161 DOI: 10.1002/humu.23946] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/25/2019] [Accepted: 11/01/2019] [Indexed: 12/30/2022]
Abstract
Genetic ataxias are associated with mutations in hundreds of genes with high phenotypic overlap complicating the clinical diagnosis. Whole-exome sequencing (WES) has increased the overall diagnostic rate considerably. However, the upper limit of this method remains ill-defined, hindering efforts to address the remaining diagnostic gap. To further assess the role of rare coding variation in ataxic disorders, we reanalyzed our previously published exome cohort of 76 predominantly adult and sporadic-onset patients, expanded the total number of cases to 260, and introduced analyses for copy number variation and repeat expansion in a representative subset. For new cases (n = 184), our resulting clinically relevant detection rate remained stable at 47% with 24% classified as pathogenic. Reanalysis of the previously sequenced 76 patients modestly improved the pathogenic rate by 7%. For the combined cohort (n = 260), the total observed clinical detection rate was 52% with 25% classified as pathogenic. Published studies of similar neurological phenotypes report comparable rates. This consistency across multiple cohorts suggests that, despite continued technical and analytical advancements, an approximately 50% diagnostic rate marks a relative ceiling for current WES-based methods and a more comprehensive genome-wide assessment is needed to identify the missing causative genetic etiologies for cerebellar ataxia and related neurodegenerative diseases.
Collapse
Affiliation(s)
- Kathie J Ngo
- Department of Neurology, Program in Neurogenetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Jessica E Rexach
- Department of Neurology, Program in Neurogenetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Hane Lee
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.,Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Lauren E Petty
- Department of Medical Genetics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Susan Perlman
- Department of Neurology, Program in Neurogenetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Juliana M Valera
- Department of Neurology, Program in Neurogenetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Joshua L Deignan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Yuanming Mao
- Department of Neurology, Program in Neurogenetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Mamdouh Aker
- Department of Neurology, Program in Neurogenetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Shalini N Jhangiani
- The Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | | | - Eric Boerwinkle
- The Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas.,Human Genetics Center, University of Texas Health Science Center, Houston, Texas
| | - Donna Muzny
- The Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Alexandra B Nelson
- Department of Neurology, UCSF Memory and Aging Center, University of California, San Francisco, California
| | - Sharon Hassin-Baer
- Department of Neurology, Chaim Sheba Medical Center, Movement Disorders Institute, Tel-Hashomer, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Gemma Poke
- Genetic Health Service NZ, Central Hub, Wellington Hospital, Wellington, New Zealand
| | - Katherine Neas
- Genetic Health Service NZ, Central Hub, Wellington Hospital, Wellington, New Zealand
| | - Michael D Geschwind
- Department of Neurology, UCSF Memory and Aging Center, University of California, San Francisco, California
| | - Wayne W Grody
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.,Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.,Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Richard Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,The Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Daniel H Geschwind
- Department of Neurology, Program in Neurogenetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.,Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,The Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Jennifer E Below
- Department of Medical Genetics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Stanley F Nelson
- Department of Neurology, Program in Neurogenetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.,Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.,Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Brent L Fogel
- Department of Neurology, Program in Neurogenetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.,Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.,Clinical Neurogenomics Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
18
|
Procopio R, Gagliardi M, Brighina L, Nicoletti G, Morelli M, Ferrarese C, Annesi G, Quattrone A. Genetic mutation analysis of the COQ2 gene in Italian patients with multiple system atrophy. Gene 2019; 716:144037. [DOI: 10.1016/j.gene.2019.144037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 11/27/2022]
|
19
|
Katzeff JS, Phan K, Purushothuman S, Halliday GM, Kim WS. Cross-examining candidate genes implicated in multiple system atrophy. Acta Neuropathol Commun 2019; 7:117. [PMID: 31340844 PMCID: PMC6651992 DOI: 10.1186/s40478-019-0769-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/14/2019] [Indexed: 12/26/2022] Open
Abstract
Multiple system atrophy (MSA) is a devastating neurodegenerative disease characterized by the clinical triad of parkinsonism, cerebellar ataxia and autonomic failure, impacting on striatonigral, olivopontocerebellar and autonomic systems. At early stage of the disease, the clinical symptoms of MSA can overlap with those of Parkinson's disease (PD). The key pathological hallmark of MSA is the presence of glial cytoplasmic inclusions (GCI) in oligodendrocytes. GCI comprise insoluble proteinaceous filaments composed chiefly of α-synuclein aggregates, and therefore MSA is regarded as an α-synucleinopathy along with PD and dementia with Lewy bodies. The etiology of MSA is unknown, and the pathogenesis of MSA is still largely speculative. Much data suggests that MSA is a sporadic disease, although some emerging evidence suggests rare genetic variants increase susceptibility. Currently, there is no general consensus on the susceptibility genes as there have been differences due to geographical distribution or ethnicity. Furthermore, many of the reported studies have been conducted on patients that were only clinically diagnosed without pathological verification. The purpose of this review is to bring together available evidence to cross-examine the susceptibility genes and genetic pathomechanisms implicated in MSA. We explore the possible involvement of the SNCA, COQ2, MAPT, GBA1, LRRK2 and C9orf72 genes in MSA pathogenesis, highlight the under-explored areas of MSA genetics, and discuss future directions of research in MSA.
Collapse
Affiliation(s)
- Jared S Katzeff
- Brain and Mind Centre & Central Clinical School, The University of Sydney, Sydney, NSW, Australia
| | - Katherine Phan
- Brain and Mind Centre & Central Clinical School, The University of Sydney, Sydney, NSW, Australia
| | - Sivaraman Purushothuman
- Brain and Mind Centre & Central Clinical School, The University of Sydney, Sydney, NSW, Australia
| | - Glenda M Halliday
- Brain and Mind Centre & Central Clinical School, The University of Sydney, Sydney, NSW, Australia
| | - Woojin Scott Kim
- Brain and Mind Centre & Central Clinical School, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
20
|
Monzio Compagnoni G, Di Fonzo A. Understanding the pathogenesis of multiple system atrophy: state of the art and future perspectives. Acta Neuropathol Commun 2019; 7:113. [PMID: 31300049 PMCID: PMC6624923 DOI: 10.1186/s40478-019-0730-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 04/27/2019] [Indexed: 12/21/2022] Open
Abstract
Multiple System Atrophy (MSA) is a severe neurodegenerative disease clinically characterized by parkinsonism, cerebellar ataxia, dysautonomia and other motor and non-motor symptoms. Although several efforts have been dedicated to understanding the causative mechanisms of the disease, MSA pathogenesis remains widely unknown. The aim of the present review is to describe the state of the art about MSA pathogenesis, with a particular focus on alpha-synuclein accumulation and mitochondrial dysfunction, and to highlight future possible perspectives in this field. In particular, this review describes the most widely investigated hypotheses explaining alpha-synuclein accumulation in oligodendrocytes, including SNCA expression, neuron-oligodendrocyte protein transfer, impaired protein degradation and alpha-synuclein spread mechanisms. Afterwards, several recent achievements in MSA research involving mitochondrial biology are described, including the role of COQ2 mutations, Coenzyme Q10 reduction, respiratory chain dysfunction and altered mitochondrial mass. Some hints are provided about alternative pathogenic mechanisms, including inflammation and impaired autophagy. Finally, all these findings are discussed from a comprehensive point of view, putative explanations are provided and new research perspectives are suggested. Overall, the present review provides a comprehensive and up-to-date overview of the mechanisms underlying MSA pathogenesis.
Collapse
|
21
|
Jellinger KA. Neuropathology and pathogenesis of extrapyramidal movement disorders: a critical update-I. Hypokinetic-rigid movement disorders. J Neural Transm (Vienna) 2019; 126:933-995. [PMID: 31214855 DOI: 10.1007/s00702-019-02028-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023]
Abstract
Extrapyramidal movement disorders include hypokinetic rigid and hyperkinetic or mixed forms, most of them originating from dysfunction of the basal ganglia (BG) and their information circuits. The functional anatomy of the BG, the cortico-BG-thalamocortical, and BG-cerebellar circuit connections are briefly reviewed. Pathophysiologic classification of extrapyramidal movement disorder mechanisms distinguish (1) parkinsonian syndromes, (2) chorea and related syndromes, (3) dystonias, (4) myoclonic syndromes, (5) ballism, (6) tics, and (7) tremor syndromes. Recent genetic and molecular-biologic classifications distinguish (1) synucleinopathies (Parkinson's disease, dementia with Lewy bodies, Parkinson's disease-dementia, and multiple system atrophy); (2) tauopathies (progressive supranuclear palsy, corticobasal degeneration, FTLD-17; Guamian Parkinson-dementia; Pick's disease, and others); (3) polyglutamine disorders (Huntington's disease and related disorders); (4) pantothenate kinase-associated neurodegeneration; (5) Wilson's disease; and (6) other hereditary neurodegenerations without hitherto detected genetic or specific markers. The diversity of phenotypes is related to the deposition of pathologic proteins in distinct cell populations, causing neurodegeneration due to genetic and environmental factors, but there is frequent overlap between various disorders. Their etiopathogenesis is still poorly understood, but is suggested to result from an interaction between genetic and environmental factors. Multiple etiologies and noxious factors (protein mishandling, mitochondrial dysfunction, oxidative stress, excitotoxicity, energy failure, and chronic neuroinflammation) are more likely than a single factor. Current clinical consensus criteria have increased the diagnostic accuracy of most neurodegenerative movement disorders, but for their definite diagnosis, histopathological confirmation is required. We present a timely overview of the neuropathology and pathogenesis of the major extrapyramidal movement disorders in two parts, the first one dedicated to hypokinetic-rigid forms and the second to hyperkinetic disorders.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
22
|
Oxygen consumption rate for evaluation of COQ2 variants associated with multiple system atrophy. Neurogenetics 2019; 20:51-52. [PMID: 30613928 DOI: 10.1007/s10048-018-0563-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 12/16/2018] [Indexed: 10/27/2022]
|
23
|
Nakamoto FK, Okamoto S, Mitsui J, Sone T, Ishikawa M, Yamamoto Y, Kanegae Y, Nakatake Y, Imaizumi K, Ishiura H, Tsuji S, Okano H. The pathogenesis linked to coenzyme Q10 insufficiency in iPSC-derived neurons from patients with multiple-system atrophy. Sci Rep 2018; 8:14215. [PMID: 30242188 PMCID: PMC6155102 DOI: 10.1038/s41598-018-32573-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 09/11/2018] [Indexed: 12/12/2022] Open
Abstract
Multiple-system atrophy (MSA) is a neurodegenerative disease characterized by autonomic failure with various combinations of parkinsonism, cerebellar ataxia, and pyramidal dysfunction. We previously reported that functionally impaired variants of COQ2, which encodes an essential enzyme in the biosynthetic pathway of coenzyme Q10, are associated with MSA. Here, we report functional deficiencies in mitochondrial respiration and the antioxidative system in induced pluripotent stem cell (iPSC)-derived neurons from an MSA patient with compound heterozygous COQ2 mutations. The functional deficiencies were rescued by site-specific CRISPR/Cas9-mediated gene corrections. We also report an increase in apoptosis of iPSC-derived neurons from MSA patients. Coenzyme Q10 reduced apoptosis of neurons from the MSA patient with compound heterozygous COQ2 mutations. Our results reveal that cellular dysfunctions attributable to decreased coenzyme Q10 levels are related to neuronal death in MSA, particularly in patients with COQ2 variants, and may contribute to the development of therapy using coenzyme Q10 supplementation.
Collapse
Affiliation(s)
- Fumiko Kusunoki Nakamoto
- Department of Neurology, University of Tokyo, School of Medicine, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Department of Physiology, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Satoshi Okamoto
- Department of Physiology, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Jun Mitsui
- Department of Neurology, University of Tokyo, School of Medicine, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takefumi Sone
- Department of Physiology, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Mitsuru Ishikawa
- Department of Physiology, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yorihiro Yamamoto
- School of Bioscience and Biotechnology, Tokyo University of Technology, Katakuramachi, Hachioji City, Tokyo, 192-0914, Japan
| | - Yumi Kanegae
- Research Center for Medical Science, Jikei University School of Medicine, Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Yuhki Nakatake
- Department of Systems Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kent Imaizumi
- Department of Physiology, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, University of Tokyo, School of Medicine, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shoji Tsuji
- Department of Neurology, University of Tokyo, School of Medicine, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
24
|
Kuo SH, Quinzii CM. Coenzyme Q10 as a Peripheral Biomarker for Multiple System Atrophy. JAMA Neurol 2018; 73:917-9. [PMID: 27367485 DOI: 10.1001/jamaneurol.2016.1810] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sheng-Han Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Catarina M Quinzii
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York
| |
Collapse
|
25
|
Movement disorders in mitochondrial disease: a clinicopathological correlation. Curr Opin Neurol 2018; 31:472-483. [DOI: 10.1097/wco.0000000000000583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Dilemma of multiple system atrophy and spinocerebellar ataxias. J Neurol 2018; 265:2764-2772. [DOI: 10.1007/s00415-018-8876-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 12/17/2022]
|
27
|
Abati E, Di Fonzo A, Corti S. In vitro models of multiple system atrophy from primary cells to induced pluripotent stem cells. J Cell Mol Med 2018; 22:2536-2546. [PMID: 29502349 PMCID: PMC5908105 DOI: 10.1111/jcmm.13563] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/10/2018] [Indexed: 12/31/2022] Open
Abstract
Multiple system atrophy (MSA) is a rare neurodegenerative disease with a fatal outcome. Nowadays, only symptomatic treatment is available for MSA patients. The hallmarks of the disease are glial cytoplasmic inclusions (GCIs), proteinaceous aggregates mainly composed of alpha‐synuclein, which accumulate in oligodendrocytes. However, despite the extensive research efforts, little is known about the pathogenesis of MSA. Early myelin dysfunction and alpha‐synuclein deposition are thought to play a major role, but the origin of the aggregates and the causes of misfolding are obscure. One of the reasons for this is the lack of a reliable model of the disease. Recently, the development of induced pluripotent stem cell (iPSC) technology opened up the possibility of elucidating disease mechanisms in neurodegenerative diseases including MSA. Patient specific iPSC can be differentiated in glia and neurons, the cells involved in MSA, providing a useful human disease model. Here, we firstly review the progress made in MSA modelling with primary cell cultures. Subsequently, we focus on the first iPSC‐based model of MSA, which showed that alpha‐synuclein is expressed in oligodendrocyte progenitors, whereas its production decreases in mature oligodendrocytes. We then highlight the opportunities offered by iPSC in studying disease mechanisms and providing innovative models for testing therapeutic strategies, and we discuss the challenges connected with this technique.
Collapse
Affiliation(s)
- Elena Abati
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Alessio Di Fonzo
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Stefania Corti
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| |
Collapse
|
28
|
Abstract
Multiple system atrophy (MSA) is an orphan, fatal, adult-onset neurodegenerative disorder of uncertain etiology that is clinically characterized by various combinations of parkinsonism, cerebellar, autonomic, and motor dysfunction. MSA is an α-synucleinopathy with specific glioneuronal degeneration involving striatonigral, olivopontocerebellar, and autonomic nervous systems but also other parts of the central and peripheral nervous systems. The major clinical variants correlate with the morphologic phenotypes of striatonigral degeneration (MSA-P) and olivopontocerebellar atrophy (MSA-C). While our knowledge of the molecular pathogenesis of this devastating disease is still incomplete, updated consensus criteria and combined fluid and imaging biomarkers have increased its diagnostic accuracy. The neuropathologic hallmark of this unique proteinopathy is the deposition of aberrant α-synuclein in both glia (mainly oligodendroglia) and neurons forming glial and neuronal cytoplasmic inclusions that cause cell dysfunction and demise. In addition, there is widespread demyelination, the pathogenesis of which is not fully understood. The pathogenesis of MSA is characterized by propagation of misfolded α-synuclein from neurons to oligodendroglia and cell-to-cell spreading in a "prion-like" manner, oxidative stress, proteasomal and mitochondrial dysfunction, dysregulation of myelin lipids, decreased neurotrophic factors, neuroinflammation, and energy failure. The combination of these mechanisms finally results in a system-specific pattern of neurodegeneration and a multisystem involvement that are specific for MSA. Despite several pharmacological approaches in MSA models, addressing these pathogenic mechanisms, no effective neuroprotective nor disease-modifying therapeutic strategies are currently available. Multidisciplinary research to elucidate the genetic and molecular background of the deleterious cycle of noxious processes, to develop reliable biomarkers and targets for effective treatment of this hitherto incurable disorder is urgently needed.
Collapse
|
29
|
Eschlboeck S, Krismer F, Wenning GK. Key themes and future prospects in translational multiple system atrophy research. Auton Neurosci 2017; 211:43-45. [PMID: 28867372 DOI: 10.1016/j.autneu.2017.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/11/2017] [Accepted: 08/11/2017] [Indexed: 10/19/2022]
Abstract
Multiple system atrophy (MSA) is a rapidly progressive neurodegenerative disorder with a highly variable clinical presentation. Unfortunately, there exists no effective therapy that can improve the course of the disease and symptomatic treatment options remain limited. Although significant progress in research has improved our understanding of MSA, knowledge gaps still remain. Thus, a global network focusing on different research areas is required to face this fatal disease.
Collapse
Affiliation(s)
- S Eschlboeck
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - F Krismer
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - G K Wenning
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria.
| |
Collapse
|
30
|
Wang MD, Little J, Gomes J, Cashman NR, Krewski D. Identification of risk factors associated with onset and progression of amyotrophic lateral sclerosis using systematic review and meta-analysis. Neurotoxicology 2017; 61:101-130. [DOI: 10.1016/j.neuro.2016.06.015] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 06/29/2016] [Indexed: 12/11/2022]
|
31
|
Tsuji S, Mitsui J. Letter re: A genome-wide association study in multiple system atrophy. Neurology 2017; 88:1296. [DOI: 10.1212/wnl.0000000000003782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
32
|
Scholz SW, Houlden H. Author response: A genome-wide association study in multiple system atrophy. Neurology 2017; 88:1296-1297. [PMID: 28348123 DOI: 10.1212/wnl.0000000000003783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
33
|
Abstract
Multiple system atrophy (MSA) is a devastating and fatal neurodegenerative disorder. The clinical presentation of this disease is highly variable, with parkinsonism, cerebellar ataxia and autonomic failure being the most common - and often debilitating - symptoms. These symptoms progress rapidly, and patients die from MSA-related complications after 9 years of symptom duration on average. Unfortunately, the course of the disease cannot be improved by drug or surgical treatment. In addition, symptomatic treatment options are currently limited, and therapeutic benefits are often only transient. Thus, further interventional studies of candidate disease-modifying and symptomatic therapies are essential to improve patient care. In the past 15 years, the understanding of MSA-specific requirements in trial methodology has improved, resulting in a substantial increase in high-quality interventional studies. In this Review, we discuss MSA risk factors, clinical presentation and neuropathology, and we provide a hypothesis on key pathophysiological events, a summary of recent randomized controlled trials, and an overview of ongoing international collaborations.
Collapse
|
34
|
|
35
|
Yang X, An R, Zhao Q, Zheng J, Tian S, Chen Y, Xu Y. Mutational analysis of CHCHD2 in Chinese patients with multiple system atrophy and amyotrophic lateral sclerosis. J Neurol Sci 2016; 368:389-91. [PMID: 27538669 DOI: 10.1016/j.jns.2016.07.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/29/2016] [Accepted: 07/27/2016] [Indexed: 02/05/2023]
Abstract
CHCHD2, which encodes a regulator of mitochondrial metabolism, has been linked to Parkinson's disease (PD) in a Japanese population. Since PD and two other neurodegenerative diseases, multiple system atrophy (MSA) and amyotrophic lateral sclerosis (ALS), are associated with mitochondrial dysfunction, we wanted to know whether CHCHD2 mutations may be linked to MSA and sporadic ALS in Chinese patients. All four CHCHD2 exons were Sanger-sequenced in 89 patients with MSA, 424 patients with sporadic ALS and 594 unrelated healthy Han Chinese. Four exonic variants were detected in six patients with sporadic ALS: Pro2Leu (rs142444896), Ala32Thr (rs145190179), Ser85Arg (rs182992574), and Tyr99ArgfsX42 (rs778030300). No exonic variants were detected in patients with MSA. Pro2Leu was not significantly associated with risk of ALS in our cohort, and no variants in untranslated or flanking regions of CHCHD2 were associated with risk of MSA or ALS. Our results suggest that genetic variants of CHCHD2 may not be a frequent cause of MSA or ALS in our Chinese population.
Collapse
Affiliation(s)
- Xinglong Yang
- Department of Neurology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan Province 610041, PR China
| | - Ran An
- Department of Neurology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan Province 610041, PR China
| | - Quanzhen Zhao
- Department of Neurology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan Province 610041, PR China
| | - Jinhua Zheng
- Department of Neurology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan Province 610041, PR China
| | - Sijia Tian
- Department of Neurology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan Province 610041, PR China
| | - Yalan Chen
- Department of Neurology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan Province 610041, PR China
| | - Yanming Xu
- Department of Neurology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan Province 610041, PR China.
| |
Collapse
|