1
|
El-Sawaf ES, El Maraghy NN, El-Abhar HS, Zaki HF, Zordoky BN, Ahmed KA, Abouquerin N, Mohamed AF. Melatonin mitigates vincristine-induced peripheral neuropathy by inhibiting TNF-α/astrocytes/microglial cells activation in the spinal cord of rats, while preserving vincristine's chemotherapeutic efficacy in lymphoma cells. Toxicol Appl Pharmacol 2024; 492:117134. [PMID: 39461624 DOI: 10.1016/j.taap.2024.117134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Vincristine (VCR), an anti-tubulin chemotherapy agent, is known to cause peripheral and central nerve damage, inducing severe chemotherapy-induced peripheral neuropathy (CIPN). Although melatonin has been recently recognized for its potential anti-neuropathic effects, its efficacy in countering VCR-induced neuropathy remains unclear. This study examines the neuroprotective potential of melatonin against VCR-induced neuropathy using a rat model. Neuropathic pain was induced through 10 VCR injections (0.1 mg/kg/day i.p.), administered in two five-day cycles with a two-day break. Melatonin treatment started two days before VCR administration and continued daily throughout the experiment. Rats were assigned to five groups: control, VCR, and three melatonin-treated groups receiving VCR with melatonin (5, 10, or 20 mg/kg/day i.p.). We assessed mechanical (von-Frey and Randall-Selitto tests) and thermal (hot-plate and tail-flick tests) hyperalgesia, motor coordination (rotarod test), and sciatic nerve conduction velocity (NCV). Changes in body weight, spinal cord histopathology (H&E), and proinflammatory markers (TNF-α, IL-1β, and IL-6), reactive astrocytes (GFAP) and microglial cells (IBA-1) were also assessed, as well as spinal cord degeneration (Nissl stain) and demyelination (LFB stain and MBP). Finally, the effect of melatonin on the cytotoxic activity of VCR against EL4 lymphoma cells was assessed using an MTT assay. Our results indicated that melatonin coadministration with VCR preserved spinal cord architecture, elevated nociceptive thresholds, improved motor coordination, enhanced NCV, and maintained normal body weight gain. Melatonin also reduced inflammation, decreased reactive astrocytes and microglia, and prevented neurodegeneration and demyelination in the spinal cord. Importantly, melatonin did not affect VCR's cytotoxic activity in cancer cells.
Collapse
Affiliation(s)
- Engie S El-Sawaf
- Pharmacology, Toxicology, and Biochemistry Department, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt; Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Nabila N El Maraghy
- Pharmacology, Toxicology, and Biochemistry Department, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Hanan S El-Abhar
- Pharmacology, Toxicology, and Biochemistry Department, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Hala F Zaki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Beshay N Zordoky
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Nagy Abouquerin
- Physiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ahmed F Mohamed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Pharmacology and Toxicology Department, Faculty of Pharmacy, King Salman International University, Ras Sedr, South Sinai, Egypt
| |
Collapse
|
2
|
Usman M, Malik H, Tokhi A, Arif M, Huma Z, Rauf K, Sewell RDE. 5,7-Dimethoxycoumarin ameliorates vincristine induced neuropathic pain: potential role of 5HT 3 receptors and monoamines. Front Pharmacol 2023; 14:1213763. [PMID: 37920212 PMCID: PMC10619918 DOI: 10.3389/fphar.2023.1213763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023] Open
Abstract
Vincristine is the drug of choice for Hodgkin's lymphoma, acute lymphoblastic leukemia, and non-Hodgkin lymphoma. Despite its significant anticancer effects, it causes dose-dependent neuropathy, leading to compulsive dose reduction. The available drugs used for vincristine-induced neuropathic pain (VINP) have a range of safety, efficacy, and tolerability issues prompting a search for new therapies. 5,7-Dimethoxycoumarin (5,7-DMC) also known as citropten, is a natural coumarin found in the essential oils of citrus plants such as lime, lemons, and bergamots, and it possesses both antidepressant and anti-inflammatory effects. This study was designed to investigate the possible analgesic and antiallodynic effects of 5,7-DMC in a murine model of VINP. Vincristine was administered to groups of BALB/c male mice (0.1 mg/kg intraperitoneally) once daily for 14 days to induce VINP. Thermal hyperalgesia and mechanical allodynia were quantified using the tail immersion test and von Frey filament application method. The levels of monoamine neurotransmitters and vitamin C in frontal cortical, striatal and hippocampal tissues, as well as the TNF-α level in plasma, were quantified using high performance liquid chromatography and ELISA respectively. On day 15 of the protocol, acute treatment with 5,7-DMC clearly reversed VINP thermal hyperalgesia, mechanical static allodynia, mechanical dynamic allodynia, and cold allodynia. The activity of 5,7-DMC against hyperalgesia and allodynia was inhibited by pretreatment with ondansetron but not naloxone, implicating a 5-HT3 receptor involvement. VINP vitamin C levels were restored by 5,7-DMC in the frontal cortex, and changes in serotonin, dopamine, adenosine, inosine and hypoxanthine levels caused by vincristine were reversed either fully or partially. Additionally, the vincristine-induced rise in hippocampal serotonin, dopamine, inosine and striatal serotonin was appreciably reversed by 5,7-DMC. 5,7-DMC also reversed the vincristine-induced increase in the plasma level of TNF-α. In negating the changes in the levels of some neurotransmitters in the brain caused by vincristine, 5,7-DMC showed stronger effects than gabapentin. It was concluded that, there is a potential role of 5-HT3 receptors and monoamines in the amelioration of VINP induced by 5,7-DMC, and the use of this compound warrants further investigation.
Collapse
Affiliation(s)
- Muhammad Usman
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Hurmat Malik
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Ahmed Tokhi
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Mehreen Arif
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Zilli Huma
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Khalid Rauf
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Robert D. E. Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
3
|
Gao P, Rao ZW, Li M, Sun XY, Gao QY, Shang TZ, Chen C, Zhang CL. Tetrandrine Represses Inflammation and Attenuates Osteoarthritis by Selective Inhibition of COX-2. Curr Med Sci 2023:10.1007/s11596-023-2725-6. [PMID: 37204627 DOI: 10.1007/s11596-023-2725-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/09/2023] [Indexed: 05/20/2023]
Abstract
OBJECTIVE There is a lack of effective and long-term safe drugs for the treatment of osteoarthritis (OA). Tetrandrine (Tet) has been approved and used to treat rheumatoid arthritis for several decades, but its effect on OA has not been investigated. Herein, we explored the effect of Tet on OA and its underlying mechanism. METHODS OA was induced using destabilization of the medial meniscus (DMM) in C57BL/6J mice. The animals were randomly divided into sham, DMM, Tet, celecoxib (CXB), and indomethacin (INDO) groups. Each group was given solvent or corresponding drugs by gavage for 7 weeks after convalescence. Pathological staining, OARSI scores, micro-computed tomography and behavior tests were performed to evaluate the effects of Tet. RESULTS Tet remarkably alleviated cartilage injury in the knee joint, limited bone remodeling in the subchondral bone, and delayed progression of OA. Tet also significantly relieved joint pain and maintained function. Further mechanistic studies revealed that Tet lowered inflammatory cytokine levels and selectively suppressed gene and protein expression of cyclooxygenase (COX)-2 but not COX-1 (P<0.01). Tet also reduced the production of prostaglandin E2 without damaging the gastric mucosa. CONCLUSION We found that Tet could selectively inhibit COX-2 gene expression and decrease cytokine levels in mice, thus reducing inflammation and improving OA without obvious gastric adverse events. These results provide a scientific basis for the clinical application of Tet in the treatment of OA.
Collapse
Affiliation(s)
- Ping Gao
- Department of Pharmacy, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Zhi-Wei Rao
- Department of Pharmacy, Central Hospital of Xianning, the First Affiliate Hospital of Hubei University of Science and Technology, Xianning, 437100, China
| | - Min Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xu-Ying Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian-Yan Gao
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tian-Ze Shang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chao Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Cheng-Liang Zhang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
4
|
Lv X, Mao Y, Cao S, Feng Y. Animal models of chemotherapy-induced peripheral neuropathy for hematological malignancies: A review. IBRAIN 2022; 9:72-89. [PMID: 37786517 PMCID: PMC10529012 DOI: 10.1002/ibra.12086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 10/04/2023]
Abstract
Chemotherapy is one of the main treatments for hematologic malignancies. However, chemotherapy-induced peripheral neuropathy (CIPN) is one of the most common long-term toxic reactions in chemotherapy, and the occurrence of CIPN affects patients' quality of life and can cause interruption of chemotherapy in severe cases, thus reducing the efficacy of chemotherapy. We currently summarize the existing CIPN animal models, including the characteristics of several common animal models such as bortezomib-induced peripheral neuropathy, vincristine-induced peripheral neuropathy, and oxaliplatin-induced peripheral neuropathy. It was found that CIPN may lead to behavioral, histopathological, and neurophysiological changes inducing peripheral neuropathy. However, the mechanism of CIPN has not been fully elucidated, especially the prevention and treatment protocols need to be improved. Therefore, this review article summarizes the progress of research on CIPN animal models and the possible mechanisms and treatment of CIPN.
Collapse
Affiliation(s)
- Xiaoli Lv
- Department of HematologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Yingwei Mao
- Department of BiologyPenn State UniversityUniversity ParkPennsylvaniaUSA
| | - Song Cao
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- Department of Pain MedicineAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Yonghuai Feng
- Department of HematologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
5
|
Shayesteh S, Khalilzadeh M, Takzaree N, Dehpour AR. Dapsone improves the vincristine-induced neuropathic nociception by modulating neuroinflammation and oxidative stress. Daru 2022; 30:303-310. [PMID: 36104653 PMCID: PMC9715892 DOI: 10.1007/s40199-022-00448-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/10/2022] [Indexed: 10/14/2022] Open
Abstract
BACKGROUND Peripheral neuropathy is a dose-limiting adverse effect of vincristine (VCR) in cancer chemotherapies. Dapsone is commonly used for the prevention of opportunistic infections following cancer therapies. Therefore, a high rate of VCR and dapsone co-administration has occurred in leukemias. Recently neuroprotective effects of dapsone have been reported in various diseases. OBJECTIVES Regarding the physiopathology of VCR-induced peripheral neuropathy (VIPN) and dapsone neuroprotection, this study evaluated the effect of dapsone on VIPN. METHODS VIPN was induced by VCR injection (0.5 mg/kg IP, every other day, 1 week) in male Wistar rats. In the treatment group, dapsone(12.5 mg/kg IP, 1 week) was injected 30 min before VCR. Hot plate, Von Frey, motor neuron conduction velocity (MNCV), and histopathological tests were applied. The levels of TNF-α and NF-kB in the sciatic nerve and caspase-3 activity in dorsal root ganglion were measured by the ELISA method. The levels of malondialdehyde (MDA) and Glutathione (GSH) in the sciatic nerve were measured by spectrophotometry and colorimetric assays. RESULTS VIPN was observed as araised thermal and mechanical threshold, reduced MNCV, and sciatic nerve demyelination. However, dapsone reduced the mechanical and thermal threshold and improved the MNCV. Also, dapsone reduced TNF-α, NF-kB, MDA, and Caspase-3 activity, and increased the GSH level in the sciatic nerve. Moreover, dapsone prevented VCR-induced demyelination in the sciatic nerve. CONCLUSION This research demonstrated that dapsone could be used as a protective drug against VIPN. It improves the impaired thermal and mechanical sensations by reducing inflammatory, oxidant, and apoptosis factors and preventing demyelination in the sciatic nerve.
Collapse
Affiliation(s)
- Sevda Shayesteh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Khalilzadeh
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasrin Takzaree
- Department of Anatomy and Medicinal Plants Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.
| |
Collapse
|
6
|
Khan J, Ali G, Khurshid A, Saeed A, Ahmad S, Ullah N, Khan A, Sewell RD, Zakria M. Mechanistic efficacy assessment of selected novel methanimine derivatives against vincristine induced Neuropathy: In-vivo, Ex-vivo and In-silico correlates. Int Immunopharmacol 2022; 112:109246. [PMID: 36116153 DOI: 10.1016/j.intimp.2022.109246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/17/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022]
Abstract
Vincristine induced peripheral neuropathy (VIPN) is a serious untoward side effect suffered by cancer patients, which still lacks an adequate therapeutic approach. This study examined the alleviating potential of novel methanimine derivatives i.e. (E)-N-(4-nitrobenzylidene)-4-chloro-2-iodobenzamine (KB 9) and (E)-N-(2-methylbenzylidene)-4-chloro-2-iodobenzamine (KB 10) in VIPN. Vincristine was injected in BALB/c mice for 10 days to instigate nociceptive neuropathy. Dynamic and static allodynia, thermal (hot and cold) hyperalgesia were evaluated at 0, 5, 10 and 14 days using cotton brush, Von Frey filament application, hot plate test, acetone drop and cold water respectively. Tumour necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), lipid peroxide (LPO), glutathione-S-transferase (GST), catalase (CAT), superoxide dismutase (SOD) and reactive oxygen species (ROS) assays were performed to assess the efficacy of KB9 and KB10 against neuroinflammation and oxidative stress utilizing ELISA, immunohistochemistry and western blot analysis in brain and sciatic nerve tissues. Computational studies were executed to determine the stable binding conformation of both compounds with respect to COX-2 and NF-κB. Interestingly, both compounds substantially reduced protein expression related to neuroinflammation, oxidative stress (LPO, GST, SOD, CAT) and pain (NF-κB, COX-2, IL-1β and TNF-α). This molecular analysis suggested that the neuroprotective effect of KB9 and KB10 was mediated via regulation of inflammatory signaling pathways. Overall, this study demonstrated that KB9 and KB10 ameliorated vincristine induced neuropathy, through anti-inflammatory, anti-nociceptive and antioxidant mechanisms.
Collapse
Affiliation(s)
- Jawad Khan
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan.
| | - Gowhar Ali
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan.
| | - Asma Khurshid
- Department of Chemistry, Quaid-I-Azam University Islamabad 45320, Pakistan.
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University Islamabad 45320, Pakistan.
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan.
| | - Najeeb Ullah
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan.
| | - Ashrafullah Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University Islamabad 45320, Pakistan.
| | - Robert D Sewell
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, United Kingdom.
| | - Muhammad Zakria
- Institute of Pharmaceutical Sciences, Khyber Medical University, Peshawar, Pakistan.
| |
Collapse
|
7
|
Abdel-Galil E, Girges MM, Said GE. Synthesis, Characterization, and Biological Evaluation of Novel Cyclohexenone Derivatives Incorporating Azo, Triazene, and Tetraazene Moieties. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222100292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Shah D, Iqbal A, Alshehri FS, Ullah A, Ali G, Muhammad T, Ullah R, Sewell RDE, Althobaiti YS. The Neuroprotective Propensity of Organic Extracts of Acacia stenophylla Bark and Their Effectiveness Against Scopolamine-/Diazepam-Induced Amnesia in Mice. J Inflamm Res 2022; 15:4785-4802. [PMID: 36032937 PMCID: PMC9416337 DOI: 10.2147/jir.s376242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022] Open
Abstract
Background Alzheimer's disease (AD) is a neurodegenerative disorder that is more prevalent in the elderly. There is extensive literature on using Acacia species against central nervous system disorders, although Acacia stenophylla has not been investigated for any neuroprotective potential. The purpose of the study was to elucidate the ameliorative effect of ethyl acetate (ASEE) and butanol (ASB) extracts from the bark of A. stenophylla on memory deficits and cognitive dysfunction in scopolamine- or diazepam-induced amnesia in mice. Methods The phytochemical constituents of the extracts of A. stenophylla were determined by GC-MS and the in vitro anticholinesterase plus antioxidant activities were also evaluated. Anti-amnesic effects were determined employing the open field test, elevated plus maze (EPM), Morris water maze (MWM), and Y-maze paradigms. Results The in vitro cholinesterase assays disclosed a concentration-dependent inhibition of both AChE and BuChE with IC50 values of 28.48 and 44.86 µg/mL for the ASEE extract and 32.04 and 50.26 µg/mL for the ASB extract against AChE and BuChE respectively. DPPH and H2O2 antioxidant assays revealed respective IC50 values for the ASEE extract of 28.04 and 59.84 µg/mL, plus 32.77 and 64.65 µg/mL for ASB extract. The findings revealed that both extracts possessed substantial antioxidant properties. Furthermore, these fractions restored scopolamine- and diazepam-induced memory deficits in a dose-dependent manner, as observed by a significant decrease in the transfer latency in EPM, reduction in escape latency, added time spent in the target quadrant in the MWM, and elevated spontaneous alternation behavior (SAB) in the Y-maze test. Conclusion The ameliorative effect of A. stenophylla on scopolamine- and diazepam-induced amnesia can be attributed to antioxidant and anticholinesterase activity. Consequently, the use of A. stenophylla might be exploited in the alleviation of oxidative stress and the management of AD.
Collapse
Affiliation(s)
- Dawood Shah
- Department of Botany, Islamia College Peshawar, Peshawar, Pakistan
| | - Arshad Iqbal
- Department of Botany, Islamia College Peshawar, Peshawar, Pakistan
| | - Fahad S Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Aman Ullah
- College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Gowhar Ali
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Tahir Muhammad
- Molecular Neuropsychiatry and Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Rahim Ullah
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan.,Department of Pharmacy, Faculty of Life Sciences, Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Robert D E Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, UK
| | - Yusuf S Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif, Saudi Arabia.,Addiction and Neuroscience Research Unit, Taif University, Taif, Saudi Arabia
| |
Collapse
|
9
|
Khodaei M, Mehri S, Pour SR, Mahdavi S, Yarmohammadi F, Hayes AW, Karimi G. The protective effect of chemical and natural compounds against vincristine-induced peripheral neuropathy (VIPN). Naunyn Schmiedebergs Arch Pharmacol 2022; 395:907-919. [PMID: 35562512 DOI: 10.1007/s00210-022-02254-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022]
Abstract
Vincristine, an alkaloid extracted from Catharanthus rosea, is a class of chemotherapy drugs that act by altering the function of the microtubules and by inhibiting mitosis. Despite its widespread application, a major adverse effect of vincristine that limits treatment duration is the occurrence of peripheral neuropathy (PN). PN presents with several symptoms including numbness, painful sensation, tingling, and muscle weakness. Vincristine-induced PN involves impaired calcium homeostasis, an increase of reactive oxygen species (ROS), and the upregulation of tumor necrosis factor-alpha (TNF-α), and interleukin 1 beta (IL-1β) expression. Several potential approaches to attenuate the vincristine-induced PN including the concomitant administration of chemicals with vincristine have been reported. These chemicals have a variety of pharmaceutical properties including anti-inflammation, antioxidant, and inhibition of calcium channels and calcineurin signaling pathways and increased expression of nerve growth factor (NGF). This review summarized several of these compounds and the mechanisms of action that could lead to effective options in improving vincristine-induced peripheral neuropathy (VIPN).
Collapse
Affiliation(s)
- Mitra Khodaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. .,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Soroush Rashid Pour
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shakiba Mahdavi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fatemeh Yarmohammadi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. .,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
The 7-Hydroxyflavone attenuates chemotherapy-induced neuropathic pain by targeting inflammatory pathway. Int Immunopharmacol 2022; 107:108674. [PMID: 35276461 DOI: 10.1016/j.intimp.2022.108674] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/19/2022] [Accepted: 02/28/2022] [Indexed: 12/19/2022]
Abstract
Vincristine and paclitaxel are widely used chemotherapeutic drugs for the treatment of brain tumors, breast cancer, leukemia, lymphomas, and malignant solid tumors. Though, these drugs are associated with some severe adverse effects including peripheral neuropathic pain. The anti-nociceptive and anti-inflammatory properties of the 7-Hydroxyflavone (7HF) were evaluated in the mice using thermally- and chemically-induced nociception, naloxone antagonistic test, and carrageenan-induced paw edema models. Initially, the in-vitro cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) inhibitory assays were carried out. Peripheral neuropathic pain was induced in the Sprague Dawley (SD) rats by administration of paclitaxel (4 mg/kg) and vincristine (200 µg/kg) on days 1, 3, 5, 7, and 9, respectively. The protective effect of 7HF was assessed against the chemotherapy-induced peripheral neuropathy in the rats. Moreover, the expression of the inflammatory mediators in the spinal cord was investigated through RT-PCR. In addition, a computational study was performed to find the potential therapeutic targets and the binding mechanism of 7HF. The 7HF caused concentration-dependent inhibition of COX-2 and 5-LOX, it attenuated the nociceptive pain, carrageenan-induced paw edema, and the development of mechanical and cold allodynia, and hyperalgesia dose-dependently without causing motor coordination deficit. Likewise, the 7HF decreased the vincristine-induced increased expression of different inflammatory mediators including COX-2, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), and nuclear factor-kappa B (NF-κB). The computational study showed the effective interactions of 7HF with the binding sites of NF-κB, COX-2, and 5-LOX, exert its inhibitory activities. These findings reveal that the 7HF has anti-nociceptive, anti-inflammatory, and anti-neuropathic potentials.
Collapse
|
11
|
Qureshi S, Ali G, Idrees M, Muhammad T, Kong IK, Abbas M, Shah MIA, Ahmad S, Sewell RDE, Ullah S. Selected Thiadiazine-Thione Derivatives Attenuate Neuroinflammation in Chronic Constriction Injury Induced Neuropathy. Front Mol Neurosci 2021; 14:728128. [PMID: 34975395 PMCID: PMC8716630 DOI: 10.3389/fnmol.2021.728128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Neuropathic pain refers to a lesion or disease of peripheral and/or central somatosensory neurons and is an important body response to actual or potential nerve damage. We investigated the therapeutic potential of two thiadiazine-thione [TDT] derivatives, 2-(5-propyl-6-thioxo-1, 3, 5-thiadiazinan-3-yl) acetic acid [TDT1] and 2-(5-propyl-2-thioxo-1, 3, 5-thiadiazinan-3-yl) acetic acid [TDT2] against CCI (chronic constriction injury)-induced neuroinflammation and neuropathic pain. Mice were used for assessment of acute toxicity of TDT derivatives and no major toxic/bizarre responses were observed. Anti-inflammatory activity was assessed using the carrageenan test, and both TDT1 and TDT2 significantly reduced carrageenan-induced inflammation. We also used rats for the induction of CCI and performed allodynia and hyperalgesia-related behavioral tests followed by biochemical and morphological analysis using RT-qPCR, immunoblotting, immunohistochemistry and immunofluorescence. Our findings revealed that CCI induced clear-cut allodynia and hyperalgesia which was reversed by TDT1 and TDT2. To determine the function of TDT1 and TDT2 in glia-mediated neuroinflammation, Iba1 mRNA and protein levels were measured in spinal cord tissue sections from various experimental groups. Interestingly, TDT1 and TDT2 substantially reduced the mRNA expression and protein level of Iba1, implying that TDT1 and TDT2 may mitigate CCI-induced astrogliosis. In silico molecular docking studies predicted that both compounds had an effective binding affinity for TNF-α and COX-2. The compounds interactions with the proteins were dominated by both hydrogen bonding and van der Waals interactions. Overall, these results suggest that TDT1 and TDT2 exert their neuroprotective and analgesic potentials by ameliorating CCI-induced allodynia, hyperalgesia, neuroinflammation and neuronal degeneration in a dose-dependent manner.
Collapse
Affiliation(s)
- Sonia Qureshi
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Gowhar Ali
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
- Laboratory of Neurogenomics and Novel Therapies, The Ken and Ruth Davee Department of Neurology, Department of Neurology and Clinical Neurosciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Muhammad Idrees
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, South Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
| | - Tahir Muhammad
- Molecular Neuropsychiatry and Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Il-Keun Kong
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, South Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
- The Kingkong Co., Ltd., Gyeongsang National University, Jinju, South Korea
| | - Muzaffar Abbas
- Faculty of Pharmacy, Capital University of Science & Technology, Islamabad, Pakistan
| | | | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Robert D. E. Sewell
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Sami Ullah
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| |
Collapse
|
12
|
Naveed M, Ullah R, Khan A, Shal B, Khan AU, Khan SZ, Rehman ZU, Khan S. Anti-neuropathic pain activity of a cationic palladium (II) dithiocarbamate by suppressing the inflammatory mediators in paclitaxel-induced neuropathic pain model. Mol Biol Rep 2021; 48:7647-7656. [PMID: 34734371 DOI: 10.1007/s11033-021-06754-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Neuropathic pain is a chronic pain state that negatively impacts the quality of life. Currently, available therapies for the treatment of neuropathic pain often lack efficacy and tolerability. Therefore, the search for novel drugs is crucial to obtain treatments that effectively suppress neuropathic pain. OBJECTIVES The present study was undertaken to investigate the antinociceptive properties of (1,4-bis-(diphenylphosphino) butane) palladium (II) chloride monohydrate (Compound 1) in a paclitaxel (PTX)-induced neuropathic pain model. METHODS Initially, behavioral tests such as mechanical and cold allodynia as well as thermal and tail immersion hyperalgesia were performed to investigate the antinociceptive potential of Compound 1 (5 and 10 mg/kg, b.w). RT-PCR was performed to determine the effect of Compound 1 on the mRNA expression level of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and proinflammatory cytokines such as tumor necrosis factor-alpha (TNF)-α, interleukin (IL)-1β, and IL-6. In addition, antioxidant protein, nitric oxide (NO), and malondialdehyde (MDA) levels were also determined. RESULTS The results demonstrated that once-daily dosing of Compound 1 significantly suppressed the PTX-induced behavioral pain responses dose-dependently. The mRNA gene expressions of iNOS, COX-2, and inflammatory cytokines were markedly reduced by Compound 1. Furthermore, it enhanced the level of antioxidant enzymes and lowered the level of MDA and NO production. CONCLUSION These findings suggest that the antinociceptive potential of Compound 1 in the PTX-induced neuropathic pain model is via suppression of oxidative stress and inflammation. Thus, Compound 1 might be a potential candidate for the therapeutic management of PTX induced neuropathic pain.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Rahim Ullah
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Adnan Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Bushra Shal
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Ashraf Ullah Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Shahan Zeb Khan
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan
- Department of Chemistry, University of Science and Technology, KPK, Bannu, 28100, Pakistan
| | - Zia Ur Rehman
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan.
| |
Collapse
|
13
|
Khan A, Shal B, Khan AU, Ullah R, Baig MW, ul Haq I, Seo EK, Khan S. Suppression of TRPV1/TRPM8/P2Y Nociceptors by Withametelin via Downregulating MAPK Signaling in Mouse Model of Vincristine-Induced Neuropathic Pain. Int J Mol Sci 2021; 22:ijms22116084. [PMID: 34199936 PMCID: PMC8200233 DOI: 10.3390/ijms22116084] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 02/06/2023] Open
Abstract
Vincristine (VCR) is a widely used chemotherapy drug that induced peripheral painful neuropathy. Yet, it still lacks an ideal therapeutic strategy. The transient receptor potential (TRP) channels, purinergic receptor (P2Y), and mitogen-activated protein kinase (MAPK) signaling play a crucial role in the pathogenesis of neuropathic pain. Withametelin (WMT), a potential Phytosteroid isolated from datura innoxa, exhibits remarkable neuroprotective properties. The present investigation was designed to explore the effect of withametelin on VCR-induced neuropathic pain and its underlying molecular mechanism. Initially, the neuroprotective potential of WMT was confirmed against hydrogen peroxide (H2O2)-induced PC12 cells. To develop potential candidates for neuropathic pain treatment, a VCR-induced neuropathic pain model was established. Vincristine (75 μg/kg) was administered intraperitoneally (i.p.) for 10 consecutive days (day 1-10) for the induction of neuropathic pain. Gabapentin (GBP) (60 mg/kg, i.p.) and withametelin (0.1 and 1 mg/kg i.p.) treatments were given after the completion of VCR injection on the 11th day up to 21 days. The results revealed that WMT significantly reduced VCR-induced pain hypersensitivity, including mechanical allodynia, cold allodynia, and thermal hyperalgesia. It reversed the VCR-induced histopathological changes in the brain, spinal cord, and sciatic nerve. It inhibited VCR-induced changes in the biochemical composition of the myelin sheath of the sciatic nerve. It markedly downregulated the expression levels of TRPV1 (transient receptor potential vanilloid 1); TRPM8 (Transient receptor potential melastatin 8); and P2Y nociceptors and MAPKs signaling, including ERK (Extracellular Signal-Regulated Kinase), JNK (c-Jun N-terminal kinase), and p-38 in the spinal cord. It suppressed apoptosis by regulating Bax (Bcl2-associated X-protein), Bcl-2 (B-cell-lymphoma-2), and Caspase-3 expression. It considerably attenuated inflammatory cytokines, oxidative stress, and genotoxicity. This study suggests that WMT treatment suppressed vincristine-induced neuropathic pain by targeting the TRPV1/TRPM8/P2Y nociceptors and MAPK signaling.
Collapse
Affiliation(s)
- Adnan Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (B.S.); (A.U.K.); (M.W.B.); (I.u.H.)
| | - Bushra Shal
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (B.S.); (A.U.K.); (M.W.B.); (I.u.H.)
| | - Ashraf Ullah Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (B.S.); (A.U.K.); (M.W.B.); (I.u.H.)
| | - Rahim Ullah
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan;
| | - Muhammad Waleed Baig
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (B.S.); (A.U.K.); (M.W.B.); (I.u.H.)
| | - Ihsan ul Haq
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (B.S.); (A.U.K.); (M.W.B.); (I.u.H.)
| | - Eun Kyoung Seo
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
- Correspondence: (E.K.S.); (S.K.); Tel.: +82-2-3277-3047 (E.K.S.); +92-51-9064-4056 (S.K.)
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (B.S.); (A.U.K.); (M.W.B.); (I.u.H.)
- Correspondence: (E.K.S.); (S.K.); Tel.: +82-2-3277-3047 (E.K.S.); +92-51-9064-4056 (S.K.)
| |
Collapse
|
14
|
Kamil M, Fatima A, Ullah S, Ali G, Khan R, Ismail N, Qayum M, Irimie M, Dinu CG, Ahmedah HT, Cocuz ME. Toxicological Evaluation of Novel Cyclohexenone Derivative in an Animal Model through Histopathological and Biochemical Techniques. TOXICS 2021; 9:119. [PMID: 34070633 PMCID: PMC8227666 DOI: 10.3390/toxics9060119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/04/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022]
Abstract
Toxicity studies were conducted to provide safety data of potential drug candidates by determining lethal and toxic doses. This study was designed for pre-clinical evaluation of novel cyclohexenone derivative with respect to the acute and sub-acute toxicity along with the diabetogenic potential. Acute and sub-acute toxicity were assessed after intraperitoneal (i.p) injection of the investigational compound through selected doses for 21 days. This was followed by assessment of isolated body organs (liver, kidney, heart and pancreas) via biochemical indicators and histopathological techniques. No signs of toxicity were revealed in the study of acute toxicity. Similarly, a sub-acute toxicity study showed no significant difference in biochemical indicators on 11th and 21st days between treated and control groups. However, in blood urea nitrogen (BUN) and random blood glucose/sugar (RBS) values, significant differences were recorded. Histopathological evaluation of liver, kidney, pancreas and heart tissues revealed mild to severe changes in the form of steatosis, inflammation, fibrosis, necrosis and myofibrillary damages on 11th and 21st days of treatment. In conclusion, the median lethal dose of the tested compound was expected to be greater than 500 mg/kg. No significant change occurred in selected biomarkers, except BUN and RBS levels, but a histopathological study showed moderate toxic effect on liver, kidney, pancreas and heart tissues by the cyclohexenone derivative.
Collapse
Affiliation(s)
- Muhammad Kamil
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan; (M.K.); (A.F.); (G.A.)
| | - Arifa Fatima
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan; (M.K.); (A.F.); (G.A.)
| | - Sami Ullah
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan; (M.K.); (A.F.); (G.A.)
| | - Gowhar Ali
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan; (M.K.); (A.F.); (G.A.)
| | - Rasool Khan
- Department of Organic Chemistry, Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan;
| | - Naila Ismail
- Department of Pathology, Kabir Medical College, Gandhara University, Peshawar 25000, Pakistan;
| | - Mughal Qayum
- Department of Pharmacy, Kohat University of Science and Technology, Kohat 26000, Pakistan;
| | - Marius Irimie
- Faculty of Medicine, Transilvania University of Brasov, 500019 Brasov, Romania;
| | | | - Hanadi Talal Ahmedah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Rabigh 25732, Saudi Arabia
| | - Maria Elena Cocuz
- Faculty of Medicine, Transilvania University of Brasov, 500019 Brasov, Romania;
| |
Collapse
|