1
|
Li T, Chen X, Tang X, Li Y, Huang H, Tong N. A case report of type 1 diabetes mellitus coexistent with Charcot–Marie–Tooth type 1A and a literature review. Int J Diabetes Dev Ctries 2025; 45:170-174. [DOI: 10.1007/s13410-024-01340-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/22/2024] [Indexed: 09/27/2024] Open
|
2
|
Jung NY, Kwon HM, Nam DE, Tamanna N, Lee AJ, Kim SB, Choi BO, Chung KW. Peripheral Myelin Protein 22 Gene Mutations in Charcot-Marie-Tooth Disease Type 1E Patients. Genes (Basel) 2022; 13:genes13071219. [PMID: 35886002 PMCID: PMC9321036 DOI: 10.3390/genes13071219] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 02/04/2023] Open
Abstract
Duplication and deletion of the peripheral myelin protein 22 (PMP22) gene cause Charcot-Marie-Tooth disease type 1A (CMT1A) and hereditary neuropathy with liability to pressure palsies (HNPP), respectively, while point mutations or small insertions and deletions (indels) usually cause CMT type 1E (CMT1E) or HNPP. This study was performed to identify PMP22 mutations and to analyze the genotype−phenotype correlation in Korean CMT families. By the application of whole-exome sequencing (WES) and targeted gene panel sequencing (TS), we identified 14 pathogenic or likely pathogenic PMP22 mutations in 21 families out of 850 CMT families who were negative for 17p12 (PMP22) duplication. Most mutations were located in the well-conserved transmembrane domains. Of these, eight mutations were not reported in other populations. High frequencies of de novo mutations were observed, and the mutation sites of c.68C>G and c.215C>T were suggested as the mutational hotspots. Affected individuals showed an early onset-severe phenotype and late onset-mild phenotype, and more than 40% of the CMT1E patients showed hearing loss. Physical and electrophysiological symptoms of the CMT1E patients were more severely damaged than those of CMT1A while similar to CMT1B caused by MPZ mutations. Our results will be useful for the reference data of Korean CMT1E and the molecular diagnosis of CMT1 with or without hearing loss.
Collapse
Affiliation(s)
- Na Young Jung
- Department of Biological Sciences, Kongju National University, Gongju 32588, Korea; (N.Y.J.); (D.E.N.); (N.T.); (A.J.L.)
| | - Hye Mi Kwon
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Da Eun Nam
- Department of Biological Sciences, Kongju National University, Gongju 32588, Korea; (N.Y.J.); (D.E.N.); (N.T.); (A.J.L.)
| | - Nasrin Tamanna
- Department of Biological Sciences, Kongju National University, Gongju 32588, Korea; (N.Y.J.); (D.E.N.); (N.T.); (A.J.L.)
| | - Ah Jin Lee
- Department of Biological Sciences, Kongju National University, Gongju 32588, Korea; (N.Y.J.); (D.E.N.); (N.T.); (A.J.L.)
| | - Sang Beom Kim
- Department of Neurology, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul 05278, Korea;
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
- Cell & Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Korea
- Correspondence: (B.-O.C.); (K.W.C.); Tel.: +82-2-3410-1296 (B.-O.C.); +82-41-850-8506 (K.W.C.)
| | - Ki Wha Chung
- Department of Biological Sciences, Kongju National University, Gongju 32588, Korea; (N.Y.J.); (D.E.N.); (N.T.); (A.J.L.)
- Correspondence: (B.-O.C.); (K.W.C.); Tel.: +82-2-3410-1296 (B.-O.C.); +82-41-850-8506 (K.W.C.)
| |
Collapse
|
3
|
Ando M, Higuchi Y, Yuan J, Yoshimura A, Taniguchi T, Kojima F, Noguchi Y, Hobara T, Takeuchi M, Takei J, Hiramatsu Y, Sakiyama Y, Hashiguchi A, Okamoto Y, Mitsui J, Ishiura H, Tsuji S, Takashima H. Comprehensive Genetic Analyses of Inherited Peripheral Neuropathies in Japan: Making Early Diagnosis Possible. Biomedicines 2022; 10:biomedicines10071546. [PMID: 35884855 PMCID: PMC9312503 DOI: 10.3390/biomedicines10071546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 11/18/2022] Open
Abstract
Various genomic variants were linked to inherited peripheral neuropathies (IPNs), including large duplication/deletion and repeat expansion, making genetic diagnosis challenging. This large case series aimed to identify the genetic characteristics of Japanese patients with IPNs. We collected data on 2695 IPN cases throughout Japan, in which PMP22 copy number variation (CNV) was pre-excluded. Genetic analyses were performed using DNA microarrays, next-generation sequencing-based gene panel sequencing, whole-exome sequencing, CNV analysis, and RFC1 repeat expansion analysis. The overall diagnostic rate and the genetic spectrum of patients were summarized. We identified 909 cases with suspected IPNs, pathogenic or likely pathogenic variants. The most common causative genes were MFN2, GJB1, MPZ, and MME. MFN2 was the most common cause for early-onset patients, whereas GJB1 and MPZ were the leading causes of middle-onset and late-onset patients, respectively. Meanwhile, GJB1 and MFN2 were leading causes for demyelinating and axonal subtypes, respectively. Additionally, we identified CNVs in MPZ and GJB1 genes and RFC1 repeat expansions. Comprehensive genetic analyses explicitly demonstrated the genetic basis of our IPN case series. A further understanding of the clinical characteristics of IPN and genetic spectrum would assist in developing efficient genetic testing strategies and facilitate early diagnosis.
Collapse
Affiliation(s)
- Masahiro Ando
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; (M.A.); (Y.H.); (J.Y.); (A.Y.); (T.T.); (F.K.); (Y.N.); (T.H.); (M.T.); (J.T.); (Y.H.); (Y.S.); (A.H.); (Y.O.)
| | - Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; (M.A.); (Y.H.); (J.Y.); (A.Y.); (T.T.); (F.K.); (Y.N.); (T.H.); (M.T.); (J.T.); (Y.H.); (Y.S.); (A.H.); (Y.O.)
| | - Junhui Yuan
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; (M.A.); (Y.H.); (J.Y.); (A.Y.); (T.T.); (F.K.); (Y.N.); (T.H.); (M.T.); (J.T.); (Y.H.); (Y.S.); (A.H.); (Y.O.)
| | - Akiko Yoshimura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; (M.A.); (Y.H.); (J.Y.); (A.Y.); (T.T.); (F.K.); (Y.N.); (T.H.); (M.T.); (J.T.); (Y.H.); (Y.S.); (A.H.); (Y.O.)
| | - Takaki Taniguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; (M.A.); (Y.H.); (J.Y.); (A.Y.); (T.T.); (F.K.); (Y.N.); (T.H.); (M.T.); (J.T.); (Y.H.); (Y.S.); (A.H.); (Y.O.)
| | - Fumikazu Kojima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; (M.A.); (Y.H.); (J.Y.); (A.Y.); (T.T.); (F.K.); (Y.N.); (T.H.); (M.T.); (J.T.); (Y.H.); (Y.S.); (A.H.); (Y.O.)
| | - Yutaka Noguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; (M.A.); (Y.H.); (J.Y.); (A.Y.); (T.T.); (F.K.); (Y.N.); (T.H.); (M.T.); (J.T.); (Y.H.); (Y.S.); (A.H.); (Y.O.)
| | - Takahiro Hobara
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; (M.A.); (Y.H.); (J.Y.); (A.Y.); (T.T.); (F.K.); (Y.N.); (T.H.); (M.T.); (J.T.); (Y.H.); (Y.S.); (A.H.); (Y.O.)
| | - Mika Takeuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; (M.A.); (Y.H.); (J.Y.); (A.Y.); (T.T.); (F.K.); (Y.N.); (T.H.); (M.T.); (J.T.); (Y.H.); (Y.S.); (A.H.); (Y.O.)
| | - Jun Takei
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; (M.A.); (Y.H.); (J.Y.); (A.Y.); (T.T.); (F.K.); (Y.N.); (T.H.); (M.T.); (J.T.); (Y.H.); (Y.S.); (A.H.); (Y.O.)
| | - Yu Hiramatsu
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; (M.A.); (Y.H.); (J.Y.); (A.Y.); (T.T.); (F.K.); (Y.N.); (T.H.); (M.T.); (J.T.); (Y.H.); (Y.S.); (A.H.); (Y.O.)
| | - Yusuke Sakiyama
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; (M.A.); (Y.H.); (J.Y.); (A.Y.); (T.T.); (F.K.); (Y.N.); (T.H.); (M.T.); (J.T.); (Y.H.); (Y.S.); (A.H.); (Y.O.)
| | - Akihiro Hashiguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; (M.A.); (Y.H.); (J.Y.); (A.Y.); (T.T.); (F.K.); (Y.N.); (T.H.); (M.T.); (J.T.); (Y.H.); (Y.S.); (A.H.); (Y.O.)
| | - Yuji Okamoto
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; (M.A.); (Y.H.); (J.Y.); (A.Y.); (T.T.); (F.K.); (Y.N.); (T.H.); (M.T.); (J.T.); (Y.H.); (Y.S.); (A.H.); (Y.O.)
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima 890-8520, Japan
| | - Jun Mitsui
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; (J.M.); (H.I.); (S.T.)
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; (J.M.); (H.I.); (S.T.)
| | - Shoji Tsuji
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; (J.M.); (H.I.); (S.T.)
- Institute of Medical Genomics, International University of Health and Welfare, Chiba 107-8402, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; (M.A.); (Y.H.); (J.Y.); (A.Y.); (T.T.); (F.K.); (Y.N.); (T.H.); (M.T.); (J.T.); (Y.H.); (Y.S.); (A.H.); (Y.O.)
- Correspondence: ; Tel.: +81-99-275-5332
| |
Collapse
|
4
|
Identification and clinical characterization of Charcot-Marie-Tooth disease type 1C patients with LITAF p.G112S mutation. Genes Genomics 2022; 44:1007-1016. [PMID: 35608774 DOI: 10.1007/s13258-022-01253-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/30/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Charcot-Marie-Tooth disease type 1C (CMT1C) is a rare subtype associated with LITAF gene mutations. Until now, only a few studies have reported the clinical features of CMT1C. OBJECTIVE This study was performed to find CMT1C patients with mutation of LITAF in a Korean CMT cohort and to characterize their clinical features. METHODS In total, 1,143 unrelated Korean families with CMT were enrolled in a cohort. We performed whole exome sequencing to identify LITAF mutations, and examined clinical phenotypes including electrophysiological and MRI features for the identified CMT1C patients. RESULTS We identified 10 CMT1C patients from three unrelated families with p.G112S mutation in LITAF. The frequency of CMT1C among CMT1 patients was 0.59%, which is similar to reports from Western populations. CMT1C patients showed milder symptoms than CMT1A patients. The mean CMT neuropathy score version 2 was 7.7, and the mean functional disability scale was 1.0. Electrophysiological findings showed a conduction block in 22% of affected individuals. Lower extremity MRIs showed that the superficial posterior and anterolateral compartments of the calf were predominantly affected. CONCLUSIONS We found a conduction block in Korean CMT1C patients with p.G112S mutation and first described the characteristic MRI findings of the lower extremities in patients with LITAF mutation. These findings will be helpful for genotype-phenotype correlation and will widen understanding about the clinical spectrum of CMT1C.
Collapse
|
5
|
Concomitant MPZ and MFN2 Gene Variants and Charcot Marie Tooth Disease in a Boy: Clinical and Genetic Analysis—Literature Review. Case Rep Pediatr 2022; 2022:3793226. [PMID: 35449525 PMCID: PMC9017559 DOI: 10.1155/2022/3793226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/04/2022] Open
Abstract
Charcot- Marie- Tooth (CMT) disease includes a group of clinically and genetically heterogeneous neuropathic disorders with an estimated frequency of 1 on 2.500 individuals. CMTs are differently classified according to the age of onset, type of inheritance, and type of inheritance plus clinical features. For these disorders, more than 100 genes have been implicated as causal factors, with mutations in the PMP22 being one of the most common. The demyelinating type (CMT1) affects more than 30% of the CMTs patients and manifests with motor and sensory dysfunctions of the peripheral nervous system mainly starting with slow progressive weakness of the lower extremities. We report here a 12 year- old boy presenting with typical features of CMT1 type, hearing impairment, and inguinal hernia who at the next-generation sequence analysis displayed a concomitant presence of two variants: the c.233 C>T p.Ser 78Leu of the MPZ gene (NM_000530.6) characterized as pathogenetic and the c.1403 G>A p.Arg 468His of the MFN2 gene (NM_014874.3) characterized as VUS. Concomitant variant mutations in CMTs have been uncommonly reported. The role of these gene mutations on the clinical expression and a literature review on this topic is discussed.
Collapse
|
6
|
Holguin BA, Hildenbrand ZL, Bernal RA. Insights Into the Role of Heat Shock Protein 27 in the Development of Neurodegeneration. Front Mol Neurosci 2022; 15:868089. [PMID: 35431800 PMCID: PMC9005852 DOI: 10.3389/fnmol.2022.868089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/09/2022] [Indexed: 12/11/2022] Open
Abstract
Small heat shock protein 27 is a critically important chaperone, that plays a key role in several essential and varied physiological processes. These include thermotolerance, apoptosis, cytoskeletal dynamics, cell differentiation, protein folding, among others. Despite its relatively small size and intrinsically disordered termini, it forms large and polydisperse oligomers that are in equilibrium with dimers. This equilibrium is driven by transient interactions between the N-terminal region, the α-crystallin domain, and the C-terminal region. The continuous redistribution of binding partners results in a conformationally dynamic protein that allows it to adapt to different functions where substrate capture is required. However, the intrinsic disorder of the amino and carboxy terminal regions and subsequent conformational variability has made structural investigations challenging. Because heat shock protein 27 is critical for so many key cellular functions, it is not surprising that it also has been linked to human disease. Charcot-Marie-Tooth and distal hereditary motor neuropathy are examples of neurodegenerative disorders that arise from single point mutations in heat shock protein 27. The development of possible treatments, however, depends on our understanding of its normal function at the molecular level so we might be able to understand how mutations manifest as disease. This review will summarize recent reports describing investigations into the structurally elusive regions of Hsp27. Recent insights begin to provide the required context to explain the relationship between a mutation and the resulting loss or gain of function that leads to Charcot-Marie Tooth disease and distal hereditary motor neuropathy.
Collapse
|
7
|
Genetic Workup for Charcot–Marie–Tooth Neuropathy: A Retrospective Single-Site Experience Covering 15 Years. Life (Basel) 2022; 12:life12030402. [PMID: 35330153 PMCID: PMC8948690 DOI: 10.3390/life12030402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
Charcot–Marie–Tooth (CMT) disease is the most commonly inherited neurological disorder. This study includes patients affected by CMT during regular follow-ups at the CMT clinic in Genova, a neuromuscular university center in the northwest of Italy, with the aim of describing the genetic distribution of CMT subtypes in our cohort and reporting a peculiar phenotype. Since 2004, 585 patients (447 index cases) have been evaluated at our center, 64.9% of whom have a demyelinating neuropathy and 35.1% of whom have an axonal neuropathy. A genetic diagnosis was achieved in 66% of all patients, with the following distribution: CMT1A (48%), HNPP (14%), CMT1X (13%), CMT2A (5%), and P0-related neuropathies (7%), accounting all together for 87% of all the molecularly defined neuropathies. Interestingly, we observe a peculiar phenotype with initial exclusive lower limb involvement as well as lower limb involvement that is maintained over time, which we have defined as a “strictly length-dependent” phenotype. Most patients with this clinical presentation shared variants in either HSPB1 or MPZ genes. The identification of distinctive phenotypes such as this one may help to address genetic diagnosis. In conclusion, we describe our diagnostic experiences as a multidisciplinary outpatient clinic, combining a gene-by-gene approach or targeted gene panels based on clinical presentation.
Collapse
|
8
|
Genetic and Clinical Studies of Peripheral Neuropathies with Three Small Heat Shock Protein Gene Variants in Korea. Genes (Basel) 2022; 13:genes13030462. [PMID: 35328016 PMCID: PMC8949397 DOI: 10.3390/genes13030462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 01/25/2023] Open
Abstract
Small heat shock proteins (sHSPs) are ATP-independent chaperones that help correct the folding of denatured proteins and protect cells from stress. Mutations in HSPB1, HSPB8, and HSPB3 are implicated in inherited peripheral neuropathies (IPNs), such as Charcot-Marie-Tooth disease type 2 (CMT2) and distal hereditary motor neuropathies (dHMN). This study, using whole exome sequencing or targeted gene sequencing, identified 9 pathogenic or likely pathogenic variants in these three sHSP genes from 11 Korean IPN families. Most variants were located in the evolutionally well conserved α-crystallin domain, except for p.P182S and p.S187L in HSPB1. As an atypical case, a patient with dHMN2 showed two compound heterozygous variants of p.R127Q and p.Y142H in HSPB1, suggesting a putative case of recessive inheritance, which requires additional research to confirm. Three HSPB8 variants were located in the p.K141 residue, which seemed to be a mutational hot spot. There were no significant differences between patient groups, which divided by sHSP genes for clinical symptoms such as onset age, severity, and nerve conduction. Early-onset patients showed a tendency of slightly decreased sensory nerve conduction values compared with late-onset patients. As a first Korean IPN cohort study examining sHSP genes, these results will, we believe, be helpful for molecular diagnosis and care of patients with CMT2 and dHMN.
Collapse
|
9
|
Gentile L, Russo M, Taioli F, Ferrarini M, Aguennouz M, Rodolico C, Toscano A, Fabrizi GM, Mazzeo A. Rare among Rare: Phenotypes of Uncommon CMT Genotypes. Brain Sci 2021; 11:brainsci11121616. [PMID: 34942918 PMCID: PMC8699517 DOI: 10.3390/brainsci11121616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022] Open
Abstract
(1) Background: Charcot–Marie–Tooth disease (CMT) is the most frequent form of inherited chronic motor and sensory polyneuropathy. Over 100 CMT causative genes have been identified. Previous reports found PMP22, GJB1, MPZ, and MFN2 as the most frequently involved genes. Other genes, such as BSCL2, MORC2, HINT1, LITAF, GARS, and autosomal dominant GDAP1 are responsible for only a minority of CMT cases. (2) Methods: we present here our records of CMT patients harboring a mutation in one of these rare genes (BSCL2, MORC2, HINT1, LITAF, GARS, autosomal dominant GDAP1). We studied 17 patients from 8 unrelated families. All subjects underwent neurologic evaluation and genetic testing by next-generation sequencing on an Ion Torrent PGM (Thermo Fischer) with a 44-gene custom panel. (3) Results: the following variants were found: BSCL2 c.263A > G p.Asn88Ser (eight subjects), MORC2 c.1503A > T p.Gln501His (one subject), HINT1 c.110G > C p.Arg37Pro (one subject), LITAF c.404C > G p.Pro135Arg (two subjects), GARS c.1660G > A p.Asp554Asn (three subjects), GDAP1 c.374G > A p.Arg125Gln (two subjects). (4) Expanding the spectrum of CMT phenotypes is of high relevance, especially for less common variants that have a higher risk of remaining undiagnosed. The necessity of reaching a genetic definition for most patients is great, potentially making them eligible for future experimentations.
Collapse
Affiliation(s)
- Luca Gentile
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.R.); (M.A.); (C.R.); (A.T.); (A.M.)
- Correspondence:
| | - Massimo Russo
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.R.); (M.A.); (C.R.); (A.T.); (A.M.)
| | - Federica Taioli
- Department of Neurological Sciences, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (F.T.); (M.F.); (G.M.F.)
| | - Moreno Ferrarini
- Department of Neurological Sciences, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (F.T.); (M.F.); (G.M.F.)
| | - M’Hammed Aguennouz
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.R.); (M.A.); (C.R.); (A.T.); (A.M.)
| | - Carmelo Rodolico
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.R.); (M.A.); (C.R.); (A.T.); (A.M.)
| | - Antonio Toscano
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.R.); (M.A.); (C.R.); (A.T.); (A.M.)
| | - Gian Maria Fabrizi
- Department of Neurological Sciences, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (F.T.); (M.F.); (G.M.F.)
- Azienda Ospedaliera Universitaria Integrata Verona—Borgo Roma, Piazzale L.A. Scuro 10, 37134 Verona, Italy
| | - Anna Mazzeo
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.R.); (M.A.); (C.R.); (A.T.); (A.M.)
| |
Collapse
|
10
|
Nam DE, Park JH, Park CE, Jung NY, Nam SH, Kwon HM, Kim HS, Kim SB, Son WS, Choi BO, Chung KW. Variants of aminoacyl-tRNA synthetase genes in Charcot-Marie-Tooth disease: A Korean cohort study. J Peripher Nerv Syst 2021; 27:38-49. [PMID: 34813128 DOI: 10.1111/jns.12476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/18/2021] [Accepted: 11/18/2021] [Indexed: 01/01/2023]
Abstract
Charcot-Marie-Tooth disease (CMT) and related diseases are a genetically and clinically heterogeneous group of peripheral neuropathies. Particularly, mutations in several aminoacyl-tRNA synthetase (ARS) genes have been reported to cause axonal CMT (CMT2) or distal hereditary motor neuropathy (dHMN). However, the common pathogenesis among CMT subtypes by different ARS gene defects is not well understood. This study was performed to investigate ARS gene mutations in a CMT cohort of 710 Korean families. Whole-exome sequencing was applied to 710 CMT patients who were negative for PMP22 duplication. We identified 12 disease-causing variants (from 13 families) in GARS1, AARS1, HARS1, WARS1, and YARS1 genes. Seven variants were determined to be novel. The frequency of overall ARS gene mutations was 1.22% among all independent patients diagnosed with CMT and 1.83% in patients negative for PMP22 duplication. WARS1 mutations have been reported to cause dHMN; however, in our patients with WARS1 variants, CMT was associated with sensory involvement. We analyzed genotype-phenotype correlations and expanded the phenotypic spectrum of patients with CMT possessing ARS gene variants. We also characterized clinical phenotypes according to ARS genes. This study will be useful for performing exact molecular and clinical diagnoses and providing reference data for other population studies.
Collapse
Affiliation(s)
- Da Eun Nam
- Department of Biological Sciences, Kongju National University, Gongju, South Korea
| | - Jin Hee Park
- Department of Biological Sciences, Kongju National University, Gongju, South Korea
| | - Cho Eun Park
- Department of Biological Sciences, Kongju National University, Gongju, South Korea
| | - Na Young Jung
- Department of Biological Sciences, Kongju National University, Gongju, South Korea
| | - Soo Hyun Nam
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Hye Mi Kwon
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hyun Su Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sang Beom Kim
- Department of Neurology, Kyung Hee University Gangdong Hospital, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Won Seok Son
- Department of Biological Sciences, Kongju National University, Gongju, South Korea
| | - Byung-Ok Choi
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea.,Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea
| | - Ki Wha Chung
- Department of Biological Sciences, Kongju National University, Gongju, South Korea
| |
Collapse
|
11
|
Lehtilahti M, Kallio M, Majamaa K, Kärppä M. Phenotype of Patients With Charcot-Marie-Tooth With the p.His123Arg Mutation in GDAP1 in Northern Finland. NEUROLOGY-GENETICS 2021; 7:e629. [PMID: 34632054 PMCID: PMC8495501 DOI: 10.1212/nxg.0000000000000629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/22/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022]
Abstract
Background and Objectives Mutations in the ganglioside-induced differentiation-associated protein 1 (GDAP1) gene cause autosomal dominant or autosomal recessive forms of Charcot-Marie-Tooth disease (CMT). Our aim was to study the clinical phenotype of patients with CMT caused by heterozygous p.His123Arg in GDAP1. Methods Twenty-three Finnish patients were recruited from a population-based cohort and through family investigation. Each patient was examined clinically and electrophysiologically. The Neuropathy Symptom Score and the Neuropathy Disability Score (NDS) were used in clinical evaluation. Results The median age at onset of symptoms was 17 years among patients with p.His123Arg in GDAP1. Motor symptoms were markedly more common than sensory symptoms at onset. All patients had distal weakness in lower extremities, and 17 (74%) patients had proximal weakness. Muscle atrophy and pes cavus were also common. Nineteen (82%) patients had sensory symptoms such as numbness or pain. The disease progressed with age, and the NDS increased 8.5 points per decade. Electrodiagnostic testing revealed length-dependent, sensory and motor axonal polyneuropathy. EDx findings were asymmetrical in 14 patients. Genealogic study of the families suggested a founder effect. Discussion We found that CMT in patients with p.His123Arg in GDAP1 is relatively mild and slow in progression.
Collapse
Affiliation(s)
- Maria Lehtilahti
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital (M.L., K.M., M.Kärppä); Research Unit of Clinical Neuroscience, University of Oulu (M.L., K.M., M.Kärppä); Department of Neurology, Oulu University Hospital (M.L., K.M., M.Kärppä); Department of Clinical Neurophysiology, Medical Research Center Oulu, Oulu University Hospital (M.Kallio); Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu (M.Kallio), Oulu, Finland
| | - Mika Kallio
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital (M.L., K.M., M.Kärppä); Research Unit of Clinical Neuroscience, University of Oulu (M.L., K.M., M.Kärppä); Department of Neurology, Oulu University Hospital (M.L., K.M., M.Kärppä); Department of Clinical Neurophysiology, Medical Research Center Oulu, Oulu University Hospital (M.Kallio); Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu (M.Kallio), Oulu, Finland
| | - Kari Majamaa
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital (M.L., K.M., M.Kärppä); Research Unit of Clinical Neuroscience, University of Oulu (M.L., K.M., M.Kärppä); Department of Neurology, Oulu University Hospital (M.L., K.M., M.Kärppä); Department of Clinical Neurophysiology, Medical Research Center Oulu, Oulu University Hospital (M.Kallio); Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu (M.Kallio), Oulu, Finland
| | - Mikko Kärppä
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital (M.L., K.M., M.Kärppä); Research Unit of Clinical Neuroscience, University of Oulu (M.L., K.M., M.Kärppä); Department of Neurology, Oulu University Hospital (M.L., K.M., M.Kärppä); Department of Clinical Neurophysiology, Medical Research Center Oulu, Oulu University Hospital (M.Kallio); Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu (M.Kallio), Oulu, Finland
| |
Collapse
|
12
|
Ferese R, Campopiano R, Scala S, D'Alessio C, Storto M, Buttari F, Centonze D, Logroscino G, Zecca C, Zampatti S, Fornai F, Cianci V, Manfroi E, Giardina E, Magnani M, Suppa A, Novelli G, Gambardella S. Cohort Analysis of 67 Charcot-Marie-Tooth Italian Patients: Identification of New Mutations and Broadening of Phenotype Expression Produced by Rare Variants. Front Genet 2021; 12:682050. [PMID: 34354735 PMCID: PMC8329958 DOI: 10.3389/fgene.2021.682050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/17/2021] [Indexed: 11/13/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is the most prevalent inherited motor sensory neuropathy, which clusters a clinically and genetically heterogeneous group of disorders with more than 90 genes associated with different phenotypes. The goal of this study is to identify the genetic features in the recruited cohort of patients, highlighting the role of rare variants in the genotype-phenotype correlation. We enrolled 67 patients and applied a diagnostic protocol including multiple ligation-dependent probe amplification for copy number variation (CNV) detection of PMP22 locus, and next-generation sequencing (NGS) for sequencing of 47 genes known to be associated with CMT and routinely screened in medical genetics. This approach allowed the identification of 26 patients carrying a whole gene CNV of PMP22. In the remaining 41 patients, NGS identified the causative variants in eight patients in the genes HSPB1, MFN2, KIF1A, GDAP1, MTMR2, SH3TC2, KIF5A, and MPZ (five new vs. three previously reported variants; three sporadic vs. five familial variants). Familial segregation analysis allowed to correctly interpret two variants, initially reported as "variants of uncertain significance" but re-classified as pathological. In this cohort is reported a patient carrying a novel familial mutation in the tail domain of KIF5A [a protein domain previously associated with familial amyotrophic lateral sclerosis (ALS)], and a CMT patient carrying a HSPB1 mutation, previously reported in ALS. These data indicate that combined tools for gene association in medical genetics allow dissecting unexpected phenotypes associated with previously known or unknown genotypes, thus broadening the phenotype expression produced by either pathogenic or undefined variants. Clinical trial registration: ClinicalTrials.gov (NCT03084224).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Diego Centonze
- IRCCS Neuromed, Pozzilli, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Giancarlo Logroscino
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, The University of Bari "Aldo Moro," "Pia Fondazione Card G. Panico" Hospital Tricase, Lecce, Italy.,Department of Basic Medicine Neuroscience and Sense Organs, University "Aldo Moro" Bari, Bari, Italy
| | - Chiara Zecca
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, The University of Bari "Aldo Moro," "Pia Fondazione Card G. Panico" Hospital Tricase, Lecce, Italy
| | - Stefania Zampatti
- IRCCS Neuromed, Pozzilli, Italy.,Genomic Medicine Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Francesco Fornai
- IRCCS Neuromed, Pozzilli, Italy.,Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Vittoria Cianci
- Regional Epilepsy Centre, Great Metropolitan Hospital Bianchi-Melacrino-Morelli, Reggio Calabria, Italy
| | - Elisabetta Manfroi
- Department of Neuroscience- Neurogenetics, Santa Maria Hospital, Terni, Italy
| | - Emiliano Giardina
- Genomic Medicine Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Rome, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo," Urbino, Italy
| | - Antonio Suppa
- IRCCS Neuromed, Pozzilli, Italy.,Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Novelli
- IRCCS Neuromed, Pozzilli, Italy.,Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Rome, Italy
| | - Stefano Gambardella
- IRCCS Neuromed, Pozzilli, Italy.,Department of Biomolecular Sciences, University of Urbino "Carlo Bo," Urbino, Italy
| |
Collapse
|
13
|
Felice KJ, Whitaker CH, Khorasanizadeh S. Diagnostic yield of advanced genetic testing in patients with hereditary neuropathies: A retrospective single-site study. Muscle Nerve 2021; 64:454-461. [PMID: 34232518 DOI: 10.1002/mus.27368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 11/09/2022]
Abstract
INTRODUCTION/AIMS Advanced genetic testing including next-generation sequencing (AGT/NGS) has facilitated DNA testing in the clinical setting and greatly expanded new gene discovery for the Charcot-Marie-Tooth neuropathies and other hereditary neuropathies (CMT/HN). Herein, we report AGT/NGS results, clinical findings, and diagnostic yield in a cohort of CMT/HN patients evaluated at our neuropathy care center. METHODS We reviewed the medical records of all patients with suspected CMT/HN who underwent AGT/NGS at the Hospital for Special Care from January 2017 through January 2020. Patients with variants reported as pathogenic or likely pathogenic were included for further clinical review. RESULTS We ordered AGT/NGS on 108 patients with suspected CMT/HN. Of these, pathogenic or likely pathogenic variants were identified in 17 patients (diagnostic yield, 15.7%), including 6 (35%) with PMP22 duplications; 3 (18%) with MPZ variants; 2 (12%) with MFN2 variants; and 1 each with NEFL, IGHMBP2, GJB1, BSCL2, DNM2, and TTR variants. Diagnostic yield increased to 31.0% for patients with a positive family history. DISCUSSION AGT/NGS panels can provide specific genetic diagnoses for a subset of patients with CMT/HN disorders, which improves disease and genetic counseling and prepares patients for disease-focused therapies. Despite these advancements, many patients with known or suspected CMT/HN disorders remain without a specific genetic diagnosis. Continued advancements in genetic testing, such as multiomic technology and better understanding of genotype-phenotype correlation, will further improve detection rates for patients with suspected CMT/HN disorders.
Collapse
Affiliation(s)
- Kevin J Felice
- Department of Neuromuscular Medicine, Hospital for Special Care, New Britain, Connecticut, USA
| | - Charles H Whitaker
- Department of Neuromuscular Medicine, Hospital for Special Care, New Britain, Connecticut, USA
| | - Sadaf Khorasanizadeh
- Department of Neuromuscular Medicine, Hospital for Special Care, New Britain, Connecticut, USA
| |
Collapse
|
14
|
Uchôa Cavalcanti EB, Santos SCDL, Martins CES, de Carvalho DR, Rizzo IMPDO, Freitas MCDNB, da Silva Freitas D, de Souza FS, Junior AM, do Nascimento OJM. Charcot-Marie-Tooth disease: Genetic profile of patients from a large Brazilian neuromuscular reference center. J Peripher Nerv Syst 2021; 26:290-297. [PMID: 34190362 DOI: 10.1111/jns.12458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/15/2021] [Accepted: 06/23/2021] [Indexed: 11/28/2022]
Abstract
This study aimed to describe the clinical, genetic, and epidemiological features of Charcot-Marie-Tooth disease (CMT) in Brazilian patients from a tertiary center, and to compare our data with previously published findings. This retrospective observational study conducted between February 2015 and July 2020 evaluated 503 patients (94 families and 192 unrelated individuals), diagnosed with CMT. Clinical and neurophysiological data were obtained from electronic medical records and blood samples were used for genetic analyses. Multiplex ligation-dependent probe amplification was used to assess duplications/deletions in PMP22. Sanger sequencing of GJB1 was performed in cases of suspected demyelinating CMT. Targeted gene panel sequencing was used for the remaining negative demyelinating cases and all axonal CMT cases. The first decade of life was the most common period of disease onset. In all, 353 patients had demyelinating CMT, 39 had intermediate CMT, and 111 had axonal CMT. Pathogenic or likely pathogenic variants were identified in 197 index cases. The most common causative genes among probands were PMP22 (duplication) (n = 116, 58.88%), GJB1 (n = 23, 11.67%), MFN2 (n = 12, 6.09%), GDAP1 (n = 7, 3.55%), MPZ (n = 6, 3.05%), PMP22 (point mutation) (n = 6, 3.05%), NEFL (n = 3, 1.52%), SBF2 (n = 3, 1.52%), and SH3TC2 (n = 3, 1.52%). Other identified variants were ≤1% of index cases. This study provides further data on the frequency of CMT subtypes in a Brazilian clinical-based population and highlights the importance of rarer and previously undiagnosed variants in clinical practice.
Collapse
|
15
|
Kanwal S, Choi YJI, Lim SO, Choi HJ, Park JH, Nuzhat R, Khan A, Perveen S, Choi BO, Chung KW. Novel homozygous mutations in Pakistani families with Charcot-Marie-Tooth disease. BMC Med Genomics 2021; 14:174. [PMID: 34193129 PMCID: PMC8247155 DOI: 10.1186/s12920-021-01019-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Charcot-Marie-Tooth disease (CMT) is a group of genetically and clinically heterogeneous peripheral nervous system disorders. Few studies have identified genetic causes of CMT in the Pakistani patients. METHODS This study was performed to identify pathogenic mutations in five consanguineous Pakistani CMT families negative for PMP22 duplication. Genomic screening was performed by application of whole exome sequencing. RESULTS We identified five pathogenic or likely pathogenic homozygous mutations in four genes: c.2599C > T (p.Gln867*) and c.3650G > A (p.Gly1217Asp) in SH3TC2, c.19C > T (p.Arg7*) in HK1, c.247delG (p.Gly83Alafs*44) in REEP1, and c.334G > A (p.Val112Met) in MFN2. These mutations have not been reported in CMT patients. Mutations in SH3TC2, HK1, REEP1, and MFN2 have been reported to be associated with CMT4C, CMT4G, dHMN5B (DSMA5B), and CMT2A, respectively. The genotype-phenotype correlations were confirmed in all the examined families. We also confirmed that both alleles from the homozygous variants originated from a single ancestor using homozygosity mapping. CONCLUSIONS This study found five novel mutations as the underlying causes of CMT. Pathogenic mutations in SH3TC2, HK1, and REEP1 have been reported rarely in other populations, suggesting ethnic-specific distribution. This study would be useful for the exact molecular diagnosis and treatment of CMT in Pakistani patients.
Collapse
Affiliation(s)
- Sumaira Kanwal
- Department of Biosciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Yu JIn Choi
- Department of Biological Sciences, Kongju National University, 56 Gongjudaehakro, Gongju, 32588, Korea
| | - Si On Lim
- Department of Biological Sciences, Kongju National University, 56 Gongjudaehakro, Gongju, 32588, Korea
| | - Hee Ji Choi
- Department of Biological Sciences, Kongju National University, 56 Gongjudaehakro, Gongju, 32588, Korea
| | - Jin Hee Park
- Department of Biological Sciences, Kongju National University, 56 Gongjudaehakro, Gongju, 32588, Korea
| | - Rana Nuzhat
- Department of Pediatric Neurology, The Children Hospital and Institute of Child Health, Multan, Pakistan
| | - Aneela Khan
- Department of Pediatric Neurology, The Children Hospital and Institute of Child Health, Multan, Pakistan
| | - Shazia Perveen
- Department of Zoology, The Women University, Multan, Pakistan
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea.
| | - Ki Wha Chung
- Department of Biological Sciences, Kongju National University, 56 Gongjudaehakro, Gongju, 32588, Korea.
| |
Collapse
|
16
|
Yubero D, Natera-de Benito D, Pijuan J, Armstrong J, Martorell L, Fernàndez G, Maynou J, Jou C, Roldan M, Ortez C, Nascimento A, Hoenicka J, Palau F. The Increasing Impact of Translational Research in the Molecular Diagnostics of Neuromuscular Diseases. Int J Mol Sci 2021; 22:4274. [PMID: 33924139 PMCID: PMC8074304 DOI: 10.3390/ijms22084274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
The diagnosis of neuromuscular diseases (NMDs) has been progressively evolving from the grouping of clinical symptoms and signs towards the molecular definition. Optimal clinical, biochemical, electrophysiological, electrophysiological, and histopathological characterization is very helpful to achieve molecular diagnosis, which is essential for establishing prognosis, treatment and genetic counselling. Currently, the genetic approach includes both the gene-targeted analysis in specific clinically recognizable diseases, as well as genomic analysis based on next-generation sequencing, analyzing either the clinical exome/genome or the whole exome or genome. However, as of today, there are still many patients in whom the causative genetic variant cannot be definitely established and variants of uncertain significance are often found. In this review, we address these drawbacks by incorporating two additional biological omics approaches into the molecular diagnostic process of NMDs. First, functional genomics by introducing experimental cell and molecular biology to analyze and validate the variant for its biological effect in an in-house translational diagnostic program, and second, incorporating a multi-omics approach including RNA-seq, metabolomics, and proteomics in the molecular diagnosis of neuromuscular disease. Both translational diagnostics programs and omics are being implemented as part of the diagnostic process in academic centers and referral hospitals and, therefore, an increase in the proportion of neuromuscular patients with a molecular diagnosis is expected. This improvement in the process and diagnostic performance of patients will allow solving aspects of their health problems in a precise way and will allow them and their families to take a step forward in their lives.
Collapse
Affiliation(s)
- Dèlia Yubero
- Department of Genetic and Molecular Medicine—IPER, Hospital Sant Joan de Déu and Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (D.Y.); (J.A.); (L.M.); (G.F.); (J.M.); (M.R.)
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, 08950 Barcelona, Spain;
| | - Daniel Natera-de Benito
- Neuromuscular Unit, Department of Pediatric Neurology, Hospital Sant Joan de Déu and Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (D.N.-d.B.); (C.O.)
| | - Jordi Pijuan
- Laboratory of Neurogenetics and Molecular Medicine—IPER, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain;
| | - Judith Armstrong
- Department of Genetic and Molecular Medicine—IPER, Hospital Sant Joan de Déu and Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (D.Y.); (J.A.); (L.M.); (G.F.); (J.M.); (M.R.)
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, 08950 Barcelona, Spain;
| | - Loreto Martorell
- Department of Genetic and Molecular Medicine—IPER, Hospital Sant Joan de Déu and Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (D.Y.); (J.A.); (L.M.); (G.F.); (J.M.); (M.R.)
- Laboratory of Neurogenetics and Molecular Medicine—IPER, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain;
| | - Guerau Fernàndez
- Department of Genetic and Molecular Medicine—IPER, Hospital Sant Joan de Déu and Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (D.Y.); (J.A.); (L.M.); (G.F.); (J.M.); (M.R.)
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, 08950 Barcelona, Spain;
| | - Joan Maynou
- Department of Genetic and Molecular Medicine—IPER, Hospital Sant Joan de Déu and Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (D.Y.); (J.A.); (L.M.); (G.F.); (J.M.); (M.R.)
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, 08950 Barcelona, Spain;
| | - Cristina Jou
- Department of Pathology, Hospital Sant Joan de Déu, Pediatric Biobank for Research, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain;
| | - Mònica Roldan
- Department of Genetic and Molecular Medicine—IPER, Hospital Sant Joan de Déu and Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (D.Y.); (J.A.); (L.M.); (G.F.); (J.M.); (M.R.)
- Confocal Microscopy and Cellular Imaging Unit, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain
| | - Carlos Ortez
- Neuromuscular Unit, Department of Pediatric Neurology, Hospital Sant Joan de Déu and Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (D.N.-d.B.); (C.O.)
- Division of Pediatrics, Clinic Institute of Medicine & Dermatology, Hospital Clínic, University of Barcelona School of Medicine and Health Sciences, 08950 Barcelona, Spain
| | - Andrés Nascimento
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, 08950 Barcelona, Spain;
- Neuromuscular Unit, Department of Pediatric Neurology, Hospital Sant Joan de Déu and Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (D.N.-d.B.); (C.O.)
| | - Janet Hoenicka
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, 08950 Barcelona, Spain;
- Laboratory of Neurogenetics and Molecular Medicine—IPER, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain;
| | - Francesc Palau
- Department of Genetic and Molecular Medicine—IPER, Hospital Sant Joan de Déu and Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (D.Y.); (J.A.); (L.M.); (G.F.); (J.M.); (M.R.)
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, 08950 Barcelona, Spain;
- Laboratory of Neurogenetics and Molecular Medicine—IPER, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain;
- Department of Pathology, Hospital Sant Joan de Déu, Pediatric Biobank for Research, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain;
| |
Collapse
|
17
|
Sun B, He ZQ, Li YR, Bai JM, Wang HR, Wang HF, Cui F, Yang F, Huang XS. Screening for SH3TC2 variants in Charcot-Marie-Tooth disease in a cohort of Chinese patients. Acta Neurol Belg 2021; 122:1169-1175. [PMID: 33587240 DOI: 10.1007/s13760-021-01605-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/18/2021] [Indexed: 11/28/2022]
Abstract
Mutations in the SH3TC2 gene cause Charcot-Marie-Tooth disease type 4C (CMT4C), characterized by inherited demyelinating peripheral neuropathy. CMT4C is a common form of CMT4/autosomal recessive (AR) CMT1. This study examined the SH3TC2 variants, investigated genotype-phenotype correlations and explored the frequency of CMT4C in Chinese patients. A total of 206 unrelated patients of Chinese Han descent clinically diagnosed with CMT were recruited. All patients underwent detailed history-taking, neurological examination, laboratory workups, and electrophysiological studies. Genetic analysis was performed via high-throughput target sequencing (NGS). Three patients, one male and two females, were found to carry five SH3TC2 mutations: patient 1 (c.3154C > T, p.R1054X; c.929G > A, p.G310E); Patient 2 (c.2872_2872del, p.S958fs; c.3710C > T, p.A1237V) and Patient 3 (c.2782C > T, p.Q928X; c.929G > A, p.G310E). The c.2872_2872del, c.3710C > T and c.2782C > T variants were not reported before. CMT4C caused by SH3TC2 mutation is a very common type of CMT4/AR CMT1. Three novel mutations, c.2872_2872del, c.3710C > T and c.2782C > T, were found in this study. Combination of clinical phenotype, nerve conduction studies, genetic analysis and bioinformatics analysis are of vital importance in patients suspected as CMT.
Collapse
Affiliation(s)
- Bo Sun
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Geriatric Neurological Department of the Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Zheng-Qing He
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yan-Ran Li
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Jiong-Ming Bai
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
- College of Medicine, Nankai University, Tianjin, China
| | - Hao-Ran Wang
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
- College of Medicine, Nankai University, Tianjin, China
| | - Hong-Fen Wang
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Fang Cui
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Fei Yang
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xu-Sheng Huang
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|